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Sequencing projects have identified large numbers of rare stop-gain and frameshift 

variants in the human genome. As most of these are observed in the heterozygous state, 

they test a gene’s tolerance to haploinsufficiency and dominant loss of function. We 

analyzed the distribution of truncating variants across 16,260 protein coding autosomal 

genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, 

which significantly differed from an expectation of 12,916 genes under a model of neutral 

de novo mutation (p<10-4). Extrapolating this to increasing numbers of sequenced 

individuals, we estimate that 10.8% of human genes do not tolerate heterozygous 

truncating variants. An additional 10 to 15% of truncated genes may be rescued by 

incomplete penetrance or compensatory mutations, or because the truncating variants are 

of limited functional impact. The study of protein truncating variants delineates the 

essential genome and, more generally, identifies rare heterozygous variants as an 

unexplored source of diversity of phenotypic traits and diseases 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2015. ; https://doi.org/10.1101/010611doi: bioRxiv preprint 

https://doi.org/10.1101/010611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Recent population expansion and limited purifying selection have lead to an abundance 

of rare human genetic variation 1-3 including stop-gain and frameshift mutations. Thus, there is 

increasing interest in the identification of natural human knockouts 3-8 through the cataloguing of 

homozygous truncations. However, heterozygous truncation can also lead to deleterious 

functional consequences through haploinsufficiency due to decreased gene dosage, or through a 

dominant-negative effect 9,10. In order to quantify the importance of heterozygous protein 

truncating variation, we characterized genes showing fewer de novo truncations in the general 

population than expected under a neutral model. We hypothesized that there is a set of genes that 

cannot tolerate heterozygous protein truncating variants (PTVs) because of early life lethality. 

 

Results 

Fewer genes carry heterozygous PTVs than expected under neutral evolution 

We used stop-gain (nonsense) single nucleotide variants and frameshift (insertions/deletions) 

variants to assess tolerance to heterozygous PTVs across the human genome. We considered 

transcripts from 16,260 autosomal protein coding genes annotated by the consensus coding 

sequence (CCDS) project 11, for which de novo mutation rate estimates were recently calculated 
12, and where the number of synonymous variants in sequenced individuals followed expectation 

(Online Methods). The study dataset included 11,546 exomes in which we observed 39,893 rare 

PTVs (allele frequency < 1%), affecting 12,062 (74.1%) genes.  

To test whether there is a subset of genes that are intolerant to heterozygous truncation, 

we simulated a model of generation of neutral de novo PTVs for all genes (i.e. assuming viability 

of affected individuals). By randomly assigning 39,893 hypothetical stop-gain and frameshift 

variants to genes according to their de novo mutation rate 12, we observed that 12,916 out of 

16,260 genes (95% CI, 12,805-12,991) would be expected to carry at least one stop-gain or 

frameshift variant. The expected number of genes is significantly greater than the 12,062 

truncated genes observed in the study dataset for the same number of PTVs (6.6% depletion, 

empirical p-value < 1x10-4; Figure 1A). The depletion in number of observed truncated genes 

was greater when severe PTVs, i.e. those predicted to have the greatest functional impact 13, 

were considered (n=10,340 vs. a neutral expectation of 11,821-11,978; 13.1% depletion p < 
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1x10-4). This suggests that a measurable fraction of de novo heterozygous stop-gain and 

frameshift variants are highly deleterious and hence under strong purifying selection. Hereafter 

we denote that fraction as the haploinsufficient genome (fhi). 

Characteristics of genes comprising the haploinsufficient genome 

We assessed the functional properties of the subset of genes that were not observed to carry 

PTVs (n=4,198), Table 1. These genes were highly conserved, had fewer paralogs, were more 

likely to be part of protein complexes and were more connected in protein-protein interaction 

networks than the rest of the genes. Furthermore, they had characteristics of essentiality and 

haploinsufficiency, and a higher probability of CRISPR-Cas9 editing compromising cell 

viability. The set of genes not carrying PTVs was enriched in OMIM genes annotated with 

‘haploinsufficient’ or ‘dominant negative’ keywords. Non truncated genes were overrepresented 

in functional categories such as transcription regulation, developmental processes, cell cycle, and 

nucleic acid metabolism (Supplementary Table 1), in line with earlier characterization of 

haploinsufficient genes 14. Together, these results indicate that a number of basic cellular 

functions depend on the integrity of coding and expression of both alleles of component genes. 

Estimating the fraction of genes intolerant to heterozygous stop-gain and frameshift 

variants.  

Genes without PTVs in our analysis may be truly part of the haploinsufficient genome or the 

result of insufficient sample size to detect rare events. Thus, we next sought to estimate the total 

haploinsufficient fraction (fhi) of the genome in the full population by a modeling approach. 

Assuming that a fraction fhi of genes do not carry de novo PTVs while the remaining genes do so 

according to their neutral mutation rates 12, fhi can be estimated by fitting a model to the observed 

relative distribution of PTVs (relative to the rest of genes; Online Methods). This analysis 

estimates a fraction of the haploinsufficient genome of fhi=10.8% (95% CI=9.5-11.7%) of 

protein coding genes (Figure 1A).  

Some genes may tolerate PTVs because their functional effects are masked by incomplete 

penetrance 15, by compensatory variants 16, or because of a low functional impact of the 

truncation 13. In addition, false positive errors in sequencing and variant calling procedures 

contribute to the distribution of observed variants 17-19. We collectively treated these factors as 

noise, because they can lead to the observation of a truncated gene in a viable individual without 
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truly probing the general viability of carrying only one functional allele in a given gene. 

Therefore, we extended our model to allow for the possibility of observing PTVs in the 

haploinsufficient fraction of the genome by introducing a second parameter representing the 

number of variants originating from biological noise (incomplete penetrance, compensatory 

variants and low impact truncation) or technical noise (sequencing or variant calling errors) in 

genes otherwise intolerant to truncation (Online Methods). Using these parameters, the 

estimated fraction of genes intolerant to PTVs increased to 24.4% (95% CI, 18.3-32.1%, Figure 

1B).  

An important consequence of biological and technical noise is that the apparently 

truncated fraction of genes does not saturate as a function of the number of observed PTVs, but 

keeps rising. Our model predicts that after having sequenced 40,000 exomes (representing a 

sample of approximately 90,000 PTVs) more than 50% of newly identified truncated genes will 

result from biological and technical noise (Supplementary Figure 1) - an important 

consideration for ongoing sequencing programs and interpretation of resources, such as that of 

the Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org). At the sample size of 

40,000 exomes, and with 2 to 6% of all observed truncations due to technical errors 5,6,8, 400 to 

1025 genes intolerant to PTVs will exhibit truncations due to sequencing and variant calling 

errors. For the same sample size, 2345 to 2549 genes intolerant to PTVs will exhibit truncations 

due to incomplete penetrance, compensatory variants or low impact truncation.   

We next assessed the robustness of these estimates using an alternative approach that 

models the expected number of PTVs as a function of the observed synonymous coding variants 

(Online Methods). This model assumes that, in the absence of deleterious consequences, the 

number of heterozygous PTVs correlates with the number of synonymous variants observed in a 

gene. This approach resulted in highly similar estimates of fhi (95% CI 19.7-34.1%) compared to 

the previous model. Leveraging the latter model, we identified 278 genes (Supplementary 

Table 2) that have higher than 0.99 posterior probability of being intolerant to heterozygous 

truncation (Figure 2). However, there is a continuum of tolerance to heterozygous truncation as 

depicted in Figure 2, with a large number of genes harboring fewer heterozygous PTVs than 

expected.  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2015. ; https://doi.org/10.1101/010611doi: bioRxiv preprint 

https://doi.org/10.1101/010611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Discussion 

This work suggests that heterozygous protein truncating variants have greater functional 

consequences than generally considered. This concept is supported by the identification of a 

substantial proportion of genes that do not tolerate loss of one of the two gene copies, and by the 

evidence for a gradient of haploinsufficiency across a large proportion of the coding genome. 

Heterozygous PTVs are rarely compensated at the gene expression level, as shown in our 

previous work 13 and in recent analyses 7. Despite the absence of dosage compensation, Rivas et 

al. suggest that homeostatic mechanisms at the cellular level maintain biological function 7. 

However, we show clear evidence that over 10% of the genes cannot be compensated, while an 

additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or 

compensatory mutations, or because the truncating variants are of limited functional impact.  

The importance of these variants has also been observed in model organisms. Studies in 

mice show that when homozygous knockout mutants are not viable, up to 71.7% of heterozygous 

PTVs have phenotypic consequences 20. The systematic phenotyping of knockout mice also 

demonstrates that haploinsufficiency might be more common than generally suspected 21. 

However, a practical limitation of the above approaches, in particular in animal studies, is that 

observation of phenotypes resulting from damaging mutations may require exposure to specific 

triggers or environmental interactions 6,21. In contrast, in humans, life-long exposures may 

eventually reveal a phenotypic trait or disease associated with heterozygous gene truncations 8. 

Here, clinical symptoms could be observed later in life, and present sporadically – not 

necessarily within a pedigree. This is illustrated by a recent report on the consequences of 

haploinsufficiency of cytotoxic T-lymphocyte-associated protein 4 gene (CTLA-4) presenting as 

undiagnosed or misdiagnosed sporadic autoimmune disorder in the second to fifth decades of life 
22. Despite the prevalence of rare heterozygous PTVs, there has been more attention to the 

occurrence of homozygous truncations (human knockouts). We argue that homozygous 

truncations result from high allele frequency variants that are less likely to carry functional 

consequences (the exception being recessive disorders in a population). 

There are a number of possible limitations to the present study. In the modeling work, we 

analyzed rare variants  (less than <1% allele frequency) to focus on de novo events and for 

consistency with the de novo mutation rates estimated by Samocha et al. 12. Nevertheless our 
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estimates held true when the analysis was restricted to singleton variants, or when we analyzed 

all variants irrespective of allele frequency (Supplementary Figure 2). We did not have primary 

control on sequencing coverage for some of the exome sequence datasets that could result in 

ascertainment errors. To correct for this potential bias, we discarded genes where the observed 

number of synonymous mutations deviated from expectation. The intolerance of genes to de 

novo truncation was assessed across combined human populations. Therefore, estimations of the 

haploinsufficient genome account for the fraction of haploinsufficient genes common to all 

humans. Intolerance to heterozygous PTVs should be regarded as a different concept than gene 

sequence conservation. PTVs in a conserved gene might have a recessive mode of inheritance 

and are thus potentially observable in a viable individual. On the other extreme, positively 

selected genes could be haploinsufficient upon heterozygous truncation. These considerations 

notwithstanding, we consistently identified a quantifiable fraction of the human genome that is 

intolerant to heterozygous PTVs, with an estimated lower bound of 9.5%. 

The prevalent nature of rare heterozygous PTVs suggests that a map of “essentiality” on 

the basis of dominant loss of function is within reach. The concept of the essential genome has 

been explored in analyses of minimal bacterial genomes 23, mouse knockout studies 24, studies of 

transposon or chemical mutagenesis 25, and in studies that used CRISPR-Cas9 genome-editing 

technology 26,27. Here, we propose that mapping the haploinsufficient genome will improve the 

understanding of the genetic architecture of diseases. In agreement with the recent work of Li et 

al.,6 we argue that the burden of rare human heterozygous variation is an unexplored source of 

diversity of phenotypic traits and diseases.  

 

Materials and methods 

Exomes. We collected exome data from public and non-public sources (Supplementary Table 

3). We considered these individuals as representing the general population. Variants were filtered 

based on Hardy-Weinberg equilibrium (discarded if p <1x10-8). For public data sets, variants 

were called at the data source with their respective pipelines. For non-public data sets, sequence 

reads were aligned using BWA, and called with Haplotypecaller using GATK 3.1. Variants were 

annotated with SnpEff 3.1 and filtered as described in 28-30. Only transcripts from autosomal 

protein coding genes reliably annotated by the Consensus Coding Sequence (CCDS, Release 12 
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04/40/2013) project11 that underwent the full process of CCDS curation ('Public' status in CCDS 

terminology, n=17,756) were considered. As a reference background throughout all analyses, a 

total number of 16,521 autosomal protein coding genes was obtained by considering genes with 

available de novo mutation rate from Samocha et al. 12 and with at least one synonymous, 

missense, stop-gain or frameshift variant detected in the exome data. We discarded genes where 

the observed number of synonymous mutations deviated from expectation (see below). For 

consistency with 12, we only retained variants mapping within the limits of the reference 

transcript used to assess the de novo mutation rate per gene. Furthermore, only rare stop-gain and 

frameshift variants (allele frequency <1%) were considered to assess the deviation from neutral 

expectations. Throughout the study we considered each rare variant as a single de novo event of 

mutation, irrespective of the number of individuals in which it was observed.  

Models of haploinsufficiency and noise. Under a neutral model, the expected number of de 

novo PTVs (stop-gain or frameshift) in a gene is determined by its probability of de novo 

mutation (assessed from the sequence context and gene length) 12 and the number of sequenced 

individuals. However, potential intolerance to heterozygous truncation would decrease the 

expected number of de novo PTVs as a consequence of embryonic or early life lethality. To 

model the expected number of variants in a gene accounting for potential deleterious effects, we 

used two approaches.  

First we evaluated the relative distribution of PTVs across genes (hereafter the model A). This 

model assumes that genes tolerating heterozygous truncation will be found truncated in the 

population according to their relative probability of de novo mutation (relative to the rest of 

genes), while a fraction of genes will not be observed as truncated due to early lethality. Based 

on the relative distribution of observed PTVs, this approach avoids issues of systematic false 

negative errors, though is still subject to false positive calls. Alternatively, we assessed a second 

model (hereafter the model B) in which the absolute number of de novo PTVs in a gene is 

estimated from the probability of de novo PTVs and the absolute number of observed de novo 

synonymous coding variants in that gene.  

Model A is formulated as follows. In a neutral case we expect that the relative fraction of 

variants in a given gene is equal to 
!!!"#$%
!!!"#$%

!, i.e. the relative distribution of observed variants 
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follows the distribution of de novo mutation rates. As some genes might harbor fewer or more 

mutations than the expectation, the relative model’s expected variant count for a gene g is 

defined as: 

!!!"#$% = !!!!!!!!, 

where V stands for the total number of observed truncating variants summed over all genes, 

!! = !!!"#$%/∑!!!"#$%, and !!! accounts for the gene specific deviances from the neutral case. 

Assuming two classes of genes (named HI for haploinsufficient and HS for non-

haploinsufficient) with a class-specific !! we get the following expectations for a gene g: 

!!"!"#$% = !!!!!! + !!!!! !
1− !
1− !!!

, 

!!!"!"#$% != !!!!!!!,! 

where !!! is the fraction of the total number of genes that belongs to the HI class. This model 

distributes a fixed number of variants to all genes according to their de novo variation rates 

modulated by haploinsufficiency and the penetrance of haploinsufficient genes, and is equivalent 

to taking V samples from a multinomial distribution with ! weights.!

To formulate model B, we assume that the expected number of de novo synonymous mutations is  

!!!"# = !!!!!"#,! 

where !!!"#!is the de novo rate of synonymous mutations in a gene g and M is a constant. 

Following 12 we estimate M from the regression of the observed number of synonymous 

mutations (!!!"#) in a gene on !!!"#: 

!!!"# = !!!!!"# + !!.! 

To avoid genes with low coverage, we disregarded from the analysis those genes whose residual 

in the above regression is higher than 3 times the standard deviation of all residuals. We note 

that, in contrast to 12 we omit the intercept term in this regression, because we expect no variants 

in a gene for which !!!"#!equals zero. 

Having estimated M, the expected number of PTVs in a gene g is given by:  
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!!!"#$% != !!!!!"#$% .!

Introducing gene specific differences in the number of observed PTVs we write: 

!!!"#$% != !!!!!!"#$% !!!,!

where !! accounts for both gene specific differences and systematic errors. We do not estimate 

!! for each gene, but assume that genes can be classified into two groups (haploinsufficient and 

non-haploinsufficient), each having a distinct class specific value of !. 

To estimate the fraction of genes intolerant to heterozygous PTVs we use the following mixture 

model. We define a random variable !! as the number of variants in gene g. A latent random 

variable !! can take two values: HI or HS and has the probability density distribution: 

! !! = !" := !!!! 

! !! = !" := !1− !!! ! 

where the parameter !!! !represents the fraction of genes intolerant to heterozygous PTVs. The 

conditional probability distribution of !!!given !! is defined as: 

! !! = ! !! = !" = Poisson !, !!! !

! !! = ! !! = !" = Poisson !, !!" !

!!!!" = !!!"!"#$% !!!

!!!!" = !!!"!"#$% !.!

Marginalizing over the values of the latent variable z! yields the probability density distribution 

of !!!as: 

! !! = !! = !!! !Poisson !, !!" + 1− !!! !!Poisson !, !!"  

The probability that a gene acquiring k variants is: 

! ! = ! = ! ! !! != !!!!
|!| !. 
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The model’s three parameters (!!! , !,!) are estimated by fitting the cumulative density 

distribution of X to the empirical cumulative density distribution of the data by least-squares 

fitting using the Nelder-Mead simplex numerical optimization algorithm (as implemented in the 

Apache Commons Math library). This method provided better estimates for reproducing the 

distribution of variant counts per gene compared to other alternatives considered 

(Supplementary Figure 3). In order to estimate the variability of the inferred model parameters 

we repeated the parameter estimation on 500 bootstrap replicates. Each bootstrap replicate was 

generated by resampling of the list of genes with replacement.  

Using the estimated parameters we calculate the posterior probability of 

haploinsufficiency for gene g as: 

! !! = !" !! = !!! =
! !! = !" ! !! = !!! !! = !"

!(!! = !!!)
!, 

where !! is the observed number of PTVs in the gene g. 

Characteristics of haploinsufficient genes. Gene sets were obtained from the Reactome 

pathway database version 40 (http://www.reactome.org/). dN/dS values were assessed as 

described in 13. Degree of connectivity in the protein-protein interaction network was obtained 

from the OGEE database (http://ogeedb.embl.de/). Paralogs were counted using Ensembl 

Biomart’s 'Human Paralog Ensembl Gene ID' attribute. Genes in protein complexes were 

obtained from Gene Ontology term GO:0043234 (named “protein complex”). Genes affecting 

cell viability in CRISPR-Cas9 experiments were collected from 26,27. Severity of protein 

truncation was assessed by the NutVar score (http://nutvar.labtelenti.org) 13. For the assessment 

of depletion or enrichment of functional gene sets we used one tailed hypergeometric test. We 

adjusted the p-values by the Benjamini- Hochberg method to correct for multiple testing. We 

tested pathways with at least 100 elements only. 
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Figure 1. Observed and expected PTVs in the study population. A: Fraction of genes with at 
least one stop-gain or frameshift variant as a function of the number of sampled PTVs. The gray 
curve shows the expected number of genes under a model of neutral de novo mutation rate 12 
representing the null hypothesis (no deleterious effects). The green curve shows the number of 
genes observed with at least one PTV. The orange curve limits the number of observed genes to 
those hosting highly damaging variants 13. The purple curve shows the predicted number of 
genes with at least one PTV under the estimated best-fit parameters under model A (see Online 
Methods). B: Extrapolation of the observed number of genes with at least one PTV assuming a 
model that includes the possibility of finding PTVs due to biological and technical noise. The 
purple curve shows the predicted number of genes with at least one PTV under the estimated 
best-fit parameters, while the green curve shows the observed data. Decomposition of the 
observed and predicted number of genes with at least one PTV: variants in  
non-haploinsufficient genes (blue) saturate early; variants found in haploinsufficient genes (red) 
continue to accumulate PTVs due to the constant contribution of biological and technical noise. 
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Figure 2. Expected and observed number of PTVs per gene. Each dot in the scatter plot 
corresponds to a gene. X-axis reflects the expected number of PTVs for each gene according to a 
model of neutral variation based on synonymous variants (Model B, see Online Methods) while 
on Y-axis indicates observed number of PTVs in the study dataset. Genes intolerant to 
heterozygous PTVs with a posterior probability of ≥ 0.99 are colored in red. The distribution 
shows that there is a continuum of intolerance to PTVs with a general paucity of observed versus 
expected truncations in the coding genome. The gray line has a slope of 1. 
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Table 1. Characteristics of the subset of genes (n=4,204) observed without PTVs after 
sequencing 16,260 protein coding autosomal genes in 11,546 individuals. Tests compare 
genes with and without heterozygous PTVs. 
 
Annotation Effect in non-

truncated genes 
P-value Test Data Source 

dN/dS Lower 
(conservation) 

1E-295 Rank-sum test Ensembl primate genomes13 

Paralog count Lower 4E-94 Poisson 
regression 

Ensembl Biomart 

Loss of cell viability 
(CRISPR-Cas9) 

Enrichment  3E-16 Logistic 
regression 

Shalem et al. 2014 26 

Part of a protein complex Enrichment  3E-29 Logistic 
regression 

Gene Ontology term “Protein 
complex” GO:0043234 

Essentiality Higher 4E-34 Logistic 
regression 

OGEE (http://ogeedb.embl.de/) 

Connectivity in protein-
protein interaction 
network 

Higher 5E-52 Linear 
regression 

OGEE (http://ogeedb.embl.de/) 

Predicted 
haploinsufficiency 

Higher 1E-162 Linear 
regression 

Huang et al. 2010 10 

OMIM 
‘haploinsufficient’ and 
‘dominant negative’ 
subset 

Enrichment 5E-12 Logistic 
regression 

Petrovski et al. 201332 
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Supplementary materials 
 
Table S1: Enrichment tests results against Reactome pathways for genes without PTVs. Only 
significant results are shown as judged by 5% FDR calculated using the Benjamini-Hochberg procedure. 
 
Table S2: Genes with higher than 0.99 posterior probability of being intolerant to 
heterozygous PTVs.  
 
Table S3: Data sources. 
Figure S1: Conditional probability that when observing a gene truncated for the first time, 
the gene is intolerant to PTVs. When the conditional probability crosses 50% (at 90,000 PTVs) biological 
and technical noise become the main source of truncations. We estimate that 40,000 exomes are required to sample 
90,000 PTVs using the jackknife projection as in31.  
 
Figure S2: Distribution of parameter estimates and predictions of the model A. Analysis 
considers only singletons (A-C), all variants irrespective of allele frequency (D-F) or rare variants (G-I).  
 
Figure S3: Distribution of variant counts per gene as observed or predicted under best-fit 
parameters of model A using 3 different estimation techniques. A: linear space, B: log space.  
Black curve: observed counts, red curve: prediction based on least-squares fit to the cumulative distribution function 
(see Online Methods), green curve: maximum likelihood estimate, blue curve: least squares fit to the accumulation 
curve of truncated genes as shown in Figure 1. The CDF method was chosen and maximum likelihood was 
discarded because its estimates did not fit the observations. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2015. ; https://doi.org/10.1101/010611doi: bioRxiv preprint 

https://doi.org/10.1101/010611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table&S1:"Enrichment"tests"results"against"Reactome"pathways"for"genes"without"PTVs."Only"significant"results"are"shown"as"judged"by"5%"FDR"calculated"using"the"BenjaminiDHochberg"procedure.

Effect"direction name uncorrected"pDvalue#"of"genes"in"pathway"in"background#"of"genes"in"pathway"without"any"truncation
Enrichment Metabolism"of"mRNA 2.54ED33 206 135
Enrichment Disease 3.62ED30 552 265
Enrichment Metabolism"of"RNA 5.43ED30 252 150
Enrichment Eukaryotic"Translation"Initiation 3.39ED29 103 81
Enrichment CapDdependent"Translation"Initiation 3.39ED29 103 81
Enrichment Translation 3.05ED28 131 94
Enrichment Influenza"Life"Cycle 9.84ED18 128 79
Enrichment Influenza"Infection 2.87ED17 132 80
Enrichment Mitotic"G1DG1S"phases 4.86ED16 127 76
Enrichment Metabolism"of"proteins 5.53ED15 379 167
Enrichment Gene"Expression 2.28ED14 856 319
Enrichment Adaptive"Immune"System 1.14ED12 441 181
Enrichment Immune"System 1.28ED11 799 290
Enrichment Antigen"processing:"Ubiquitination"&"Proteasome"degradation 1.33ED10 199 93
Enrichment G1S"Transition 3.73ED10 102 56
Enrichment Processing"of"Capped"IntronDContaining"PreDmRNA 5.94ED10 129 66
Enrichment Apoptosis 1.32ED09 139 69
Enrichment mRNA"Processing 2.39ED09 146 71
Enrichment Developmental"Biology 5.10ED09 377 148
Enrichment Signaling"by"the"B"Cell"Receptor"(BCR) 5.51ED09 121 61
Enrichment Signalling"by"NGF 2.90ED08 205 89
Enrichment Cell"Cycle,"Mitotic 4.04ED08 306 122
Enrichment Class"I"MHC"mediated"antigen"processing"&"presentation 5.28ED08 237 99
Enrichment S"Phase 7.71ED08 106 53
Enrichment Cell"Cycle 1.71ED07 376 142
Enrichment NGF"signalling"via"TRKA"from"the"plasma"membrane 4.13ED07 130 60
Enrichment Signaling"by"Insulin"receptor 8.24ED07 104 50
Enrichment Signaling"by"Interleukins 1.09ED06 102 49
Enrichment Signaling"by"FGFR 1.27ED06 108 51
Enrichment Signaling"by"EGFR 5.74ED06 104 48
Enrichment Signaling"by"EGFR"in"Cancer 1.09ED05 106 48
Enrichment Axon"guidance 2.44ED05 231 88
Enrichment Transcription 2.77ED05 163 66
Enrichment Neuronal"System 2.78ED05 254 95
Enrichment Integration"of"energy"metabolism 2.82ED05 115 50
Enrichment Cytokine"Signaling"in"Immune"system 3.40ED05 268 99
Enrichment Transmission"across"Chemical"Synapses 6.74ED05 167 66
Enrichment DNA"Replication 1.06ED04 188 72
Enrichment Cell"Cycle"Checkpoints 1.07ED04 114 48
Enrichment Platelet"activation,"signaling"and"aggregation 1.28ED04 189 72
Enrichment Hemostasis 2.01ED04 430 144
Enrichment Signaling"by"PDGF 2.89ED04 115 47
Enrichment Mitotic"MDMG1"phases 4.44ED04 167 63
Enrichment Neurotransmitter"Receptor"Binding"And"Downstream"Transmission"In"The""Postsynaptic"Cell 0.002048899 121 46
Enrichment Membrane"Trafficking 0.002048899 121 46
Enrichment Factors"involved"in"megakaryocyte"development"and"platelet"production 0.002752386 113 43
Enrichment The"citric"acid"(TCA)"cycle"and"respiratory"electron"transport 0.002846323 110 42
Enrichment Toll"Receptor"Cascades 0.004653278 103 39
Enrichment Diabetes"pathways 0.005740239 130 47
Enrichment Signal"Transduction 0.01955755 1484 417
Enrichment Innate"Immune"System 0.019603425 238 76
Depletion Olfactory"Signaling"Pathway 5.34ED23 340 20
Depletion GPCR"downstream"signaling 2.03ED07 787 145
Depletion Generic"Transcription"Pathway 2.65ED05 305 50
Depletion Signaling"by"GPCR 5.91ED05 875 179
Depletion Biological"oxidations 2.93ED04 130 18

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2015. ; https://doi.org/10.1101/010611doi: bioRxiv preprint 

https://doi.org/10.1101/010611
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table&S2:"Genes"with"higher"than"0.99"posterior"probability"of"being"intolerant"to"heterozygous"PTVs."

ACACA
AHCTF1
AHNAK
AKAP6
ANK1
ANK2
ANK3
ANKHD1
ANKHD1GEIF4EBP3
ANKRD11
ANKRD12
ANKRD17
APC
AQR
ARFGEF1
ARHGAP5
ARHGEF11
ARHGEF12
ARHGEF17
ARID1A
ARID2
ARID4B
ASH1L
ATAD2B
ATAD5
ATG2B
BAI2
BAI3
BAZ1B
BAZ2A
BIRC6
BPTF
BRWD1
BSN
BTAF1
CACNA1E
CACNA1I
CAD
CAMTA1
CASC5
CCDC88A
CDC42BPB
CDK12
CELSR2
CENPE
CEP170
CEP350
CHD1
CHD2
CHD3
CHD4
CHD6
CHD7
CHD8
CHD9
CIT
CKAP5
CLTC
CNOT1
COL12A1
COL1A1
COL4A1
COL5A2
CPS1
CREBBP
CSMD3
CTNND2
DCHS1
DHX9
DICER1
DLG5
DMXL2
DNAJC13
DOCK10
DOCK2
DOCK4
DOCK7
DSCAM
DSCAML1
DSP
DST
DYNC1H1
EHMT1
EIF3A
EIF4G1
ESPL1
FAM135B
FAM208B
FBN1
FBN2
FLNC
FNDC3B
FRY
FRYL
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GAPVD1
GCN1L1
GLI3
GRIN2B
GTF3C1
HEATR1
HECTD1
HELZ
HERC1
HERC2
HIVEP1
HIVEP2
HMCN1
HSPG2
INSR
ITPR1
ITSN1
JMJD1C
KAT6A
KAT6B
KDM2A
KDM3B
KDM5A
KIAA0100
KIAA0430
KIAA0922
KIAA0947
KIAA1109
KIAA1549
KIF13A
KIF1B
KIF26B
LPHN1
LRP1
LRP1B
LRP2
LRP6
LYST
MACF1
MAP1A
MAP2
MAP3K4
MAST4
MBD5
MDN1
MED12L
MED13
MED13L
MEGF8
MGA
MICAL3
MLL
MLL2
MLL5
MLLT4
MTOR
MYH10
MYO5A
NAV1
NAV3
NBEA
NCOA1
NCOA6
NCOR1
NEO1
NF1
NFAT5
NIPBL
NOTCH1
NOTCH2
NOTCH3
NSD1
NUMA1
NUP153
NUP98
PBRM1
PCF11
PCLO
PDS5A
PHF3
PIK3CA
PIK3R4
PKD1
PLCG1
PLXNA1
PLXNB2
PLXNC1
POGZ
PPFIA1
PPRC1
PRPF4B
PRRC2A
PRRC2B
PRRC2C
PSME4
PTPRZ1
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RALGAPA1
RANBP2
RAPGEF2
RBBP6
RBM6
RELN
REV3L
RIMS1
RLF
ROCK1
ROCK2
RPRD2
RYR2
RYR3
SBF2
SBNO1
SCAF8
SCN1A
SETDB1
SF3B1
SIN3A
SLIT2
SLIT3
SMARCA4
SMC3
SMG1
SNRNP200
SOS1
SPAG9
SPEG
SPEN
SPTA1
SPTAN1
SPTB
SPTBN1
SRCAP
STAG1
SUPT6H
SVEP1
SVIL
SYNE1
TANC2
TET1
THSD7A
TIAM1
TJP1
TLN1
TMEM131
TNIK
TNR
TNRC18
TNRC6A
TOP2B
TOPBP1
TP53BP1
TPR
TRIO
TRIP12
TRRAP
UBR4
UBR5
UPF2
USP19
USP24
USP34
USP47
UTP20
UTRN
VCAN
VPS13D
WDFY3
WDR33
WDR7
WHSC1L1
YTHDC2
ZCCHC11
ZFC3H1
ZFHX4
ZNF292
ZNF318
ZNF407
ZNF462
ZNF521
ZNF608
ZNF609
ZNF638
ZNF644
ZZEF1
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Project name Sample size Reference URL
NHLBI Exome Sequencing Project 6502 (34) http://evs.gs.washington.edu/EVS/
UK10K 2432 (35) http://www.bristol.ac.uk/alspac/
1000 Genomes Project 1092 (36) http://www.1000genomes.org/
Genome of the Netherlands 498 (37) http://www.nlgenome.nl
Cohort Lausanne 426 (38) http://www.colaus.ch/
Swiss HIV Cohort Study 500 (39) http://www.shcs.ch/
NIEHS Environmental Genome Project 95 (40) http://evs.gs.washington.edu/niehsExome
Genome of J. Craig Venter 1 (41) http://huref.jcvi.org/
Total 11546

1
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Figure S1: Conditional probability that when observing a gene truncated for the first time, the 
gene is intolerant to PTVs. When the conditional probability crosses 50% (at 90,000 PTVs) biological 
and technical noise become the main source of truncations. We estimate that 40,000 exomes are 
required to sample 90,000 PTVs using the jackknife projection as in32. 
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A B C
Singleton variants

All variants, irrespective of allele frequency

Rare variants (AF < 0.1%)

D E F

G H I

Figure S2. Distribution of parameter estimates and predictions of the model A. The analysis considers only 
singletons (A-C),  all variants irrespective of allele frequency (D-F) or rare variants (G-I).
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Figure S3: Distribution of variant counts per gene as observed or predicted under best-fit parameters of 
model A using 3 different estimation techniques.  A: linear space, B: log space. Black curve: observed 
counts, red curve: prediction based on least-squares fit to the cumulative distribution function (see Online 
Methods), green curve: maximum likelihood estimate, blue curve: least squares fit to the accumulation curve 
of truncated genes as shown in Figure 1. The CDF method was chosen  and maximum likelihood was discard-
ed because its estimates did not fit the observations. 
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