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Abstract

Background Dynamic activation and inactivation of gene regulatory DNA produce
the expression changes that drive the differentiation of cellular lineages. Identifying
regulatory regions active during developmental transitions is necessary to understand
how the genome specifies complex developmental programs and how these processes
are disrupted in disease. Gene regulatory dynamics are mediated by many factors,
including the binding of transcription factors (TFs) and the methylation and acetyla-
tion of DNA and histones. Genome-wide maps of TF binding and DNA and histone
modifications have been generated for many cellular contexts; however, given the di-
versity and complexity of animal development, these data cover only a small fraction of
the cellular and developmental contexts of interest. Thus, there is a need for methods
that use existing epigenetic and functional genomics data to analyze the thousands of
contexts that remain uncharacterized.

Results To investigate the utility of histone modification data in the analysis of
cellular contexts without such data, I evaluated how well genome-wide H3K27ac and
H3K4me1 data collected in different developmental stages, tissues, and species were
able to predict experimentally validated heart enhancers active at embryonic day 11.5
(E11.5) in mouse. Using a machine-learning approach to integrate the data from dif-
ferent contexts, I found that E11.5 heart enhancers can often be predicted accurately
from data from other contexts, and I quantified the contribution of each data source to
the predictions. The utility of each dataset correlated with nearness in developmental
time and tissue to the target context: data from late developmental stages and adult
heart tissues were most informative for predicting E11.5 enhancers, while marks from
stem cells and early developmental stages were less informative. Predictions based on
data collected in non-heart tissues and in human hearts were better than random, but
worse than using data from mouse hearts.

Conclusions The ability of these algorithms to accurately predict developmental
enhancers based on data from related, but distinct, cellular contexts suggests that

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 25, 2014. ; https://doi.org/10.1101/010710doi: bioRxiv preprint 

https://doi.org/10.1101/010710


combining computational models with epigenetic data sampled from relevant contexts
may be sufficient to enable functional characterization of many cellular contexts of
interest.
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Background

Tissue-specific gene regulatory regions are essential for specifying the proper gene expression
patterns that drive cellular differentiation and development in animals [17]. However, the
recognition of these regulatory regions is challenging. Recently, the ability to assay a range
of epigenetic modifications to DNA and histones on a genome-wide scale has improved the
ability to interpret the functional potential of non-protein-coding DNA [1]. In particular,
several histone modifications, such as monomethylation of the fourth residue of histone H3
(H3K4me1) and acetylation of the 27th residue of H3 (H3K27ac), have been shown to be
associated with genomic regions with long range gene regulatory enhancer activity [8, 13, 24].

ENCODE [9], Roadmap Epigenomics [2], and several smaller scale projects have per-
formed thousands of these so-called “functional genomics” assays on hundreds of cell lines
and tissue samples. Despite their Herculean efforts, these projects have comprehensively an-
alyzed only a small fraction the modifications in cellular contexts of interest to the scientific
community. We are still far from a complete picture of the dynamics of DNA modification
and binding across different cells.

Moreover, the initial selection of cellular contexts to characterize by ENCODE was based
mainly on practical considerations, such as availability, ease of growth, and high yield. The
relevance of functional genomic data from the best characterized cell lines—e.g., the three
“Tier 1” ENCODE cell lines: B-lymphocytes (GM12878), embryonic stem cells (H1-hESC),
and a leukemia cell line (K562)—to other cellular contexts is unclear due to changes asso-
ciated with immortalization and the transition to a cancerous state. In addition, these cell
lines’ progenitors are developmentally distant from many cells of interest. Indeed, most pri-
mary tissues and developmental stages have few data sets available, and these are insufficient
to produce a full picture of the functional state of the genome in these cellular contexts.

In this environment, researchers with interests outside of the few well characterized cells
are presented with a difficult choice between mapping existing data from other contexts to
their own or performing functional genomics analyses in their systems of interest. Further-
more, functional genomics analysis of certain cells may never be possible for technical or
ethical reasons, e.g., lack of material or the use of protected tissues. As a result, the map-
ping of functional genomics data from one context to another is common practice, but the
situations in which it is appropriate and the potential pitfalls are not clear. A deeper un-
derstanding of the relationships between functional genomics data across contexts is needed
to identify the conditions in which mapping across contexts is justified.

Recent work comparing chromatin accessibility and epigenetic modification profiles be-
tween pluripotent cells and lineage committed cells has revealed the dynamic nature of these
modifications [19, 27, 28, 30]. Embryonic stem cells display more accessible chromatin and
potentially active regulatory sequence than differentiated cells [29], and lineage commitment
is accompanied by activation of lineage-specific regulatory regions and an overall repression
of regions active in embryonic stem cells [25]. The relationships encoded in DNA methy-
lation and chromatin state profiles of different cell types are often sufficient to accurately
reconstruct hierarchical relationships based on the anatomical and developmental similar-
ity of cellular lineages [4, 25]. These results suggest that, given the proper models, these
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relationships could be exploited to “impute” epigenetic information across related cellular
contexts to enable functional annotation. Indeed, integrating diverse functional genomics
data sets (without regard to their developmental relationships) improves gene regulatory
enhancer prediction [10].

In this paper, I evaluate the ability of existing genome-wide H3K4me1 and H3K27ac
data sets to identify known gene regulatory enhancers active in a developmentally related,
but distinct, context. I focus on heart development in mouse, because this process has both
a multi-stage characterization of these two prominent enhancer-associated histone modifi-
cations [27] and several hundred experimentally validated enhancers [3, 26]. I introduce a
supervised machine learning prediction framework in which I analyze the ability of existing
functional genomics data to predict enhancer activity across three dimensions: develop-
mental time within an organism, different tissues within an organism, and corresponding
tissues between species. I find that developmental heart enhancers can be predicted very
accurately using data from related contexts. Data from all contexts considered, including
across species, provide useful information and perform better than random; however, the
developmental proximity of a cellular context to the target is correlated with its utility.

Results

Preliminaries

My goal was to evaluate the ability of two enhancer-associated histone modifications, H3K4me1
and H3K27ac, collected from different cellular, developmental, and organismal contexts to
identify known mouse developmental enhancers (Figure 1). I used H3K4me1 and H3K27ac
sites identified via ChIP-Seq on four stages of a directed differentiation of ES cells (E0) to
mesoderm (E4) to cardiac precursors (E5.8) to cardiomyocytes (E10) [27]. All other histone
mark data I used, including marks from embryonic day 14.5 (E14.5) and eight week old
(adult) hearts, were collected by the ENCODE project [9]. Note that the heart data from
the first four contexts were collected from a single cell type, while the last two are from
full hearts (see Discussion). I took mouse enhancers from the VISTA enhancer browser,
a database of experimentally validated DNA sequences (and their genomic locations) that
drive gene regulatory enhancer activity at E11.5 in transgenic mice [26]. The mouse genomic
regions tested for enhancer activity in VISTA were primarily selected due to evolutionary
conservation or association with the P300 transcriptional co-activator protein [3, 15, 26].
The data set consisted of 217 enhancers, 90 of which drove gene expression in the heart. I
also considered 88 human DNA sequences shown by VISTA to have heart enhancer activity
in transgenic mice in some analyses.

I evaluated the ability of the different histone modification data to identify known heart
enhancers in a supervised machine learning framework (Figure 1). This type of approach
has had great success at identifying enhancers in previous studies [10, 22]. In short, I
aimed to classify genomic regions as either positive (having heart enhancer activity at E11.5)
or negative (no heart enhancer activity at E11.5) based on the overlap of H3K4me1 and
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H3K27ac datasets from different cellular, developmental, and species contexts. I refer to
these data as “features”. In most analyses, validated heart enhancers were the positives. I
considered two different sets of negatives: random chromosome and length-matched genomic
regions without known enhancer activity and validated enhancers of gene expression in other
E11.5 tissues. When random regions were used as negatives, I included 10 matched negatives
for each positive. I used six common machine learning algorithms to explore how well these
features can predict heart enhancers. I performed five-fold cross validation, in which 20%
of the known examples were held out for evaluation of classifiers trained on the remaining
data, and evaluated the results by calculating receiver operating characteristic (ROC) curves
averaged over the five folds. Unless otherwise stated, I report the results obtained with
Random Forests [6], because they performed well and, as described in the Results, the
conclusions are robust to the the algorithm used.

Heart enhancers can be identified accurately using data from dif-
ferent developmental stages.

In this section, I evaluate the ability of mouse H3K4me1 and H3K27ac data from different
stages of heart development to predict validated mouse heart enhancers at E11.5. I first
trained a random forest classifier using all the mouse heart histone mark datasets as features
(Figure 1A) to distinguish the heart enhancers from matched regions taken from the genomic
background (Methods). This classifier was able to accurately identify E11.5 heart enhancers;
the area under the resulting ROC curve (ROC AUC) was 0.96 (Figure 2A).

Next, I evaluated the ability of classifiers trained using the same features to distinguish
the heart enhancers from enhancers active in a diverse set of other tissues (listed in Table
S1) at the same developmental stage. As expected from recent results [10], this task proved
more challenging, but the random forest classifier still performed well (Figure 2A; ROC
AUC=0.85).

Histone marks from developmental stages nearby the target stage
are the most informative.

To investigate the contribution of histone marks from different developmental stages to the
predictions, I computed the normalized “feature importance” for each feature dataset in
the random forest using the Gini impurity metric [6, 20]. For both prediction tasks—heart
enhancers vs. background and vs. other enhancers—histone marks from the two stages
adjacent to the target stage (E10 and E14.5) had the majority of the importance (Table 1).
In both cases, the importance of features decreased monotonically with distance from the
target stage. Not surprisingly, given their pluripotent state, marks from embryonic stem
cells were the least important.

Looking at these data in the simpler terms of the overlap of known enhancers with the
different histone marks reveals a similar pattern. I computed the enrichment of each heart
histone mark dataset within the E11.5 heart enhancers compared to the background regions.
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All histone mark datasets showed significant enrichment (p < 0.0003 for each; Fisher’s exact
test) for overlap with the enhancers (Figure 3; odds ratios >5 for all), but as expected, marks
collected from the closest developmental stages to the target (E10 and E14.5) are the most
enriched for overlap with the enhancers (odds ratios from 60.5 to 213.9). The embryonic
stem cell’s marks showed the least significant enrichment.

Histone marks from different tissues can accurately identify heart
enhancers.

Next, I evaluated the ability of data from non-cardiac mouse tissues to predict E11.5 heart
enhancers. I used H3K27ac and H3K4me1 from 29 different mouse non-cardiac tissues and
cell lines collected by the ENCODE project (listed in Table S1) to train random forest
classifiers. This classification strategy also performed well at distinguishing heart enhancers
from the genomic background (Figure 2B; ROC AUC=0.91); however, it did not achieve
the level of accuracy attained with heart data. The non-heart features performed relatively
poorly at distinguishing heart enhancers from other types of enhancers (Figure 2B; ROC
AUC=0.72). This suggests that these feature data may mark generally active regulatory
regions, but do not capture heart-specific patterns.

An H3K4me1 dataset from adult placental tissue received the highest normalized fea-
ture importance (10.2%) in the non-heart tissue based classifier of heart enhancers vs. the
genomic background. However, I found few clear patterns in the feature importances for
these classifiers (Table S2). No tissue dominated the importances, and many datasets from
a variety of tissues including liver, limb, embryonic fibroblasts, and brain, had at least 5%
of the importance. A largely different set of tissues and marks were found among the most
important in the classifier of heart vs. other enhancers.

Histone marks from mouse heart tissues can accurately identify
human heart enhancers.

It may never be possible to collect sufficient material for histone mark mapping from some
cellular contexts due to ethical or technical reasons. In such cases, using histone marks from
model organisms to analyze the target species is appealing. To model this situation, I evalu-
ated the efficacy of using H3K4me1 and H3K27ac collected in mouse hearts to predict known
human heart enhancers. Studies of the similarity of transcription factor binding [23], methy-
lation [18], and gene expression [5] suggest that this may be feasible due to the considerable
similarity in these events in corresponding tissues across distant species.

I mapped validated human heart enhancer sequences to their corresponding locations
in the mouse genome, and then used the same random forest strategy to distinguish these
regions from the genomic background and other known non-heart human enhancers mapped
to mouse. Only 7% of the human heart enhancers overlapped a validated mouse heart
enhancer, so they represent a largely independent set of genomic regions to classify. (This
should not be taken as an estimate of the number of enhancers conserved between these
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species, because testing of both the human and mouse sequences for a region was relatively
rare.)

The mouse H3K4me1 and H3K27ac heart marks were able to accurately identify the
human heart enhancers in both prediction tasks (Figure 2C; ROC AUCs of 0.87 and 0.82);
however, they did not perform as well as they did for mouse heart enhancers (Figure 2A).
Interestingly, the cross species data were better able to distinguish the human heart enhancers
from other types of human enhancer than the marks from mouse non-heart tissues were for
mouse heart enhancers (Figure 2B, ROC AUC=0.72). This is consistent with the greater
similarity in gene expression in corresponding tissues across species than between different
tissues within the same species. However, direct comparison is complicated by the fact that
different enhancer regions are being classified in these two analyses.

The human heart enhancers considered here were tested in transgenic mice at E11.5;
as a result, the set of human heart enhancers is biased in (at least) two ways. First, they
are sufficiently evolutionarily conserved to be mappable between species; 23% of human
enhancers did not reliably map to the mouse genome. It is possible that non-conserved
human enhancers could be more difficult to predict using mouse data. Second, these regions
are active when placed in a mouse. This second bias is unlikely to have a dramatic effect, since
the basic transcriptional machinery evolves far more slowly than the regulatory sequences
that it acts upon. Indeed, non-conserved enhancer sequences have been shown to maintain
activity over much greater distances [11].

The heart enhancer prediction results are robust to the machine
learning algorithm used.

Finally, to ensure that the patterns I found in the ability of different histone mark datasets to
predict heart enhancers were not specific to a particular classification framework, I repeated
all the predictions and evaluations using six common machine learning algorithms: random
forests, boosting (AdaBoost), linear support vector machines (SVMs), decision trees, naive
Bayes, and k-nearest neighbor (KNN) classification. Random forests, AdaBoost, and SVMs
all performed similarly well and outperformed the three other approaches (Table 2). No
matter the algorithm or overall performance, my general conclusions held: histone marks
from diverse contexts can predict heart enhancers better than random, and heart enhancers
can be better identified using heart histone mark data than data from other tissues.

Histone modifications can be accurately predicted using modifica-
tions from other contexts.

Thus far, I have focused on predicting enhancers using histone modification data. How-
ever, histone modifications are informative about functions beyond enhancer activity, and
thus, predicting histone modifications themselves across cellular contexts could have broader
utility.

To explore this possibility, I evaluated the ability of mouse histone marks to predict each
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other. In other words, rather than predicting known enhancers, I held out the histone marks
collected from each heart developmental stage in turn and trained a classifier to identify
their locations compared to the genomic background using the other marks as features.
The locations of both H3K4me1 and H3K27ac at each heart developmental stage were able
to be determined more accurately than random guessing (Table 3). However, there was
considerable variation in performance. Not surprisingly given their pluripotent state and the
broadly active regulatory landscape that accompanies it [25, 29], modifications in E0 cells
were by far the most difficult to identify from the available data. Stages in the middle of
the differentiation attained the highest scores, likely due to the presence of more temporally
flanking modification data.

Discussion

These results suggest that there is considerable promise in using functional genomics data
across contexts for the common task of identifying putative gene regulatory regions. However,
the poor results based on data from early developmental stages indicate that, as expected,
there is considerable variability in the utility of different data sets depending on the target
context. This underscores the need for methods to highlight the most informative contexts
in which to collect new functional genomics data and to “interpolate” across contexts using
existing data.

The analyses presented here required the integration of several datasets from different
sources, and attributes of these data must be kept in mind while interpreting the results.
First, though the heart enhancers validated by VISTA are commonly used to explore at-
tributes of enhancers, they are likely not representative of all developmental heart enhancers.
Most heart enhancers in VISTA were selected for analysis based on mammalian evolutionary
sequence conservation or the presence of P300 in heart tissue [26]. Thus, it is possible that
enhancers that do not have these attributes, e.g., species-specific enhancers, might be harder
to identify using histone modifications. Nonetheless, my approach performs very well on this
high confidence set of functionally validated enhancers.

To obtain H3K4me1 and H3K27ac from as wide a range of heart developmental contexts
as possible, I combined data collected from two different sources. The data from stages prior
to the target stage (E0-E10) come from a directed differentiation of cardiomyoctyes, while
the data from after the target (E14.5 and adult) were collected from whole hearts. Given
that both data types show a clear trend of increasing performance with proximity to the
target, I am confident in this trend. However, given this difference in origin, the feature
importances assigned to marks from before and after the target stage may not be directly
comparable representations of the relevance of these developmental stages to the target.

As more functional genomics data collected over successive developmental stages become
available, it will be possible to model the gene regulatory landscapes of different developing
tissues. For example, Nord et al. [16] recently collected genome-wide H3K27ac modifica-
tion profiles from seven developmental stages (starting with E11.5 through adulthood) for
mouse heart, liver, and forebrain tissues and found rapid and pervasive turnover in the
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H3K27ac modification landscape across the development of these tissues. As illustrated in
their description of the two phases of liver development, integrating physiological knowledge
about the development of different tissues with genome-wide modification profiles will likely
be necessary to identify the most informative contexts to assay and to fully characterize
developmental enhancer usage.

The analyses presented here take an initial step towards the ultimate goal of understand-
ing how and when functional genomics data should be mapped across contexts. Under-
standing the dynamics of genome modifications across cell types will be relevant beyond this
enhancer prediction case study; genome-wide profiles of TF binding and DNA and histone
modification are informative about many possible functions of DNA.

Given the success of these relatively simple models at predicting histone modifications
themselves, I anticipate that more explicit models of the dynamics of these features over
developmental time in different tissues will enable interpolation of histone marks between
different contexts and help identify the most informative contexts to assay. I recently devel-
oped a statistical method for modeling DNA methylation dynamics across development that
can accurately impute missing methylation data across blood cell differentiation [7]. Similar
approaches are likely to enable these analyses for other dynamic modifications and cellular
lineages.

Conclusion

I show that integrating enhancer-associated histone marks from different cellular contexts
achieves accurate prediction of heart enhancer activity in a context from which no data were
collected. Thus, extrapolating existing functional genomics datasets across developmental,
cellular, and species contexts has the potential to enable accurate gene regulatory enhancer
prediction in many contexts. More broadly, this suggests the promise of “interpolating”
existing functional genomics data to related contexts to complement ongoing experimental
efforts to characterize the diversity of mammalian cells.

Materials and methods

Data

All analyses were performed using the February 2009 assembly of the human genome (GRCh37/hg19)
and the July 2007 assembly of the mouse genome (MGSCv37/mm9). Any data that were
not in reference to these builds were mapped over using the liftOver tool from the UCSC
Genome Browser’s Kent tools (http://hgdownload.cse.ucsc.edu/admin/jksrc.zip). This tool
was also used to map genomic locations between the human and mouse genomes.

Human and mouse enhancer sequences, genomic locations, and expression contexts were
downloaded from the VISTA Enhancer Browser [26] on January 6, 2014. This consisted
of 217 mouse enhancers, 90 of which had heart activity in E11.5 transgenic mice, and 848
human enhancers, 88 of which had heart activity.
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The H3K4me1 and H3K27ac genome-wide profiles were taken from two sources: a recent
directed differentiation of mouse embryonic stem cells into cardiomyocytes [27] and mouse
heart and non-heart tissues analyzed by the ENCODE project [9]. Each study performed
chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) to iden-
tify DNA associated with modified histones. I used the peak calls released by each study.
Supplementary Table 1 lists all cellular contexts considered.

Enhancer Prediction

In this paper, I describe the classification of genomic regions based on their enhancer activity.
Different analyses consider different sets of regions as positive and negative training examples
as outlined in the Results. However, in general, for each genomic region of interest, a feature
vector was created by intersecting the genomic locations of H3K4me1 and H3K27ac peaks
from the relevant contexts with its location. The feature vector and the enhancer status
were then used to train and evaluate supervised classification algorithms. Chromosome and
length matched genomic regions were generated for each set of positives using the randomBed
program from the BEDtools suite [21].

I used the python scikit-learn v0.14.1 machine learning module [20] to perform all super-
vised classification analyses and cross validated evaluations. I used the default scikit-learn
implementation of six supervised classification algorithms: Random Forests with 10 trees
and maximum depth of 5 [6], linear Support Vector Machines (SVMs) with the `2 norm and
C of 0.1, AdaBoost [12] with 50 Decision Trees and learning rate 1, Gaussian Naive Bayes,
Decision Trees with maximum depth 5, and K-Nearest Neighbors with k of 3. For Random
Forests, the scikit-learn implementation combines the probabilistic predictions from each
tree, instead of letting each classifier vote for a single class. For Decision Tree and Random
Forest classifiers, Gini impurity was used as the metric and to compute feature importance.
All other statistical analyses were performed with scipy [14].
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Figure 1: Overview of the data and analyses. (a) I collected existing genome-wide
maps of two histone marks, H3K4me1 and H3K27ac, from stages of a directed differentiation
of mouse embryonic stem (ES) cells into cardiomyocytes, from heart tissues collected from
several life stages, and from several other tissues. I evaluated how well these marks, which are
associated with enhancer activity, could predict experimentally validated heart enhancers in
E11.5 mice (“Target”). (b) I took a supervised machine learning approach to this problem
by constructing feature vectors for validated enhancers and control regions based on the
presence or absence of these histone modifications at their genomic locations. I created
classifiers based on different subsets of the data from the cellular contexts given in (a) and
evaluated them using cross validation.
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Figure 2: Heart enhancers can be identified accurately using data from differ-
ent cellular contexts. A random forest classifier was trained to distinguish E11.5 heart
enhancers from the genomic background and from enhancers active in other tissues. Each
classifier used H3K4me1 and H3K27ac patterns from different sets of cellular contexts as
features (Figure 1). (a) In five-fold cross validation, the classifiers based on data from other
stages of heart development accurately identified E11.5 heart enhancers; these classifiers
achieved ROC AUCs of 0.96 vs. the genomic background and 0.85 vs. other enhancers. (b)
The classifiers that used data from non-heart tissues as features performed well (AUCs of
0.91 and 0.72), but were worse than the developmental-stage-based classifiers. (c) When
mapped between species, the histone marks from mouse heart development were also able
to identify human developmental enhancers better than random (AUCs of 0.87 and 0.82).
Note that the results in (c) should not be directly compared to the Stage and Tissue results,
because they are based on different sets of enhancers. As expected, distinguishing heart
enhancers from the genomic background was easier than from non-heart enhancers in each
scenario.
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Figure 3: Odds ratios for E11.5 heart enhancer overlap by H3K4me1 and H3K27ac
from different cellular contexts. Mouse E11.5 heart enhancers are significantly enriched,
compared to matched regions from the genomic background, for H3K4me1 and H3K27ac
from all developmental stages listed (p < 0.01 for all; Fisher’s exact test). As expected, the
modifications from contexts flanking E11.5—E10 and E14.5—show the strongest enrichment,
while the early stages and adult heart tissue have lower enrichment. Only three E11.5 heart
enhancers are not marked by at least one of H3K4me1 or H3K27ac at E14.5.
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Tables

Table 1: Normalized feature importance (Gini impurity) for data from different developmen-
tal stages in random forest prediction of E11.5 heart enhancers.

E0 E4 E5.8 E10 E14.5 8 weeks

Vs. Background 0.01 0.01 0.07 0.19 0.69 0.06
Vs. Other Enhancers 0.05 0.07 0.17 0.37 0.23 0.11

Table 2: Some classification algorithms perform better than others, but all yield similar
conclusions. This table gives ROC AUCs (averaged over five cross-validation folds) for six
common algorithms at distinguishing E11.5 heart enhancers from other enhancers based on
marks from heart or non-heart tissues.

Heart Features Non-Heart Features

Random Forest 0.85 0.72
Linear SVM 0.84 0.73
AdaBoost 0.82 0.70
NaiveBayes 0.79 0.69
Decision Tree 0.77 0.62
KNN (k = 3) 0.74 0.66

Table 3: ROC AUCs for predicting heart histone modification sites using histone modification
data from all other heart developmental contexts.

H3K4me1 H3K27ac

E0 0.70 0.65
E4 0.76 0.91
E5.8 0.88 0.92
E10 0.94 0.95
E14.5 0.80 0.92
Adult 0.81 0.87
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Additional Files

Additional file 1 — Table S1

List of H3K3me1 and H3K27ac data sets used in the analyses.

Additional file 2 — Table S2

Feature importances for Random Forest classifiers using histone marks from non-heart mouse
tissues to predict heart enhancers versus the genomic background and versus enhancers of
other tissues.
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