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Summary

Mutational signatures are patterns in the occurrence of somatic single nu-
cleotide variants (SNVs) that can reflect underlying mutational processes.
The SomaticSignatures package provides flexible, interoperable, and easy-to-
use tools that identify such signatures in cancer sequencing data. It facilitates
large-scale, cross-dataset estimation of mutational signatures, implements ex-
isting methods for pattern decomposition, supports extension through user-
defined methods and integrates with Bioconductor workflows.

The R package SomaticSignatures is available as part of the Bioconductor
project (R Core Team, 2014; Gentleman et al., 2004). Its documentation pro-
vides additional details on the methodology and demonstrates applications
to biological datasets.
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1 Introduction

Mutational signatures link observed somatic single nucleotide variants to mutation gen-
erating processes (Alexandrov et al., 2013a). The identification of these signatures offers
insights into the evolution, heterogeneity and developmental mechanisms of cancer (Fis-
cher et al., 2013; Alexandrov et al., 2013b; Nik-Zainal et al., 2012). Existing softwares
offer specialized functionality for this approach and have contributed to the character-
ization of signatures in multiple cancer types (Nik-Zainal et al., 2012; Fischer et al.,
2013), while their reliance on custom data input and output formats limits integration
into common workflows.

The SomaticSignatures package aims to encourage wider adoption of mutational sig-
natures in tumor genome analysis by providing an accessible R implementation that
supports multiple statistical approaches, scales to large datasets, and closely interacts
with the data structures and tools of Bioconductor.

2 Approach

The probability of a somatic SNV to occur can depend on the sequence neighborhood,
and a fruitful approach is to analyze SNV frequencies together with their immediate
sequence context, the flanking 3′ and 5′ bases (Alexandrov et al., 2013b). As an example,
the mutation of A to G in the sequence TAC defines the mutational motif T[A>G]C. The
occurrence patterns of such motifs capture characteristics of mutational mechanisms,
and the frequencies of the 96 possible motifs across all samples define the mutational
spectrum. It is represented by the matrix Mij , with i enumerating the motifs and j
the samples. The mutational spectrum can be interpreted by decomposing M into two
matrices of smaller size (Nik-Zainal et al., 2012),

Mij =
r∑

k=1

WikHkj + εij , (1)

where the number of signatures r is typically small compared to the number of samples
and the elements of the residual matrix ε are minimized, such that WH is a useful
approximation of the data. The columns of W describe the composition of a signature:
Wik is the relative frequency of somatic motif i in the k-th signature. The rows of H
indicate the contribution of each signature to a particular sample j. A primary goal of
the SomaticSignatures package is the easy application of this approach to datasets in an
environment that provides users with powerful visualisations and algorithms.

3 Methods

Several approaches exist for the decomposition (Eq. 1) that differ in their constraints
and computational complexity. In principal component analysis (PCA), for a given r,
W and H are chosen such that the norm

∑
ij ε

2
ij is minimal and W is orthonormal.

Non-negative matrix factorization (NMF) (Brunet et al., 2004) is motivated by the fact
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that the mutational spectrum fulfills Mij ≥ 0, and imposes the same requirement on the
elements of W and H. Different NMF and PCA algorithms allow additional constraints
on the results, such as sparsity. To deduce the number r of signatures present in the
data, information theoretical criteria as well prior biological knowledge can be employed
(Nik-Zainal et al., 2012; Alexandrov et al., 2013a).

4 Results

SomaticSignatures is a flexible and efficient tool for inferring characteristics of muta-
tional mechanisms, based on the methodology developed by Nik-Zainal et al. (2012).
It integrates with Bioconductor tools for processing and annotating genomic variants.
An analysis starts with a set of SNV calls, typically imported from a VCF file and
represented as a VRanges object (Obenchain et al., 2014). Since the original calls do
not contain information about the sequence context, we construct the mutational motifs
first, based on the reference genome.

ctx = mutationContext(VRanges, ReferenceGenome)

Subsequently, we define the mutational spectrum M . While its columns are by default
constructed according to the sample labels, users can specify an alternative grouping
covariate, for example drug response or tumor type.

m = motifMatrix(ctx, group)

Mutational signatures and their contribution to each sample’s mutational spectrum are
estimated with a chosen decomposition method for a defined number of signatures. We
provide convenient access to implementations for NMF and PCA (Gaujoux et Seoighe,
2010; Stacklies et al., 2007), and users can apply own functions with alternative decom-
position methods through the API.

sigs = identifySignatures(m, nSig, method)

The user interface and library of plotting functions facilitate subsequent analysis and
presentation of results (Fig. 1). Accounting for technical biases is often essential, par-
ticularly when analyzing across multiple datasets. For this purpose, we provide methods
to normalize for the background distribution of sequence motifs, and demonstrate how
to identify batch effects.

In the documentation of the software, we illustrate a use case by analyzing 594,607
somatic SNV calls from 2,408 TCGA whole-exome sequenced samples (Gehring, 2014).
The analysis, including NMF, PCA and hierarchical clustering, completes within min-
utes on a standard desktop computer. The different approaches yield a biologically
meaningful grouping of the eight cancer types according to the estimated signatures
(Fig. 1).

We have applied this approach to the characterization of kidney cancer and have
shown that classification of subtypes according to mutational signatures is consistent
with classification based on RNA expression profiling and mutation rates (Durinck et al.,
2015).
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a)

b)

c)

Figure 1: Analysis of mutational signatures for eight TCGA studies (Gehring, 2014).
The observed mutational spectrum of each study (panel a) was decomposed
into 5 distinct mutational signatures S1 to S5 (panel b) with NMF. The pres-
ence of these signatures in the studies (panel c), as shown by hierachical clust-
ing, underlines the similarities in mutational processes of biologically related
cancer types. An annotated high-resolution version of this figure is available
as Supplementary Figure S1.
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