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Abstract

The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary bi-

ology even after half a century of theoretical research. W. D. Hamilton shaped much of the field initially

with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the

evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for

Hamilton’s rule to hold in dynamical models: weak selection and additive genetic interactions. However,

only recently have analytical approaches from population genetics and evolutionary game theory developed

sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic

drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a

short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale

where a continuum of alleles are possible and populations evolve continuously from one monomorphic

trait to another. We show how Hamilton’s rule emerges from the short-term analysis under additivity and

how non-additive genetic interactions can be accounted for more generally. This short-term approach re-

produces, synthesizes, and generalizesmany previous results including the one-third law from evolutionary

game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate

how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical

equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions

of convergence stability from evolutionary game theory and generally depend on the additive genetic in-

teractions inherent in Hamilton’s rule. Surprisingly, the peaks of the long-term stationary distribution can

predict the effects of simple kinds of non-additive interactions. Additionally, the peaks may capture the

effect of both weak and strong selection in a manner analogous to classic diffusion approaches in popula-

tion genetics. Together, the results from the short and long-term approaches suggest both how Hamilton’s

insight may be robust in unexpected ways and how current analytical approaches can expand our under-

standing of social evolution far beyond Hamilton’s original work.

Keywords: inclusive fitness; adaptive dynamics; fixation probability; evolutionary stability; stochastic stability;

risk dominance; island model; trait substitution sequence; diffusion; cooperation
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1. Introduction

The theory of evolution by natural selection as first fully elucidated by Darwin [25] is so profoundly elegant

and comprehensive that truly new additions to theory have been extremely rare. In 1963,W.D.Hamilton began

publishing his seminal work on how natural selection can shape social behavior [57–59], which is often either

referred to as the theory of “kin selection” [100] or “inclusive fitness” [42]. It is a tribute to the importance of

this work that upon his untimely death in 2000 Hamilton was called “one of the most influential Darwinian

thinkers of our time” [36] and a candidate for the “most distinguished Darwinian since Darwin” [26].

In this article, wewill review how the tools of population genetics and evolutionary game theory can be used

to formalize Hamilton’s insight. We will begin with a summary of classic analyses of Hamilton’s approach and

will then introduce the population genetic and game theoretic tools that currently provide a complete frame-

work for studying social evolution under weak selection and weak mutation [92] . Using these tools, we will

see how two general timescales for analysis emerge: a short-term timescale where evolution proceeds among

a finite set of alleles, and a long-term timescale where populations evolve continuously among a continuum of

alleles. These notions of short and long-term derive from a broader attempt to reconcile population genetic

methods with evolutionary game theory [34, 62, 160].

Using the short-term approach, we show how genetic interactions between individuals [e.g. 118] can af-

fect selection for cooperation in deme-structured populations [80]. These results extend previous analyses

of stochastic evolution that have shown conditions such as “risk dominance” [13, 64, 72] and the “one-third

law” [109, 113] to be important determinants of evolutionary stability. Using the substitution rate approach

to long-term evolution [82, 152], we describe a diffusion equation that approximates the long-term change in

monomorphic trait values. We show how peaks in the stationary distribution of this diffusion captures classic

notions of evolutionary and convergence stability. Moreover, the location of these convergence stable states

can be calculated using the classic direct-fitness approach of kin selection [123, 125, 142]. Applying this long-

term approach to a simple non-additive social interaction, we find surprisingly that the long-term analysis can

capture these non-additive effects even though the diffusion integrates over only additive interactions. More-

over, the long-term approach appears to reproduce results from some strong selection models, which suggests

an unexpected robustness of the long-term diffusion. Together, the results from the short and long-term ap-

proaches reveal the usefulness of the current framework for integrating Hamilton’s original insight with recent

results from population genetics and evolutionary game theory.
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1.1. Hamilton’s rule

The core insight in Hamilton’s work is often summarized with his eponymous rule: an allele for a social

behavior increases in frequency when the “inclusive fitness effect” is positive, namely

−c + b r > 0 . (1)

In Hamilton’s rule (1), b is the increase in fitness (benefit) of a social partner from the behavior of a focal

individual, c is the decrease in fitness (cost) of a focal individual that performs the behavior, and r measures

genetic relatedness between focal and recipient individuals [41]. More generally, −c is called the “direct fitness

effect” and b the “indirect fitness effect”. Hamilton [58] initially emphasized that genetic relatedness is generated

by a genealogical process that produces alleles identical by descent (IBD) among a group of socially interacting

individuals. Another general definition of genetic relatedness says that it is the regression of the genotypes

of social partners on the genotype of the focal individual [54, 60]. Hamilton’s rule crystalized the notion that

natural selection depends not only on how genes within an individual effect that individual’s fitness but also

on the indirect effect of those genes on the fitness of social partners. Although Darwin [25], Fisher [39], and

Haldane [56], among others, had expressed this idea in relation to the how evolution would lead one individual

to sacrifice its fitness for another, Hamilton was the first to present a compelling framework applicable to social

evolution more generally.

Within Hamilton’s inclusive fitness framework, behaviors that decrease the fitness of a focal individual

(c > 0) but increase the fitness of social partners (b > 0) are “altruistic”. Well-known examples of altruism

include worker sterility in eusocial insects [8], stalk cells that give up reproduction to disperse spore cells in

Dictyostelium discoideum [134], and costly human warfare [61, 84]. Other behaviors can also be classified in

Hamilton’s framework [58, and Table 2]: (i) behaviors are “mutualistic” when they increase the fitness of the

focal individual and its social partners, (ii) “selfish” when they increase the fitness of the focal at the expense of

the fitness of social partners, and (iii) “spiteful” when they decrease the fitness of both the focal individual and

its social partners. Although there are other potential definitions of altruism and other behaviors [see 14, 76],

Hamilton’s classification based on direct and indirect effects has proven useful for distinguishing different kinds

of helping behaviors (mutualisms and altruisms) and for showing how different biological mechanisms can

promote or inhibit the evolution of these behaviors [85, 161].

Though Hamilton’s approach was initially accepted among empiricists [167] and some theorists [100, 115],
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other theorists were concerned about the generality of the approach due to its emphasis on fitnessmaximization

and optimality modeling [16, 73, 165]. Fitness maximization was viewed as untenable because examples where

it is violated are well known [102]. Optimality models were additionally viewed with skepticism because, by

neglecting gene frequency dynamics, they cannot study genetic polymorphisms; in effect, such models must

assume that mutant alleles that invade a population also reach fixation. An initial wave of population genetic

studies in response to these concerns showed that Hamilton’s rule was generally a correct mutant invasion

condition so long as selection is weak and fitness interactions between individuals are additive [1, 16, 149, 150,

153]. However, these models were family structured where cooperation occurs between close relatives and

could not address the applicability of Hamilton’s rule in populations with more generic structure, such as deme

structure in island [168] and lattice models [78, 98, 99].

1.2. The Price equation and the individually-based approach

Part of the difficulty with the population genetic methods used to analyze family-structured models is that

they use genotypes as state variables. This quickly increases the dimensionality of the model as the number

of loci, family size, or demes increases and makes approximation difficult. An important alternative approach

was introduced to population genetics by George Price with his eponymous equation [116, 117]. The Price

equation uses the distribution of allele frequencies in each individual in the population as the set of state vari-

ables and tracks the first population-level moment of this distribution, which is the mean allele frequency.

If p = (p1, … , pNT
) represents the allele frequency distribution for NT haploid individuals (pi = 0 or 1 for

individual i), the Price equation yields

E[wΔp∣p] = Cov[wi, pi] + E[wiΔpi] (2)

where E[wΔp∣p] is the expected change in mean allele frequency weighted by mean fitness w and conditional

on p in the parental generation. The first term on the right hand side, the covariance between individual

fitness wi and allele frequency pi, measures the effect of selection on the change in mean allele frequency in

the population. The second term, E[wiΔpi], measures the effect of non-selective transmission forces, such as

mutation andmigration (and recombination for changes in genotype frequencies), on the change inmean allele

frequency. When selection is the only force on allele frequencies and the population size remains fixed (w = 1),

the Price equation simplifies to

E[Δp∣p] = Cov[wi, pi] . (3)
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Calculating higher-order moments of the allele frequency distribution is necessary to measure the exact

dynamics of the distribution over time; thus, moment-based approaches like the Price equation are not neces-

sarily more tractable than directly tracking genotype frequencies. However, an important observation about

moment-based approaches is that they are readily amenable to approximation. When selection is weak relative

to other forces such as recombination and migration, a kind of separation of timescales occurs where allele

frequency dynamics converge very slowly and associations between alleles, linkage disequilibrium between

loci [10, 79, 105] and FST between individuals in a deme [124, 127, 129, 156], converge much more quickly.

Because of this “separation of timescales”, linkage disequilibrium, FST, and other associations will converge to

“quasi-equilibrium” (QE) values that are a function of mean allele frequencies. This means that the mean allele

frequency dynamics can be expressed as a closed system of equations, which considerably simplifies analysis

of multilocus systems or structured populations.

With respect to social evolution, the QE results for structured populations are particularly useful as they

have helped to establish a rigorous basis for kin selection and Hamilton’s rule in populations with finite size,

localized dispersal, or both [123, 125]. Initiated by the seminal work of François Rousset [122, 125], the mean

allele frequency dynamics in this approach are calculated under weak selection and can be expressed as func-

tions of FST and other between individual genetic associations evaluated under selective neutrality. In the

simplest cases, this approach shows that Hamilton’s rule holds for weak selection and additive genetic interac-

tions in populations with island-type structure [125] and family-structured populations [128]. More generally,

this approach produces analogues of Hamilton’s rule where the direction of selection is given by a sum of relat-

edness coefficients and fitness effects indexed by the spatial distance between a focal individual and its social

partners [92, 123, 125] or by the demographic class (e.g., juvenile vs. adult or worker vs. queen in social in-

sects) of the focal and its partners [126, 128]. It is this weak selection andQE approach that we will use to study

genetic interactions and their affect on cooperation in deme structured populations below.

1.3. Genetic drift, adaptive dynamics, and evolution in the short and long term

Another difficulty with the early analyses of kin selection and Hamilton’s rule in family structured pop-

ulations was that those population genetic models could easily produce stable polymorphic equilibria [147,

149, 150], which made general predictions concerning the level of altruism or other social behaviors difficult.

Generally, such equilibria are of intrinsic biological and mathematical interest since they illuminate stabilizing

selection that can maintain genetic variation in levels of cooperation. In finite populations however, even alle-
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les under stabilizing selection either eventually go extinct or reach fixation due to genetic drift. If genetic drift

is sufficiently strong relative to the rate of mutation μ, then the population will spend most of its time fixed for

one of a set of possible alleles generated by mutation. This occurs for large NT and small μ when

NT μ logNT ≪ 1, (4)

which can be arrived at heuristically by using the expected number of alleles in the population in an infinite

alleles model under neutrality [74, 158, 159, 169]. Moreover, this condition ensures that any mutation that can

arise will either fix or go extinct before another mutation arrives [17, 19]1; in other words, there are at most two

alleles in the population at one time: a “resident” and a “mutant” that either goes extinct or fixes and becomes

the new resident. This process of sequential substitution of alleles is called the “trait substitution sequence”

[TSS; 18, 30] and is the fundamental biological model of adaptive dynamics [28, 50, 101] when population size

goes to infinity,NT → ∞. In addition, the TSS is often the implicit dynamical process behind many phenotypic

models of kin selection and evolutionary game theory [27, 37, 92, 125, 142, 160, 162] that use an optimality

criterion (i.e., fitness maximization) in search of an evolutionarily stable strategy (ESS).

On timescales short compared those required for generating phenotypic novelty, alleles generated bymuta-

tion in the TSS constitute a finite set, and the population “jumps” between alleles in this set as each allele invades

and fixes. Assuming that it is possible to mutate from one allele to any other in the set through a sequence of

zero or more intermediates (i.e., the mutation process is irreducible), the short-term process equilibrates to

a stationary distribution 𝝀 among the fixation or monomorphic states. This short-term TSS corresponds to

“short-term evolution” as defined by Eshel [33, 34] where a fixed set of genotypes are allowed to change fre-

quency but newmutations outside this set do not occur. The length of time the population spends fixed for each

allele is primarily determined by the likelihood each allele arises viamutation (μ) and fixes (fixation probability,

π) in populations monomorphic for the other possible alleles [44]. Assuming weak selection, the QE approach

discussed above can be used to calculate fixation probabilities even in spatially or demographically structured

populations [123]. Together with the TSS condition (4), this allows a complete description of the stationary

distribution of allelic states under the forces of selection, mutation, and genetic drift in the short-term.

For longer timescales, novel phenotypes are possible due to the invasion of mutations outside of a given

finite set. For example, processes such gene [96] and genome duplication [146], transposons [114], and lateral
1This condition is very similar to the one obtained in the “strong-selection weak-mutation” limit of Gillespie [p. 221; 52] and the

successional-mutations regime of Desai and Fisher [eq. 1; 29]: NTμ logNTω ≪ 1 where ω is the strength of selection.
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gene transfer [70] can generate novel physiological and ecological functions not possible with small changes in

single genes. These processes suggest that the set of possible phenotypes may have a continuum of values over

the long term. Suppose that for phenotype z the probability density of generating a mutant allele of phenotype

z+ δ is u(δ, z). If the support of u(δ, z) covers a fitness peak (i.e., it is possible to generate a mutant that resides

exactly at the peak), then it is possible that the populationwill not only approach the peak, but it will spendmost

of its time fixed for a phenotype within a small neighborhood of the peak. This long-term TSS corresponds to

the definition of “long-term evolution” by Eshel [33, 34] where invasion of new genotypes allow the population

to approach phenotypic equilibria defined by the classic evolutionarily stable strategy (ESS) condition [35, 63,

95]. Without any assumptions on the distribution of mutational effects u(δ, z), the long-term TSS is described

mathematically as aMarkov jump process and is given by an integro-differential (master) equation [17–19, 82].

Often for the purpose of tractability, only small mutants are allowed in small intervals of time, which means

that u(δ, z) is narrowly peaked around z and the population cannot make large jumps quickly. This assumption

turns the jumpprocess into a diffusion process [20] that is the stochastic analogue of the deterministic canonical

equation of adaptive dynamics [18, 30]. The long-term TSS diffusion also has a stationary probability density,

ρ(z), and the phenotypes located at peaks in that density correspond to equilibria obtained from classic ESS or

adaptive dynamics analyses [82, 152]. Exactly as in the short-term TSS, weak selection can be used to calculate

the fixation probabilities that determine ρ(z). This leads to a long-term stationary distribution of phenotypes

that captures selection, mutation, and drift in spatially or demographically structured populations.

1.4. Putting it all together: Hamilton and social evolution in the short and long term

The two main assumptions above, weak selection and the TSS condition (4), allow us to describe the sta-

tionary density of transitions between a discrete set of phenotypes in the short term or among a continuum of

phenotypes in the long-term. When there are only two types in the short term, cooperative and noncoopera-

tive, and the population is spatially structured or family structured, Hamilton’s rule in equation (1) is readily

recovered when genetic interactions are additive [125, 128]. As we will see below, this is a result of comparing

the stationary density of cooperative versus noncooperative types. Moreover, much of the recent work in evo-

lutionary game theory that focuses on finite populations uses this same short-term TSS model to calculate a

stationary distribution of types [e.g., 45, 66, 71, 109, 113, 131]. When there is a continuum of levels of cooper-

ation in the long term, br− c in Hamilton’s rule becomes the gradient of the potential function used to solve for

the stationary density of the TSS diffusion [82]. Since br− c can be thought to measure the change in inclusive
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fitness for additive genetic interactions [92, 125, 142], phenotypes at peaks in inclusive fitness (br− c = 0) cor-

respond to peaks in the stationary density. Thus, the long-term action of natural selection, assuming additivity,

leads to a kind maximization of inclusive fitness, which supports the use of classic inclusive fitness analyses

[however, see refs 91, 92, for how difficulties in interpreting this result as broadly justifying “inclusive fitness

maximization”].

1.5. Genetic interactions and non-additivity

If one is willing to assume weak selection, weak mutation relative to genetic drift (i.e., the TSS), and ad-

ditive genetic interactions, then a direct application of Hamilton’s rule can be justified using the theoretical

work discussed above. However, the ability to predict short and long term distributions of types under weak

selection and the TSS is possible even when genetic interactions are non-additive. Non-additivity at the genetic

level allows for interaction among alleles, within or between individuals. Within individuals, such interactions

produce dominance and epistasis and between individuals they produce scenarios analogous to classic two-

player games with pure strategies, such as the Hawk-Dove or Stag-Hunt games. Non-additive interactions are

important because they produce frequency dependence in the sign of the change in allele frequency (eq. 3)

even for weak selection [86, 112, 151]. In the case of social behavior, this implies that Hamilton’s rule becomes

frequency dependent and no longer provides an unambiguous prediction of the effect of selection in either the

short or the long term. Rather, applying the tools of QE and the TSS for non-additive interactions requires

additional terms to account for higher-order genetic associations.

Once we calculate these additional terms, we determine the effect of non-additive interactions on the short-

term stationary distribution of types in a given demographic context. Here, we apply the theory to Wright’s

island model of population structure where there are n demes or groups each containingN haploid individuals

[168] (NT = nN). All groups are connected equally by migration at rate m. One of the important features of

the Price equation approach is that allows us to expression the genetic associations (e.g., FST) in terms of mean

times to coalescence. Using results from coalescent theory to calculate the genetic associations, we replicate and

generalize well known short-term results from inclusive fitness (the Taylor cancellation result [112, 139, 140])

and evolutionary game theory (the one-third law [109] and risk dominance [13, 64, 72]). Moreover, we show

how changing the competitive environment (hard vs. soft vs. group selection) changes thesewell known results,

particularly in the presence of non-additive interactions.

The long-term approach, in contrast, only accounts for additive genetic interactions. Nevertheless, at least
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in social interactions with simple non-additive payoffs, the long-term approach remarkably reproduces results

from the short-term approach that explicitly includes non-additive genetic interactions. We discuss a potential

explanation for this power of the long-term approach, which suggests that three-way genetic interactions may

be uniquely analytically tractable among possible non-additive interactions.

2. Theory: short-term evolution

2.1. Weak mutation,the TSS, and evolutionary success

Consider evolution in a population with total size, NT, where the population can be group structured (n

groups of size N) or otherwise spatially structured with some pattern of migration between spatial locations.

Recall from section 1.3 that the short-term TSS requires considering only two alleles, which we label A and a

where pi measures the frequency of A in individual i (see Table 1 for a description of symbols used throughout

this paper). Suppose that the mutation rate from A to a is μa|A and μA|a is the rate from a to A. We assume

μ = max(μA|a, μa|A) measures the strength of mutation. The weak mutation condition that defines the TSS,

condition (4), is derived under the limit as NT → ∞ and μ → 0. In this limit, the TSS is consists of the

population jumping between states fixed for allele A and fixed for allele a. To represent the jump process

between these two fixation states, we create a Markov chain with the following matrix

Λ(μ) =
⎡⎢⎢
⎣

1 − μa|A
μ πa|A

μa|A
μ πa|A

μA|a
μ πA|a 1 − μA|a

μ πA|a

⎤⎥⎥
⎦

(5)

where πA|a and πa|A are the probabilities that alleles A and a, respectively, reach fixation starting from an initial

frequency of 1/NT in a population where the other allele has frequency 1− 1/NT. Rescaling the mutation rates

by the overall rate μ allows a nontrivial stationary distribution of the Markov chain (i.e., the left eigenvector

of Λ(μ)) as μ → 0. Inspired by ideas in large deviations theory [43], Fudenberg and Imhof [44] show that the

stationary distribution 𝝀 of the TSS as μ → 0 is simply the stationary distribution of the Markov chain in (5)

in the limit as μ → 0. Thus, instead of having to calculate the stationary distribution of the complex stochastic

process with many different possible population states, we need only calculate the stationary distribution of the

much simpler “embedded” chain composed of fixation states. Calculating the stationary distribution using the

embedded chain yields

𝝀 = (
μA|aπA|a

μA|aπA|a + μa|Aπa|A
, μa|Aπa|A
μA|aπA|a + μa|Aπa|A

) . (6)

If we are interested only in the effect of selection on the stationary distribution, we can assume that the
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mutation rates are symmetric, μA|a = μa|A. In this case, the expected frequency of allele A in the population at

stationarity, which we write as E[p], becomes in the limit as the mutation rate goes to zero

lim
μ→0

E[p] = πA|a
πA|a + πa|A

. (7)

An intuitive condition for the evolutionary success of allele A relative to allele a is that A is more common at

stationarity, or

E[p] > 1
2 . (8)

Using equation (7), condition (8) is equivalent to

πA|a > πa|A (9)

when μ → 0, which means we need only compare complementary fixation probabilities in order to determine

which allele is “favored” by natural selection [7, 45]. This condition on fixation probabilities is the evolutionary

success condition that we will use to derive Hamilton’s rule (eq. 1).

2.2. Fixation probability and the Price equation

Calculating the fixation probabilities in a model with arbitrarily complex demography or spatial structure

can be daunting if not impossible. Thus, our next aim is to show how to connect fixation probabilities to the

Price equation, which will make it straightforward to use weak selection and QE results. Suppose that p(t) is

the mean frequency of allele A at time t. Following recent methods [89, 94, 122], we can write the fixation

probability as

πA|a = E[p(∞)|p(0)]

= p(0) + E⎡⎢
⎣

∞
∑
t=0

Δp(t)∣∣∣∣
p(0)⎤⎥

⎦

= p(0) +
∞
∑
t=0

E[Δp(t)∣p(0)]

(10)

where Δp(t) = p(t + 1) − p(t) and we can exchange the expectation and the infinite sum in the last line

because the Markov chain converges in mean [94]. Expanding the sum in (10) by conditioning on all possible
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population states p(t) yields

πA|a = π° +
∞
∑
t=0

∑
p(t)

Pr[p(t)|p(0)]E[Δp(t)∣p(t)] (11)

where we have used the fact that the fixation probability of a neutral allele, π°, is its initial frequency p(0). The

second term in the sum, E[Δp(t)∣p(t)], is exactly the left-hand side of the Price equation (3).

2.3. Fixation probability under weak selection

The most straightforward way to calculate the probability of fixation πA|a assuming weak selection is to

Taylor expand πA|a in terms of a parameter that measures the strength of selection [see: 89, 94, 122], which we

call ω. This expansion is simply

πA|a = π° + dπA|a
dω ω + O(ω2) (12)

where the derivative dπA|a
dω is evaluated under neutrality (ω = 0). Using equation (11), we can calculate the

derivative of the fixation probability under neutrality as

dπA|a
dω =

∞
∑
t=0

∑
p

d
dω[Pr[p(t)|p(0)]E[Δp(t)∣p(t)]] (13)

where the exchange of derivative and the limit is justified provided the derivatives converge uniformly [see

Appendix of 94, for such a proof]. Expanding the derivative in the sum in (13) using the chain rule yields

d
dω[Pr[p(t)|p(0)]E[Δp(t)∣p(t)]] = d

dω[Pr[p(t)|p(0)]]E°[Δp(t)∣p(t)] + Pr°[p(t)|p(0)] d
dω[E[Δp(t)∣p(t)]]

(14)

with the symbol ° indicating evaluation of an expectation or probability in the neutral case when ω = 0. The

first term on the right hand side of (14) is zero since the expected change in allele frequency under neutrality

is zero. Simplifying equation (13) with this fact yields

dπA|a
dω =

∞
∑
t=0

∑
p

Pr°[p(t)|p(0)] d
dω[E[Δp(t)∣p(t)]] (15)

which we can write as
dπA|a
dω =

∞
∑
t=0

E°[ d
dω[E[Δp(t)∣p(t)]]] (16)

where E° implies expectation over the neutral realizations of p given an initial frequency of A of p(0).
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In order to evaluate the derivative of the fixation probability in equation (16), we need the derivative of the

expected change in mean allele frequency. This is a quantity that is relatively simple to calculate since all ones

needs is the first-order term in an expansion of E[Δp(t)∣p(t)] in terms of selection strength ω. To obtain this

expansion, we first expand the fitness of the focal individual i in terms of selection strength. Without loss of

generality, the fitness of individual i is

wi = 1 + ω
NT

∑
d=1

NT

∑
k1<…<kd

si,k1⋯kd pk1 ⋯ pkd + O(ω2)

= 1 + ωSi(p) + O(ω2)

(17)

where si,1, … , si,1⋯NT
are often called “selection coefficients” [10, 79] and Si(p) is the polynomial given by the

summations in the first line. The d = 1 term in the summation yields the “additive” fitness components where

selection coefficients si,j aremultiplied pj. Terms in the summation d > 1 are “non-additive” fitness components

since the selection coefficients there are multiplied by products of allele frequencies. Given that mean fitness is

equal to one (which is true for populations of fixed size NT), Si(p) must satisfy to first order in ω

∑
i
Si(p) = 0 , (18)

which also implies that the sumof the selection coefficientsmust be zero by setting p = 1 in (18); this constraint

on the sum of the selection coefficients is a common feature of weak selection models with a fixed demography

[e.g.: 89, 125].

Using the expression for fitness in (17), the change in mean allele frequency from the Price equation (3)

becomes

E[Δp∣p] = Cov[1 + ωSi(p), pi]

= ωS(p) ⋅ p
NT

+ O(ω2)
(19)

where S(p) = (S1(p), … , SNT
(p)) and S(p) ⋅ p is the scalar product of the two vectors. For example, if in

a single panmictic population allele A confers a fitness advantage of ω for every individual that has it, then

wi = 1 + ω(pi − p) and

E[Δp∣p] = ωp(1 − p)
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which is the standard result for an advantageous allele under weak selection [38]. Taking the first-order term

from (19) and inserting it in equation (16) produces

dπA|a
dω = 1

NT

∞
∑
t=0

E°[S(p) ⋅ p] . (20)

Expanding (20) into the first-order Taylor series for the probability of fixation in (12) yields

πA|a = π° + ω
NT

∞
∑
t=0

NT

∑
d=1

NT

∑
i=1

NT

∑
k1<…<kd

si,k1⋯kd E°[pipk1 ⋯ pkd] + O(ω2) . (21)

At this point, even though we have not explicitly specified the effect of gene expression on fitness or the popu-

lation structure, we can see how additive and non-additive effects of selection affect fixation probability. The

additive terms, d = 1 in the above sum, depend on expected pairs of allele frequency, E[pipj]. These expected

pairs are essentially probabilities of genetic identity between two different individuals in the population. Thus,

measures of average pairwise genetic identity within a structured population, such as Wright’s FST, are natural

statistics to use when considering the effect of selection due to additive genetic interactions. The non-additive

terms, d > 1, contribute expected d-order products of allele frequency and thus require higher order statistics

that FST.

In order to better interpret the expression for fixation probability in (21), which contains a difficult infi-

nite sum over time, we follow the argument given in Rousset [122] and expanded in Lessard and Ladret [94]

and Lehmann and Rousset [89] that interprets the expected allele frequency products in terms of coalescence

probabilities. Recall from the TSS that in a population composed of allele a, a single A mutation will arise and

either fix or go extinct. In this case, the expected allele frequency product, E°[pipk1 ⋯ pkd], is the probability

that individuals i and k1 through kd all have allele A at some future time t. Going backwards in time, this

probability is equivalent to the probability that those lineages coalesce before time t, Pr°[Tik1⋯kd ≤ t], times

the probability that the ancestral lineage is allele A, which is the initial frequency p(0) = π° = 1/NT. Writing

Pr°[Tik1⋯kd ≤ t] as 1 − Pr°[Tik1⋯kd > t] and using the fact that the selection coefficients sum to zero (eq. 18),
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equation (21) becomes

πA|a = 1
NT

− ω
NT

NT

∑
d=1

NT

∑
i=1

NT

∑
k1<…<kd

si,k1⋯kd

∞
∑
t=0

Pr°[Tik1⋯kd > t]/NT + O(ω2)

= 1
NT

− ω
NT

NT

∑
d=1

NT

∑
i=1

NT

∑
k1<…<kd

si,k1⋯kd E°[Tik1⋯kd]/NT + O(ω2) (22)

which matches previous results [eq. 15 in 122; eqs. 59 and 61 in 94]. Equation (22) says that the effect of se-

lection on the fixation probability of allele A is simply a sum of selection coefficients and expected coalescence

times under neutrality, E°[Tik1⋯kd]. One advantage of expressing the fixation probability in terms of coales-

cence times is that results from coalescence theory [157] can be used, which is the approach we utilize when

we apply these methods to a population with island-type structure.

The condition for allele A to be more common at stationarity than allele a, condition (9), requires both

fixation probabilities πA|a and πa|A. Expanding πa|A under weak selection can be accomplished using the same

reasoning above for equation (22). First, observe that that the expected change in the frequency of the a allele

is E[Δq(t)] = −E[Δp(t)]. This implies that dπa|A
dω is simply the negative of the first-order term in equation (21)

except that E°[pipk1 ⋯ pkd] is evaluated under a neutral process where the initial frequency of a is 1/NT (rather

than 1 − 1/NT as was the case for πA|a). In calculating πA|a, E°[pipk1 ⋯ pkd] was interpreted as a coalescence

probability times the initial frequency of A; analogously, we can write each pi as 1 − qi and interpret the prod-

ucts qiqk1 ⋯ qkd in E°[(1 − qi)(1 − qk1) ⋯ (1 − qkd)] as a coalescence probabilities, Pr°[Tik1⋯kd ≤ t], times the

initial frequency of a. Calculating πa|A using the analogue of (21), expanding the expected products of qi, and

summing over time yields

πa|A = 1
NT

+ ω
NT

NT

∑
d=1

NT

∑
i=1

NT

∑
k1<…<kd

si,k1⋯kd

d
∑
l=1

(−1)l
{k1,…,kd}

∑
m1<⋯<ml

(E°[Tm1⋯ml
] − E°[Tim1⋯ml

])/NT + O(ω2) (23)

where the last sum on the right hand is over all m1 < ⋯ < ml drawn from the set {k1, … , kd} and E°[Tkj] = 0

for any single lineage kj by definition.

With expressions from both fixation probabilities, πA|a from equation (22) and πa|A from equation (23), we

can combine them to complete the condition for alleleA to bemore common than a at stationarity, πA|a > πa|A,
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which becomes

NT

∑
d=1

NT

∑
i=1

NT

∑
k1<…<kd

si,k1⋯kd
⎛⎜⎜⎜
⎝
E°[Tik1⋯kd] +

d
∑
l=1

(−1)l
{k1,…,kd}

∑
m1<⋯<ml

(E°[Tm1⋯ml
] − E°[Tim1⋯ml

])⎞⎟⎟⎟
⎠

< 0 (24)

to first order in ω. This is the main condition for evolutionary success for the short-term TSS. Given a pop-

ulation where the demography and the relationship between gene expression and fitness are known (i.e., the

selection coefficients si,k1⋯kd are known), all that remains is to calculate expected coalescence times under neu-

trality, which will be a function of the demography. For models of cooperative behavior, condition (24) gen-

erates both Hamilton’s rule when genetic interactions are additive (d = 1) and the risk-dominance condition

when interactions are non-additive (d > 1).

2.4. Additive genetic interactions and evolutionary success

The effect of selection on fixation probability given in (22) can be arbitrary complex if individual fitness

depends on any combination of genotypes (i.e., products of allele frequency) of individuals in the population.

In the simplest social interactions, fitness only depends additively on the genotype of focal individual and the

genotypes of other individuals in the population, which means d = 1 in equation (17). Using d = 1 in the

expression for πA|a in (22), we find that

πA|a = 1
NT

− ω
NT

NT

∑
i=1

NT

∑
j=1

si,jE°[Tij]/NT + O(ω2) (25)

Similarly, applying d = 1 for the expression for πa|A produces

πa|A = 1
NT

+ ω
NT

NT

∑
i=1

NT

∑
j=1

si,jE°[Tij]/NT + O(ω2) , (26)

and this immediately yields

πA|a + πa|A = 2
NT

+ O(ω2) , (27)

which transforms the evolutionary success condition πA|a > πa|A to (after neglecting O(ω2) terms)

πA|a > 1
NT

, (28)
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which is the standard condition for type A to be advantageous compared to a neutral allele. Inserting the first-

order expansion for πA|a in equation (12) in condition (28) produces another evolutionary success condition

for allele A:
dπA|a
dω > 0 . (29)

Thus, additive genetic interactions simply the analysis of evolutionary success considerably since we have to

evaluate only one fixation probability, πA|a, or its derivative with respect to the strength of selection. Conversely,

analyses that only use condition (28) and compare the fixation probability of one type versus fixation under

neutrality are correct predictors evolutionary success only when interactions are additive. For example, the

one-third law from evolutionary game theory is an evaluation of condition (28) in a finite population where

individuals interact in a pairwise manner and the payoffs from their interactions can produce non-additive

genetic interactions [109, 113]. In effect, the one-third law then yields a measure of the relative stability of a

population fixed for allele a, but does not provide information about the stability of the population when fixed

for allele A [see Fig. 2b in 109] unless genetic interactions are additive.

2.5. Weak effect mutations and continuous phenotypes

An important case where genetic interactions are additive occurs when the difference between the pheno-

types produced by alleles A and a is small and phenotypes are allowed to take a continuum of values. Suppose

that the phenotype of type a is z and that of type A is z+ δ where δ is called the phenotypic deviation. Further,

let the phenotype of individual i be zi = z + δpi, and the vector z = z(p) = (z1, … , zNT
) contain the pheno-

types for the whole population. Since phenotype is a continuous variable, we assume that the fitness of each

individual i, wi(z), is a differentiable function of phenotype [p. 41 in ref 24]. This also implies, using equations

(3) and (11), that the fixation probability a single mutant with trait z + δ in a population with resident trait z,

denoted π(δ, z), is differentiable. When the phenotypic deviation δ is small (weak effect mutations), we can

ignore terms O(δ2) and individual fitness can be written as a Taylor series in δ:

wi(z) = 1 + δdwi(z)
dδ + O(δ2)

= 1 + δ
NT

∑
i

𝜕wi(z)
𝜕zj

pj + O(δ2)
(30)

where 𝜕wi
𝜕zj

are evaluated at δ = 0 (written as 𝜕wi(z)
𝜕zj

) when the population is fixed for allele a and wi(z) = 1.

Comparing equation (30) to the expression for fitness when phenotypes are discrete (eq. 17) reveals that the
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phenotypic deviation δ is analogous to the selection strength ω and that the derivatives of fitness with respect

to phenotype, 𝜕wi(z)
𝜕zj

, are equivalent to additive selection coefficients. Thus, so-called “δ-weak” selection [163]

implies additivity of fitness effects and allele frequency, which is well known in the literature [e.g.: 123, 138].

Finally, using the fitness function in (30) in the fixation probability equation (25) and taking the first-order

term, we obtain the the derivative of the fixation probability π(δ, z) with respect to δ (since it measures selection

strength) evaluated at δ = 0,

(dπ
dδ)

δ=0
= S(z) = − 1

NT

NT

∑
i=1

NT

∑
j=1

𝜕wi(z)
𝜕zj

E°[Tij]/NT , (31)

which is often called the phenotypic “selection gradient”, S(z), in adaptive dynamics [50, 93], inclusive fitness

theory [90]. and quantitative genetics [81]. The “gradient” terminology suggests that the zeros of the selection

gradient, which correspond to extrema of the fixation probability, will be candidate evolutionary equilibria. We

will show this to be the case though only once we have described evolution under the long-term TSS in section

4.

2.6. Coalescence time and identity by descent

So far, we have shown how the fixation probability of an allele with effects on social behavior depends

on mean coalescence times (eq. 22). However, the relatedness term in Hamilton’s rule is often expressed as

a function of probabilities of identity by descent [58, 60]. Translating between mean coalescence times and

probabilities of identity by descent is possible using an argument first presented by Slatkin [133]. Suppose

that Qij represents the expected probability of identity by descent between alleles i and j. Since mutations are

distributed independently on a neutral genealogy [157] and IBD requires that the alleles not mutate before

coalescing, the IBD probability can be expressed as

Qij =
∞
∑
t=1

(1 − μ)2t Pr°[Tij = t] . (32)

Since the TSS assumes weak mutation, we can ignore terms O(μ2) and rewrite equation (32) as

E°[Tij] = lim
μ→0

1 − Qij
2μ . (33)

We use the limit as μ → 0 in equation (33) since we derived the fixation probabilities and their dependence

on coalescence time under the TSS assumption that new mutation is not possible until the old mutation either
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fixes or goes extinct. Equation (33) only pertains to pairwise coalescence times and IBD probabilities, so we can

only apply it to additive genetic interactions. The relationship between three-way (and more generally d-way)

coalescence times and IBD probabilities is more complex and deserves further study.

Applying the relationship between pairwise coalescence times and IBD probabilities in (33) to the selection

gradient in (31) in the case of δ-weak selection yields

S(z) = lim
μ→0

1
2N2

Tμ

NT

∑
i=1

NT

∑
j=1

𝜕wi(z)
𝜕zj

Qij . (34)

This expression was first obtained by Rousset and Billiard [125], and an analogous derivation was presented by

Rousset [122]. For models with simple population structure (homogenous structures [112, 143] like the island

[168] or stepping-stone [78] models) and simple demography, the IBD probabilities Qij are relatively easy to

obtain in the low mutation limit. The fitness functionwi(z) depends on nature of the social interactions as well

as on the demography and population structure.

2.7. Inclusive fitness effect and Hamilton’s rule

Essentially, the right hand side of (34) is a measure of how expression of allele A affects inclusive fitness

[123, 125]; fitness effects are given by the derivative of the fitness of individual iwith respective to the phenotype

of individual j, and each effect is weighted by likely individuals i and j are to share alleles IBD. Applying the

evolutionary success condition S(z) > 0 to (34) yields a Hamilton-type rule,

lim
μ→0

1
μ

NT

∑
i=1

NT

∑
j=1

𝜕wi(z)
𝜕zj

Qij > 0 , (35)

where the population structure and fitness functions haven’t been specified. In order to obtain the classic form

of Hamilton’s rule from condition (1), we make some simplifying assumptions about the social interaction and

population structure.

Suppose that there is a homogeneous structure with n groups each containingN haploid individuals (NT =

nN). This implies that we need only to track two kinds of IBD probabilities, Q0, which measures the chance

that two alleles drawn from different individuals in the same group are IBD, and Q1, which is the probability

that two alleles from different groups are IBD. Individuals socially interact within their group, but social effects

between groups also occur due to differential productivity of groups (i.e., “hard selection” [21]). Since the

fitness derivatives 𝜕wi(z)
𝜕zj

are evaluated at δ = 0 where all individual behave the same (as if they express the
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a allele), there are only three different fitness derivatives: (i) individuals i and j are the same individual, and
𝜕wi(z)

𝜕zi
is the effect of the individual’s behavior on itself, which we call the “cost” or −c; (ii) individuals i and j

live in the same group, and 𝜕wi(z)
𝜕zj

is the effect on the individual due to its group mate’s behavior, which we call

the “benefit” or b/(N − 1) (for each of the N − 1 group mates); and (iii) individuals i and j live in different

groups where we can set 𝜕wi(z)
𝜕zj

= −(b − c)/((n − 1)N) since the selection coefficients must sum to zero (eq.

18). Putting these expression into equation (35) and simplifying produces

lim
μ→0

1 − Q1
μ (−c + b Q0 − Q1

1 − Q1
) > 0 . (36)

Typically, in finite populations (NT < ∞), the IBD probabilities Q0 and Q1 will go to one as the mutation rate

goes to zero since one lineage will eventually fix in the population. In these cases (such as the island model),

the IBD probabilities can often be expressed as 1−μO(1) [123], which suggests that the first term in (36) has a

positive limit as μ → 0. The ratio multiplying the benefit b turns out to be Wright’s FST, which will also have a

positive limit under low mutation. Setting the relatedness to r = FST = Q0−Q1
1−Q1

and simplifying, we then obtain

Hamilton’s rule for this population

−c + b r > 0 .

where the left-hand side of the inequality is the inclusive fitness effect.

There are two important points about Hamilton’s rule that are illuminated by the above derivation. The first

is that the cost and benefit terms are effects on fitness as measured over the whole lifecycle. This implies that

fitness effects will be functions of demographic parameters (such as population size and migration rate) and

of social effects on both survival and fertility. In order to determine the signs of −c and b, which are required

for classifying a behavior as altruistic or not (see Table 2), the demography and the effect of social behavior

on both fertility and survival must be specified. Second, relatedness is a measure of relative genetic identity

that depends on population structure. In some simple cases [e.g., family structured populations; 128], this will

simplify to classic pedigree measures of relatedness, but generally r will depend explicitly on the demography

and population structure.

3. Application: social games in island-type populations

To recap a bit, we have shown above how weak mutation and the TSS allow a simple criterion for evolu-

tionary success, πA|a > πa|A, in the short term. When selection is weak and genetic interactions are additive,
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this simplifies the condition for evolutionary success considerably and we recover a measure of inclusive fitness

and Hamilton’s rule in (34). When non-additive genetic interactions are important and selection is still weak,

the evolutionary success condition is given generally by condition (24).

There are many biological scenarios where non-additive interactions are important though the simplest

one that is often invoked is a two-player game. Each individual plays one of two pure strategies, “cooperation”

or “noncooperation”, with a social partner where the payoffs for the game are given in Table 3. When two

individuals are noncooperators, they receive no payoff. If one does not cooperate and the other cooperates, the

cooperator receives −C and the noncooperator receives B. When two individuals cooperate, they each receive

payoff B − C + D where D is a measure of non-additivity or “synergy”. The strategy names and payoffs are

inspired by the Prisoner’s Dilemma game [11] where B and C are positive and D ≥ 0, though we will allow

the parameters to take negative values as well in order to study other games like the Stag-Hunt [132]. In the

simplest case, the strategies are fixed by the genotype of the individual where individuals bearing the A allele

cooperate and individuals bearing a do not cooperate. This means there is no phenotypic plasticity that might

result from changing strategies over repeated interactions (e.g., reciprocity [9, 148] or responsiveness [2, 3]).

We assume an island-type population structure where n groups of N haploids (NT = nN) are connected

each by migration rate m. Generations are non-overlapping. The frequency of the cooperation allele A in

individual i in group g is pgi, the mean frequency in group g is pg including individual i and pg\i excluding i,

and p is the mean frequency in the whole population. Individuals choose social partners at random and the

mean payoff from the social interactions in the group determines how each individual’s fertility differs from

the baseline of one. Given these assumptions, the fertility of individual i in group g is 1 + ωfgi where

fgi = 1 + B pg\i − C pgi + D pgipg\i (37)

and B and C are clearly additive and D non-additive in allele frequency. This fertility function represents not

only the two-player case but also the n-player case within the group when payoff is an additive function of the

frequency of other player types in the group [152, Appendix C].

3.1. Baseline demography: hard selection

We begin with a model of hard selection (see section 2.7) with groups producing different numbers of

migrants depending on their composition. To first order in ω, the fitness of individual i in group g can be
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written implicitly as

wgi =
(1 − m)(1 + ωfgi)

(1 − m)(1 + ωfg) + m(1 + ωf\g)
+ 1

n − 1
n

∑
k≠g

m(1 + ωfgi)
(1 − m)(1 + ωfk) + m(1 + ωf\k)

, (38)

where f\g is the mean fertility in the population excluding group g, or explicitly as

wgi = 1 + ω(fgi − [(1 − m)2fg + m(2 − m)f\g + m
n − 1(fg − f\g)]) , (39)

which takes the same form as equation (17). All that remains in order to calculate the fixation probabilities in

equations (22) and (22) are the expected coalescence times under neutrality.

Fortunately, coalescence times in structure populations are a well-studied topic [67, 108, 155, 164] in

coalescent theory where the process often considered is called the structured coalescent [106, 107]. As ap-

plied to the island model, the structured coalescent usually assumes that the migration rate m is O(1/N) and

nNm/(n − 1) → M as N → ∞. This impies that during a small interval of time, either two lineages within a

group can coalesce or one lineage can migrate from one group to another, but more than one such event does

not occur. For two lineages, either both can be in the same group with configuration (0, 1) or each can be in

different groups with configuration (2, 0) = (2) where the first element of the configuration is the number of

groups with a single lineage, the second element is the number of groups with two lineages, etc (e.g., see [155]).

We denote the expected coalescence times of these configurations by E°[T(0,1)] and E°[T(2)], respectively. With

synergistic payoffs (D ≠ 0) that create non-additive fitness effects, we also have to track three lineage samples.

For three lineages, there are three possible configurations: (3), (1, 1), and (0, 0, 1). Using the master equation

for the continuous-time Markov process that describes coalescence (eq. 2.8 in [108]), a system of equations

for the five expected coalescence times can be constructed (Wakeley [155] describes the method nicely); these

equations are given in section 5.1 of [80], and we only provide the solutions here (time in absolute units):

E°[T(0,1)] = NT, E°[T(2)] = NT(1 + 1
2M),

E°[T(0,0,1)] = NT(4
3 + n − 1

6n(1 + M)), E°[T(1,1)] = NT(4
3 + 1

2M − 1
6n(1 + M)),

E°[T(3)] = NT(4
3 + 2

3M − 1
6n(1 + M)) .

(40)

Note that evaluating a more complex fitness function with higher-order frequency dependence would require

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2014. ; https://doi.org/10.1101/010371doi: bioRxiv preprint 

https://doi.org/10.1101/010371
http://creativecommons.org/licenses/by-nc-nd/4.0/


calculating expected coalescence times for four lineage or larger samples. The number of configurations and

equations grows quickly as the lineage sample size increases, which makes this method cumbersome for com-

plex fitness functions. Working on the related problem of calculating the total length of the coalescent geneal-

ogy, Wakeley [155] shows expected coalescence times can be calculated for arbitrarily large samples so long as

n is large; this suggests, an analogous method might work for coalescence times that could be used to calculate

fixation probabilities.

Applying the fitness function from (39) and the coalescence times in (40) to equation (22), we calculate the

probability allele A (the cooperation allele) fixes in a population of a (the noncooperation allele) as

πA|a = 1
NT

+ ω⎛⎜
⎝

−C + D⎛⎜
⎝
1
3 + 1 − 1

n
6(1 + M)

⎞⎟
⎠

⎞⎟
⎠

(41)

and the fixation probability of a in a population of A as

πa|A = 1
NT

+ ω⎛⎜
⎝
C − D⎛⎜

⎝
2
3 − 1 − 1

n
6(1 + M)

⎞⎟
⎠

⎞⎟
⎠

. (42)

First derived by Ladret and Lessard [80, eq. 29], these expressions are correct to first order in selection strength

ω and zeroth order in O(1/N) since our coalescence times assume that N → ∞. These two fixation probabil-

ities are the first main result of this section and produce a few important observations. First, they reproduce

the classic cancellation result from Taylor [139, 140, 143] for additive genetic interactions (D = 0). Taylor’s

result says that the benefits of cooperation are exactly balanced out by the effect of competition between related

individuals within a group (so-called “kin competition” or “local competition”) when population structure is

“homogenous” [143] and generations do not overlap. In our model notation, the cancellation result implies

that the benefit to others B will cancel out of the fixation probability expressions; equations (41) and (42) show

that this indeed does occur. Thus, when interactions are additive (D = 0), the cooperation allele A fixes with

a probability greater than the neutral probability π° = 1/NT (eq. 28) only when there is negative direct cost

(i.e., cooperation is directly beneficial). Likewise, πa|A in equation (42) shows that the noncooperation allele a

is advantageous when the cost is positive. In an extension of the cancellation result, Ohtsuki [112] shows (for

n → ∞) that positive synergy that does not change the structure of the game, 0 < D < C, cannot not result

in positive selection for cooperation. Equations (41) and (42) reproduce this result since even the strongest

population structure, M → 0, results cooperation fixing more likely than chance only when D > 2C.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2014. ; https://doi.org/10.1101/010371doi: bioRxiv preprint 

https://doi.org/10.1101/010371
http://creativecommons.org/licenses/by-nc-nd/4.0/


The expression for πA|a in equation (41) also produces the one-third law from evolutionary game theory

[109]. The one-third law says that as N → ∞ in a single panmictic population, the cooperation allele A fixes

with a probability greater than chance when the mixed strategy equilibrium of the game in Table 3 is less than

one third. If an opponent cooperates with probability x and does not cooperate with probability 1 − x, the

mixed strategy equilibrium is the value of x where an individual does equally well against the opponent by

either cooperating or not cooperating [69]. Using the payoffs from Table 3, the mixed strategy equilibrium

equation is x∗(B − C + D) − (1 − x∗)C = x∗B, which yields x∗ = C/D. Thus, the one-third law translates to

D > 3C . (43)

We can immediately recover the one-third law from πA|a > 1/NT by taking the high migration limit M →

∞ in (41), which results in an unstructured population. The complementary condition for fixation of the

noncooperation allele a, πa|A > 1/NT, becomes D < 3C/2 in the high migration limit. In contrast, population

structure is at its strongest in the low migration limit when M → 0 and when the number of groups is large,

n → ∞. Fixation of the cooperation allele becomes easier in this case as πA|a > 1/NT translates to D > 2C.

Conversely, fixation of the noncooperation allele also becomes easier when population structure is strong since

the fixation condition becomes D < 2C. These conditions are summarized in Table 4.

As discussed in section 2.4, each fixation condition alone (and, consequently, the one-third law, πA|a >

1/NT) is sufficient as a measure of evolutionary success only when genetic interactions are additive. When

non-additive or synergistic interactions are included, the condition πA|a > πa|A (eq. 9) should be used. This

condition is

D > 2C (44)

using the fixation probabilities in (41) and (42) (see Table 4). Interestingly, this implies that whether the coop-

eration allele A or the noncooperation allele a is more common at stationarity is independent of the strength

of population structure, M, and depends only on the payoffs in the social game. This is a generalization of

the Taylor cancellation result in the sense that the kind of simple population structure considered here (non-

overlapping generations, homogenous island-type migration, hard selection) is not sufficient for the benefits

of cooperation B to affect selection for cooperation. Rather, synergistic effects are important, but they must be

significantly outweigh the costs in order for cooperation to be more prevalent than noncooperation.
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In fact, once synergistic effects outweigh the costs at all, D > C, they change the structure of the social

game from a Prisoner’s Dilemma where noncooperation is the strictly dominant strategy to a Stag-Hunt or

coordination game where both cooperation and noncooperation are Nash equilibria [11]. In coordination

games in unstructured populations, resident populations of cooperators and noncooperators are both resistant

to invasion by the complementary type when evolution is deterministic (i.e., there is no genetic drift). This

implies that whether alleleA or a becomes fixed in the population depends on the initial frequency ofA. When

the initial frequency is greater than the mixed strategy equilibrium x∗ = C/D, selection leads to fixation of the

cooperation allele A, and fixation of the noncooperation allele a occurs for initial frequencies less than C/D.

In effect, if the phenotypic space is the probability of cooperation x, then the mixed strategy equilibrium is a

fitness valley and pure cooperation and noncooperation are fitness peaks [152]. The basin of attraction for the

cooperation peak in this case would be (x∗, 1), and for the noncooperation peak the basin would be (0, x∗).

An intuitive condition for the cooperation peak to be more likely to evolve is that is has the larger basin of

attraction under a model of simple deterministic evolution. This condition, which is called “risk dominance”

in game theory [64, 72], is equivalent to 1 − x∗ > x∗ or

x∗ = C
D < 1/2 . (45)

However, this is exactly the same conditionwe obtained from πA|a > πa|A in (44). The fact that we can derive the

evolutionary success condition for cooperation in a structured population with selection, drift, and mutation

from the risk dominance condition in a purely deterministicmodel is another way of describing the generalized

cancellation result introduced above.

Even though the equivalence between πA|a > πa|A and risk dominance is proven here for the infinite island

model (n → ∞ and N → ∞), it approximately holds for the finite island model as well. In order to show this,

we make two observations. First, examining the general condition for πA|a > πa|A in equation (24), we observe

that so long as fitness depends on at most three way genetic interactions (d = 2), which is true for the fitness

function in (39), all three-way coalescence times cancel out. Thus, we only need exactly pairwise coalescence

times (we elaborate on further ramifications of this fact in the Discussion). Second, as suggested by Ladret and

Lessard [80, p. 416], exact expected coalescence times can be calculated using a discrete-time Markov process

that produces the same linear equations in Notohara [108, p. 66] that were used to generate the structured

coalescent results in (40). These equations, given by (I) in Ladret and Lessard [80], produce the following exact
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expected coalescence times:

E°[T(0,1)] = NT, E°[T(2)] = NT(1 − 1
N + 1

M(2 − M/N)) . (46)

Combining the above expressions and the fitness function from (39) with the evolutionary success condition

πA|a > πa|A in equation (24), we get

D > 2C + 2(B − C + D)
NT

. (47)

Condition (47) contains a single correction to the risk dominance condition, 2(B−C+D)/(NT), which is due

to local competition in a finite population. Compared to the infinite island model, the cooperation allele A is

only slightly less prevalent in this case. If the number of groups is infinite or if each group if infinitely large,

condition (47) simplifies to risk dominance.

3.2. Demography and the scale of competition

Under the baseline demography of hard selection, we obtain a general cancellation result where the ad-

ditive benefits of cooperation are canceled. This cancellation is a function of how demography shapes both

the competitive environment and genetic identity within and between groups. Thus, demographies that create

a different competitive environment may be more or less conducive towards the evolutionary success of the

cooperation allele.

One of the most common alternative demographies to hard selection is soft selection [21] where individ-

uals compete for resources or breeding spots within their group before the migration stage. Thus, each group

contributes the same number of individuals to the next generation. Intuitively, this should make the it more

difficult for the cooperation allele A to succeed since groups with a higher frequency of A will not be more

productive than groups with a lower frequency. In this case, the fitness function is

wgi =
1 + ωfgi
1 + ωfg

, (48)

[123][p. 125] when the number of groups is large (n → ∞). For additive genetic interactions (D = 0) and using

the exact pairwise expected coalescence times in (46), the evolutionary success condition πA|a > 1/NT is

−C > B − C
N , (49)
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which agrees with previous analyses [90, 123]. In contrast to the case of hard selection where the evolutionary

success condition is −C > 0, soft selection increases the strength of local competition so that cooperation is

actually selected against in finite groups with a strength proportional to the net benefits, B − C. Allowing for

non-additive interactions (D ≠ 0), we calculate the evolutionary success condition πA|a > πa|A to be

D > 2C + 2(B − C + D)
N , (50)

which again has a stronger local competition correction to the risk dominance condition than the hard selection

case (eq. 47). In fact, since it doesn’t depend on the number of groups n, the soft selection correction is not

simply a finite population size (NT < ∞) effect and is due to competition occurring exclusively within groups.

A strong contrast to the soft selection is where the social interaction still occurs within the group but the

scale of competition is the whole population. This might occur when groups directly compete for resources

and successful groups produce propagules whose genotype frequency is proportional to their frequency within

the group [e.g., 48, 88, 90]. If migration occurs at the adult stage, then the fitness function is given by

wgi =
1 + ωfgi
1 + ωf , (51)

and the neutral demography is still represented by an islandmodel whose expected coalescence times are given

in equations (40). The evolutionary success condition πA|a > πa|A for this case is

D + B − C + D
M (1 − 1

n) > 2C (52)

for large groups (N → ∞). When migration is high and the population is unstructured (M → ∞), we recover

the risk dominance condition from (52). Strong population structure from weak migration however strongly

selects for cooperation. In fact, for any level of cost, there is a low enough population migration rate M that

results in more cooperation alleles A at stationarity. This strong selection for cooperation is a direct result of

the lack of local competition, which allows the benefits of cooperation to accrue to individuals who cooperate

through the other individuals in their group who share their genes IBD.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2014. ; https://doi.org/10.1101/010371doi: bioRxiv preprint 

https://doi.org/10.1101/010371
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Theory: long-term evolution

We showed above how the forces of selection, mutation, and genetic drift generate the stationary distribu-

tion between two alleles whenmutation is weak and evolutionary change follows the TSS.This stationary distri-

bution gave us ameasure of evolutionary success of one allele relative to another, which was simply πA|a > πa|A.

Under the additional assumption of weak selection, we showed how to calculate this condition (eq. 24) for ar-

bitrary non-additive genetic interactions. From this condition, we obtained Hamilton’s rule, the one-third law,

risk dominance, and generalizations of these conditions. However, this condition only gives the stationary dis-

tribution among a fixed set of alleles and thus does not explicitly make predictions for longer timescales when

the evolutionary process can sample a continuum of alleles.

Studying long-term evolution among a continuum of possible alleles requires specifying how those alleles

are generated by mutation and how mutations are fixed or lost over the long-term due to selection and drift.

Just as with the short-term model among a finite set of alleles, we will assume weak mutation so that the pop-

ulation can be described by the TSS and we only need to track the evolution of a population from one fixed, or

monomorphic, state to another. Our approach to modeling the long-term process uses the “substitution rate”

approach of Lehmann Lehmann [82], Van Cleve and Lehmann [152], which derives from population genetic

approaches to adaptation [51, 52] and to kin selection in finite populations [123, 125, 141, 145] and from the

adaptive dynamics approach [18, 30, 101].

4.1. Substitution rate approach and the TSS diffusion

The essence of this approach is that, over the long term, the evolutionary process at each point in time can

be fully characterized by a substitution or transition rate that measures how likely the population is to move

from one monomorphic state to another. We assume that the substitution rate is an instantaneous measure of

change, which is justified since organismal life cycles and generation times become very short on the scale of

long-term evolution. If ρ(z1, t1∣z0, t0) is the probability density of that a population is monomorphic for trait

z1 at time t1 given it was monomorphic for zo at time t0, then we define the substitution rate as

lim
Δt→0

ρ(z + δ, t + Δt∣z, t)
Δt = k(δ, z) ,

which is simply the rate at whichmutations of type z+δ are produced and fixed in the population of type z. The

substitution rate is a function of both the mutation rate, μ, and the distribution of mutational effects, u(δ, z),

which represents the probability density that a mutant offspring is of type z+ δ given that its parent is of type z.
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For simplicity, we assume that μ does not depend on the resident trait in the population, z. Usingweakmutation

and the TSS condition in (4), Champagnat [17, 20] showed that the long-term TSS can be characterized as a

Markov jump process (continuous in time and phenotypic space) with instantaneous jump rate

k(δ, z) = NT μ u(δ, z) π(δ, z) (53)

(see also eq. 2 in [20] and eq. 2 in [82]). This rate is conceptually analogous to the classic long-term neutral

substitution rate k = NTμ(1/NT) = μ from molecular evolution [77].

Following standard methods in stochastic processes, the Markov jump process representing the TSS with

jump rate k(δ, z) can be represented with the following (forward) master equation [30, 46, 82]

𝜕ρ(z, t)
𝜕t = ∫ k(δ, z − δ)ρ(z − δ, t) − k(δ, z)ρ(z, t)dδ , (54)

where we write ρ(z, t) = ρ(z, t|z0, t0) for simplicity. The master equation captures the intuition that the change

in probability density for trait z at time t is equal to the sum of the jumps towards that trait minus the sum of

the jumps away from that trait. Without further assumptions about the size of jumps, the master equation is

difficult to analyze. A common way to approximate Markov jump processes is to assume that the jumps are

small, which turns the discontinuous jump process into a continuous process and turns the master equation

into a diffusion equation. Specifically, standard methods (e.g., a Kramers-Moyal expansion [46]) generate a

diffusion equation by ignoring third-order and higher moments of the jump process. Biologically, we can

justify this approximation by assuming that the mutational effects δ cluster tightly enough around the mean

trait value z so that the evolutionary dynamic is affected only by the variance of the distribution of mutational

effects and higher order moments can be neglected. The (forward) diffusion equation obtained with these

methods for the jump process in (54) is

𝜕ρ
𝜕t = − 𝜕

𝜕z[a(z)ρ(z, t)] + 1
2

𝜕2
𝜕z2 [b(z)ρ(z, t)] (55)

where

a(z) = ∫ δk(δ, z) dδ (56)
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is the “drift” term and measures the mean jump away from the trait z and

b(z) = ∫ δ2k(δ, z) dδ (57)

is the “diffusion” term and measures the variance of the jumps away from z. The drift and diffusion terms can

be simplified by assuming that the fixation probability is differentiable (which is true if fitness is differentiable;

see section 2.5) and approximating the substitution or jump rate by the first-order Taylor series

k(δ, z) = NT μ u(δ, z)(π°(z) + S(z)δ + O(δ2)) (58)

where π°(z) = π(0, z) and S(z) = (dπ(δ,z)
dδ )

δ=0
is the selection gradient. Using the expansion in (58) and

assuming that the mutational distribution is symmetric in δ, the drift and diffusion terms become, respectively,

a(z) = NT μ∫ δu(δ, z)(π∘(z) + S(z)δ + O(δ2)) dδ

= NT μ S(z) ∫(δ2 + O(δ3))u(δ, z) dδ

≈ NT μ σ2(z)S(z)

(59)

and

b(z) = NT μ∫ δ2u(δ, z)(π°(z) + S(z)δ + O(δ2)) dδ

≈ NT μ σ2(z)π°(z) = μ σ2(z)
(60)

where π°(z) = 1/NT, σ2(z) = ∫ δ2u(δ, z) dδ is the second moment (or raw variance) of the mutational effects

distribution and third-order and higher moments are neglected. Substituting these expressions for a(z) and

b(z) into the diffusion equation (57) yields

𝜕ρ
𝜕t = −NT μ 𝜕

𝜕z[S(z)σ2(z)ρ(z, t)] + μ
2

𝜕2
𝜕z2 [σ2(z)ρ(z, t)] , (61)

which was derived by Lehmann [82, eq. 4] and is analogous to the stochastic differential equation derived by

Champagnat and Lambert [20, eq. 3]. The diffusion equation in (61) is our main mathematical description

of how the TSS evolves over the long-term. In a sense, this diffusion equation is a stochastic version of the
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deterministic canonical equation of adaptive dynamics [30]. The first term in (61) measures the deterministic

effect of selection on the trait and is the counterpart of the canonical equation of adaptive dynamics [20]. The

second term measures the stochastic effect of genetic drift through the neutral fixation rate (eq. 60).

4.2. Evolutionary success in the long term TSS

Just as in the short-term TSS analysis, we will define the evolutionary success for a trait z in the long-

term TSS as its stationary probability or ρ(z) = limt→∞ ρ(z, t). Using the long-term TSS diffusion in (61) and

standard methods [38, 46, 75], we find that

ρ(z) = 1
Kσ2(z) exp[2NT ∫

z
S(y) dy] (62)

whereK is a normalizing constant that ensures ρ(z) integrates to one over its support. Themost successful traits

wil be those that reside at peaks of the stationary distribution, and the least successful will reside at troughs.

Obtaining the peaks and troughs, when they do not reside at the boundaries of trait space, requires calculating

the extrema of ρ(z), which must satisfy

S(z) = 1
2NT

d log σ2(z)
dz (63)

evaluated at a candidate extremum z = z∗. So long as either population size NT is very large or the mutational

variance σ2(z) does not depend on the resident trait z, equation (63) becomes

S(z∗) = 0 (64)

Consequently, in these two cases, the extrema of the stationary distribution are given the zeros of the selection

gradient S(z), which are the extrema of the fixation probability. For the remainder of this analysis, we will

assume that dσ2(z)/ dz = 0 and the extrema of the stationary density are zeros of the selection gradient.

The zeros of the selection gradient are the candidate evolutionary equilibria obtained using evolutionary

game theory, adaptive dynamics, and inclusive fitness theory. A candidate evolutionary equilibrium z∗ is called

“convergence stable” when S′(z∗) < 0 [32, 34, 138], which means that for resident trait values close to z∗, mu-

tants invade such resident populations only when thosemutants are closer to z∗ than the resident. Convergence

stability is a natural way to characterize long-term evolutionary attractors (which may or may not be “branch-

ing points”; see refs [154] for the relevance of branching in the TSS). The condition for an extremum z∗ of the
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stationary density ρ(z) to be a local maximum, d2ρ/ dz2 < 0, turns out to be precisely the convergence stability

condition. Convergence stable traits may also reside on the boundaries of the trait space. In this case, the lower

boundary is convergence stable when S(z) < 0 and the upper boundary is convergence stable when S(z) > 0.

These two condition correspond, respectively, to boundary maxima for the stationary density, dρ/ dz < 0 for

the lower boundary and dρ/ dz > 0 for the upper boundary. Thus, long-term evolutionary attractors given by

convergence-stable equilibria obtained from the selection gradient are generally local maxima of the stationary

density of the long-term TSS diffusion [82].

4.3. Additive genetic interactions, weak selection, and the long-term TSS diffusion

In sum, the long-term TSS diffusion in (61) describes how selection, mutation, and drift interact to shape

the evolution of a continuous trait assuming that the mutation rate is weak and mutational effects are small

enough to be sufficiently described by the mutational variance. It is important to note that by neglecting third

order and higher moments of the mutational effects distribution, we only need a first-order approximation of

the fixation probability π(δ, z) in terms of δ when calculating the substitution or jump rate. In section 2.5,

we showed that a first-order approximation of fitness with respect to δ, which is necessary for a first-order

approximation of fixation probability, results both in an assumption of weak selection and additive genetic

interactions. This could suggest that the diffusion equation for the long-term TSS only represents evolution

under weak selection and additive genetic interactions. Intriguingly, this is far from true as we will show in

section 5. By integrating over a continuum of mixed strategies, the diffusion model of the long-term TSS

can reproduce all the results of the short-term TSS with three-way genetic interactions in a group structured

population. The diffusion approach also appears to reproduce some strong selection results generated from

other TSS approaches; specifically, these approaches show that the condition for evolutionary success in an

unstructured population under strong selection is no longer simply risk dominance [45] and the long-term

TSS can reproduce this effect. We will explore these results now.

5. Application: social games in structured populations

In this section, we will apply the long-term TSS diffusion to the same social game as in section 3 with a

similar group-structured population. Our goal is to track the evolution of the continuous trait z that measures

the fraction of time that an individual cooperates with social partners living in its own group; the complemen-

tary fraction 1 − z is the fraction of time the individual does not cooperate. Using the payoffs from Table 3, the
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fertility of individual i in group g is

fgi = 1 + B zgi − C zg\i + D zgizg\i , (65)

which is analogous to the fertility function in equation (37). Following the weak effect mutation model for

the short-term TSS, we assume that the phenotype of individual i in group g is zgi = z + pgiδ where pgi is the

frequency of the mutant allele in that individual.

5.1. Selection gradient

Instead of calculating fitness for the specific case of an island model as in section 3, we follow Van Cleve

and Lehmann [152] and write the selection gradient for a more general group-structured case where the de-

mographic process that translates fertility and survival into fitness is not explicitly specified though dispersal

is still potentially local so that genetic identity or relatedness can build up. These are in fact the same assump-

tions we made in section 2.7 where we reproduced Hamilton’s rule from the selection gradient in equation

(34). Briefly, these assumptions ensure that the derivatives of fitness with respect to the trait values of different

individuals at neutrality take only three possible values: 𝜕wgi(z)
𝜕zgi

for the effect of the focal individual’s trait on

its own fitness, 𝜕wgi(z)
𝜕zg\i

for the effect of the average group member’s trait on the focal’s fitness, and 𝜕wgi(z)
𝜕zg′ j

for the

effect of an individual in another group on the focal’s fitness. The latter derivative, 𝜕wgi(z)
𝜕zg′ j

, can written in terms

of the former two since the selection coefficients must sum to zero. The IBD probabilities also collapse to three

categories: identity with self, which is one, identity with another individual in the group or Q0, and identity

with an individual in another group or Q1. These facts together allow us to rewrite the selection gradient in

equation (34) as

S(z) = lim
μ→0

1 − Q1
1 − Q0

⎛⎜
⎝

𝜕wgi(z)
𝜕zgi

+
𝜕wgi(z)

𝜕zg\i
Q0 − Q1
1 − Q1

⎞⎟
⎠

∝ −c + b r . (66)

where we have used the fact that 1 − Q0 = 2NTμ + O(μ2) (eqs. 26 and 46 in [104] and eq. 3.68 in [123]). The

selection gradient in (66) is the same as that derived by Rousset [123, 125] for group structured populations.

Using the definitions for terms in Hamilton’s rule in section 2.7 where −c = 𝜕wgi(z)
𝜕zgi

, b = 𝜕wgi(z)
𝜕zg\i

and r = FST =
Q0−Q1
1−Q1

, it is clear that selection gradient S(z) is proportional to the inclusive fitness effect, which is a function

of the phenotypic trait z and all of the demographic effects that shape b, c, and r.

Even though we do not specify precisely how fitness is a function of fertility, we can expand 𝜕wgi(z)
𝜕zgi

and
𝜕wgi(z)

𝜕zg\i
each into sums of products of two components, a derivative of fitness with respect to fertility and a
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derivative of fertility with respect to trait values. Additionally, since the total population size is fixed, individual

fitness is a function of relative fertility. More specifically, we assume that fitness is a ratio of linear functions of

fertility (e.g., equation 38), which is the case when competition for resources or breeding patches is linear with

respect the number of offspring produced (i.e., the “contest success function” is a linear ratio [15, 68]). The

above assumptions allow us to rewrite the selection gradient in (66) as

S(z) = k
fgi(z)

⎛⎜
⎝

𝜕fgi(z)
𝜕zgi

+ κ
𝜕fgi(z)
𝜕zg\i

⎞⎟
⎠

. (67)

The first term in the parentheses is the effect of the trait in the focal individual on its own fertility. The second

term is the effect of the trait in the group (excluding the focal) on the fertility of the focal weighted by κ, which

is a “scaled relatedness coefficient” that accounts for both relative genetic identity due to genetic relatedness

and competitive effects due to demography and finite population size [90, 151, 152]. In general, the scaled

relatedness κ can take a value between −1 and 1 depending on the demography [90]. The coefficient k also

captures demographic and competitive effects and scales the magnitude of the selection gradient. We assume

that both κ and k do not depend on z, which is true if the demographic variables, such survival, migration,

population size, etc, do not depend on the phenotypic trait. Additionally, fertility must also be generally large

or Poisson distributed in order to neglect the effect of the trait on demographic stochasticity [83].

Compared to the fitness effects and genetic identity formulation of the selection gradient in (66), the selec-

tion gradient in (67) partitions terms into fertility effects and scaled relatedness. The former partition is that

used to define b, c, and r in Hamilton’s rule, which leads to the definitions for different social behaviors based

on fitness effects in Table 2. In the latter partition, all the effects of demography and local competition are

encompassed by scaled relatedness κ and the coefficient k and the effects of the phenotypic trait on the social

interaction are isolated in the fertility effects. In so far as we are interested in understanding how the immedi-

ate payoffs from social interactions and demography independently contribute to selection on social behavior,

the latter partition is advantageous. Previous models have used this partition where κ is also called scaled re-

latedness [2, 90, 151] or “compensated relatedness” [55],“potential for altruism” [47], “potential for helping”

[121], “index of assortativity σ0” [4], or the “structure coefficient σ ” [5, 135, 136]. Of particular relevance here,

the structure coefficient σ introduced by Tarnita and collaborators [5, 135, 136] has been used to analyze the

evolution of discrete strategies in finite and structured populations where non-additive genetic interactions

are possible due non-additive payoffs (i.e., D ≠ 0). As we will see below, our long-term TSS diffusion can
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reproduce a central result from the work using σ even though the selection gradient S(z) only captures additive

genetic interactions at any one point in time.

Applying the fertility function in (65) to the selection gradient in (67) yields

S(z) = k(Bκ − C + Dz(1 + κ)
1 + z(B − C + Dz) ) . (68)

Recalling that S(z∗) = 0 define candidate evolutionary equilibria, we find one internal equilibrium at

z∗ = C − κB
D(1 + κ) , (69)

which is viable mixed strategy only when D(1 + κ) > C − κB > 0. When there is no effect of population

structure and κ = 0, this simplifies to D > C, which implies that the social game is one of coordination where

both the boundary equilibria z = 0 and z = 1 are convergence stable (i.e., S(0) < 0 and S(1) > 0) and the

internal equilibrium z∗ is unstable (S′(z∗) > 0). IfD < C, then the game is Prisoner’s Dilemma and only z = 0

is stable. When population structure is at its strongest, κ = 1, B > C ensures that the internal equilibrium does

not exist (not a validmixed strategy) and only z = 1 is stable, which implies the social interaction is amutualism

game. Thus, non-additive payoffs, or synergy, can generate the possibility of cooperation by changing the game

from a Prisoner’s Dilemma to a coordination game [2]. Population structure can also generate cooperation,

but in a stronger way since when cooperation is stable, it is the only equilibrium.

5.2. Stationary distribution

Substituting the selection gradient in (68) into the stationary distribution in (62) yields

ρ(z) = 1
K exp(2NTϕ(z)) (70)

where

ϕ(z) = k
2((1 + κ) log(1 + z(B − C + Dz)) + (1 − κ)Y(z)) (71)

is the “potential function” [46],

Y(z) = 2(B + C)
V [tan−1(B − C

V ) − tan−1(B − C + 2Dz
V )] , (72)
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and V = √4D − (B − C)2. In the left panel of Figure 1, we plot the stationary density ρ(z) in (71) for NT = 20,

B = 1, C = 0.5, and κ = 0. As expected for D = 0 when the game is a Prisoner’s Dilemma, we see a peak

in the density at z = 0 and the mean value of z, E[z], is close to z = 0. When D > C = 0.5, the social

interaction becomes a coordination game and both full noncooperation, z = 0, and full cooperation, z = 1,

become convergence stable. The full cooperation peak is initially very small, and the population spends most

of its time with a trait value close to z = 0 until D increases to at least 2C = 1. Recall from condition (45) that

D > 2C is the risk dominance condition that ensures the basin of attraction of full cooperation is larger than

that of full noncooperation. The mean value of the trait E[z] crosses z = 1/2 at D ≈ 1.15 > 2C, which implies

that cooperation under the long-term TSS model is more difficult to obtain than the risk dominance condition

suggests. However, risk dominance appears to be the correct condition when the payoffs aremuchweaker. This

is shown in the right panel of Figure 1 where B = 1 × 10−2, and C = 0.5 × 10−2. The lower values of the payoffs

induce much weaker selection, which leads to a mean trait value much closer to 1/2 for all values of D, but

the crossing point is almost exactly at D = 2C as risk dominance predicts. In fact, we will show that the risk

dominance condition can be recovered from the stationary density ρ(z) as part of a more general condition for

evolutionary success under weak payoffs.

The scaled relatedness κ has a strong effect on the stationary distribution of trait values [152], which we

show in Figure 2 by plotting the mean trait value E[z]. In the upper left panel, the parameters are the same as

Figure 1 except we vary κ from −0.5 to 0.5. When population structure increases genetic relatedness and does

not induce much local competition, κ takes positive values. The plot shows that positive values of κ produce

a shift in the E[z] curve so that lower values of the synergistic payoff D are required to obtain a high level of

cooperation in the population compared to κ = 0 when there no effect of population structure. The converse

is true for negative values of κ, which require higher levels of D for any significant amount of cooperation.

In these cases, IBD within groups is low and competition locally between relatives is strong. These results are

directly analogous to those obtained from the short-termTSSmodel in section 3. Instead of varying population

structure continuously in the short-term TSS model, we analyzed different demographic scenarios and found

that strong local competition led to a more stringent condition for the cooperation allele to be evolutionarily

successful (eq. 50) and no local competition lead to a more relaxed condition (eq. 52).
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5.3. Stochastic stability

The remaining panels in Figure 2 demonstrated the effect of increasing total population size NT. As NT

grows, the E[z] curves approach step functions that appear in the NT → ∞ panel; for values of D below a

threshold, E[z] = 0 and the population is fully noncooperative, and above the threshold, E[z] = 1 and the

population is fully cooperative. When the total population size is small, genetic drift is strong and the peaks

in the stationary density are small. This implies significant probability density for trait values distant from

the peaks (see the right panel in Figure 1 where drift is strong relative to selection). Using the metaphor of a

fitness valley, the population frequently crosses the valleys between small peaks due to smallNT. IncreasingNT

reduces the effect of genetic drift and increases the height of the peaks in the stationary density, which means

most of the probability density is located at the peaks. In this case, the population rarely crosses fitness valleys.

In the limit as NT → ∞, the peaks of the stationary density get infinitely tall and the population only visits the

peaks. The amount of time the population spends in fitness valleys goes to zero but crossing still occur “enough”

so that the population can escape a lower peak and visit a higher peak. Thus, only a small set of peaks are visited

by the population in the long-run. Such peaks are called “stochastically stable states” and were first studied in

game theory in models of agents with simple learning rules [12, 40, 72, 111, 130]. A trait z is stochastically

stable when

lim
NT→∞

ρ(z) > 0 . (73)

Van Cleve and Lehmann [152] prove that only the highest peak, as measured by the potential function ϕ(z)

whose peaks are those of ρ(z), is stochastically stable. Since peaks in the stationary density correspond to con-

vergence stable equilibria, only the convergence stable equilibrium associated with the highest peak is stochas-

tically stable. In our current model of social interaction in a group structured population, the lower right panel

of Figure 2 shows the stochastically stable value of z as a function of D and κ.

The advantage of identifying the stochastically stable state is that it is often unique as a function of the

demography, κ, and the payoffs of the social game, B, C, and D. Using the stationary density in (70), we can

show [152] that full cooperation (z = 1) is stochastically stable when

(1 + κ
1 − κ) log(1 + B − C + D) + Y(1) > 0 (74)

and full noncooperation (z = 0) is stochastically stable when the opposite condition holds. Condition (74)
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reveals immediately the positive effect that population structure has on the stochastic stability of cooperation

since the left hand side is an increasing function of κ. Holding κ constant however, the relationship between

condition (74) and the risk dominance condition is still difficult to discern. The results in Figure 1 suggest that

stochastic stability in the long-term TSS diffusion and risk dominancemay coincide when the payoffs are weak.

Figure 3 shows more evidence for this by plotting E[z] for the same values of NT and κ as Figure 2 except the

payoffs are multiplied by 10−2. As population grows large, the κ = 0 curve crosses E[z] = 1/2 at exactly the

risk dominance prediction of D = 2C = 1. In fact, we can show this analytically by assuming that B, C, and D

are small and ignoring quadratic and higher terms in condition (74), which produces

−C + κB + 1 + κ
2 D > 0 . (75)

This is a “weak payoff” stochastic stability condition and is exactly the risk dominance condition when κ = 0

and there is no effect of population structure. Recall that risk dominance is the same condition as πA|a > πa|A

for the short-term TSS under hard selection when local competition exactly cancels the benefits of cooperating

with relatives. In fact, we can rederive other results from the short-term TSS model by inserting appropriate

values of κ into equation (75). For example, using κ = −1/(N−1) for the soft selection demography [90, eq. A-

8] in condition (75) reproduces condition (50). The scaled relatedness for the group competition demography

is FST under the infinite island model, κ = FST = 1/(1 + 2M) [90, limit as Nm → M and N → ∞ of eq. A-3],

and this value of κ reproduces condition (52) when the number of groups is infinite. Additionally, condition

(75) is the same as the one derived by Tarnita et al. [135, eq. 4] if one exchanges our scaled relatedness κ for

their structure coefficient σ. It is notable that the condition of Tarnita et al. [135] is derived from a discrete

strategy model under weak mutation and weak selection that is analogous to our short-term TSS whereas our

result is obtained from the long-term TSS diffusion under weak payoff.

The ability of the weak payoff stochastic stability condition of the long-term TSS to reproduce the weak se-

lection results for the short-termTSS suggests that strong payoffsmight reproduce strong selection results from

the short-term TSS. Our evidence for this conjecture is less conclusive since there is no known approximation

of the evolutionary success condition πA|a > πa|A under strong selection and generic population structure.

However, we can gain some intuition from a result from Fudenberg et al. [45] who analyze social interactions

in a finite Moran model with no population structure. Assuming thatNT = N → ∞ and that selection strength
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is arbitrary (ω = 1 and arbitrary B, C, and D) in the short-term TSS, they find that πA|a > πa|A when

(1 + B − C + D) log(1 + B − C + D) − (1 − C) log(1 − C)
B + D − (1 + B) log(1 + B)

B (76)

[45, Theorem 2 part b.3]. If we assume weak selection in condition (76) by replacing each parameter with its

value times the selection strength ω and ignoring terms O(ω2), we recover the risk dominance condition in

(45). For strong selection, condition (76) and the long-term TSS stochastic stability condition (75) are not

equivalent, but yields similar numerical results. Evidence of this match is in Figure 4, which plots the value

of D at which the stochastic stability condition (75) is an equality as a function of scaled relatedness κ. The

black curve is the strong payoff case (ω = 1) and the blue and red curves are weak payoffs (ω = 10−2 in blue

and ω = 10−4 in red). The equivalent point from condition (76) where κ = 0 is plotted with the circled dots

using equivalent selection strengths plotted in the same colors. It is evident from the figure that the short-

term TSS results from Fudenberg et al. match very closely to the stochastic stability results from the long-term

TSS diffusion. Both results show that increased selection strength requires a higher value of synergy D for

full cooperation to be evolutionary successful. The correspondence between the short-term TSS model under

weak selection and the long-term TSS diffusion under weak payoffs and their numerical match under strong

selection and strong payoffs, respectively, suggests that the long-term process might capture the full potential

of selection to shape social interactions under the TSS.

6. Discussion

Due in part to its simplicity, Hamilton’s rule has proved to be a remarkably useful tool for deriving insight

into the effect of natural selection on the evolution of social behavior. By emphasizing the role of genetic cor-

relations between individuals, Hamilton’s rule catalyzed interested in the effect of genetic population structure

on all kinds of social behavior from parental care and cooperative breeding to cooperative hunting and colony

defense. Hamilton’s rule also suggested a simple way to categorize social behaviors based on how they affect

the fitness of focal actors and social partners (Table 2).

Early theoretical investigations of Hamilton’s rule and inclusive fitness quickly identified the source of this

simplicity in two key assumptions of the rule, namely weak selection and additive genetic interactions with

respect to fitness. The general utility and limitations of these assumptions for populations with arbitrary group

or class structure became clearer in approaches that use an individually centered approach like the Price equa-

tion that describes evolutionary change via the statistical moments of the allele frequency distribution. Such
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approaches usually assume weak selection, which allows the calculation of higher-order moments via a quasi-

equilibrium (QE) approximation. For the case of evolution at a single locus in a group-structured population,

the QE approximation entails simply calculating FST or some other measure of population structure under

neutral evolution. Assuming genetic additivity in addition to weak selection guarantees that Hamilton’s rule is

independent of the allele frequency [125], which means that it predicts both invasion and fixation of a mutant

allele in a monomorphic population.

6.1. The trait substitution sequence and short and long-term evolution

Even with weak selection, polymorphisms are still possible since non-additive interaction can generate

stabilizing selection and high mutation rates can maintain heterozygosity. If mutation rates are low enough

relative to population size so that fixation or extinction occurs more quickly than a mutation, then only a single

mutation will segregate in the population. This low mutation assumption, given in condition (4), generates

the trait substitution sequence (TSS) whose short and long-term dynamics can be described in a remarkably

complete fashion. Using weak selection and weak mutation, we showed above how to analyze evolutionary

change under the TSS both in the short term when the set of possible alleles is finite (e.g. single nucleotide

polymorphisms) and in the long term when a continuum of alleles is possible (e.g. morphological traits shaped

by multiple cis-regulatory elements).

This difference between short versus long-term evolution with respect to the TSS is related to the broader

conception of short and long-term evolution by Eshel [33, 34], Hammerstein [62, 63, “streetcar theory”], and

others [160]. Growing out of an attempt to reconcile explicit population genetics approaches with phenotypic

approaches from evolutionary game theory, Eshel characterizes short-term evolution as where, within a set of

fixed genotypes, “natural selection will operate, in the short run, to change the genotype frequencies toward

a new internally stable equilibrium” [34, p. 489]. Such an equilibrium can be monomorphic or polymorphic

due to any process that could generate stabilizing selection such as heterosis, epistasis, or local adaptation in

a structured population. Eshel defines long-term evolution as “characterized by the repeated introduction of

new mutations into the population and in between periods of changes of genotype frequencies (say, short-term

evolution) within the new simplex of genotypes” [34, p. 489]. Determining whether or not a new mutation

will invade a generic internally-stable equilibrium is very difficult though extremely suggestive results were

obtained by Eshel and Feldman [35], Liberman [95], and Hammerstein and Selten [63]; broadly, these authors

found that new mutations cannot invade when the internally-stable equilibrium generates an ESS phenotype
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(under a linear population game) and that invadingmutants shift a population towards an ESS if the population

is already within a neighborhood of the ESS [35, 95]. This is a more general result than those obtained from our

long-term TSS in that there are no restrictions onmutation rate or selection strength, which allows for complex

polymorphisms. However, the assumptions of the TSS allows us to characterize both the short and long-term

dynamics completely, which is not possible in the more general case of long-term evolution.

6.2. The short-term TSS

Beginning with the short term TSS, we described how a natural condition for evolutionary success, the ex-

pected frequency of the mutant allele being greater than the resident or E[p] > 1/2, is equivalent under weak

mutation to the fixation probability of the mutant being larger than the resident or πA|a > πa|A [7, 44, 125].

Under weak selection, fixation probabilities can be written in terms of selection coefficients and expected coa-

lescence times (eq. 22), which yields the general expression forπA|a > πa|A given in (24). This general condition,

which is new to the literature, reveals how non-additive genetic interactions quickly increase the sensitivity of

evolutionary success to pairwise, triplet, and higher-order coalescence times. When genetic interactions are

additive, the condition πA|a > πa|A is equivalent to the simpler condition that the derivative of the fixation prob-

ability, or selection gradient, be positive: dπ
dδ = S(z) > 0. This latter condition readily reproduces Hamilton’s

rule.

The appearance of expected coalescence times in the approximation of fixation probabilities [89, 94, 122] is

useful both from conceptual and practical perspectives. Conceptually, expected coalescence times arise directly

out of the fact that we calculate fixation probabilities after the generation of a new mutation in a monomorphic

population and before another mutation enters the population [122]. Moving backwards in time, coalescence

times express the effect of population structure and demography on the genealogy of the invadingmutant. How

the genealogy interacts with selection on the mutant depends on the fitness function; fitness functions linear

in mutant allele frequency generate dependence on pairwise coalescence times, quadratic fitness functions

generate coalescence times between three lineages, and so on. Practically, using expected coalescence times

allow us to leverage the extensive results in coalescence theory [106, 157] that detail the effect of demography

[e.g., 120] and population structure [e.g., 108, 155] on coalescence times.

Using Slatkin’s formula (eq. 33) for relating expected pairwise coalescence times to pairwise IBD proba-

bilities [133], we showed how for additive genetic interactions the evolutionary success condition dπ
dδ > 0 can

be written in terms of IBD probabilities (eq. 34). This approximation in terms of IBD probabilities can also be
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obtained by calculating the evolutionary success condition

lim
μ→0

E[Δp|p ∉ {0, 1}] > 0 (77)

for additive genetic interactions [125]. Allen andTarnita [7] showed under weak selection that condition (77) is

equivalent to πA|a > πa|A, which says that calculating condition (77) can yield the equivalent of condition (24)

except with IBD probabilities instead of expected coalescence times. Our application of the Slatkin formula

effectively allowed us to show this equivalency for additive genetic interactions; showing this equivalency for

non-additive interactions requires relating coalescence times and IBDprobabilities among an arbitrary number

of lineages, which is a task for future work.

Using the success condition πA|a > πa|A, we reproduced and generalized several important previous results

from group-structured (island-type) populations with the non-additive social interaction in Table 3. First,

we reproduced the expressions for fixation probability πA|a given by Ladret and Lessard [80], which easily

generate the one-third lawof evolutionary game theory [109] by evaluatingπA|a > 1/NT as population structure

disappears or M → ∞. Applying the evolutionary success condition πA|a > πa|A yielded the well-known risk

dominance condition regardless of the level of population structure as measured by M. While risk dominance

was initially proposed as a condition for determining which Nash equilibrium is optimal in two-player games

in economics [64], it was subsequently shown to predict the stochastically stable strategy in population games

where agents update their strategy by learning the best response [72] even when agents can only learn from

local neighbors [13, 31]. Thus, these results confirm an important connection between the process of strategy

selection in economic models and the process of natural selection with a certain type of population structure.

Risk dominance also can be seen as a generalization of the classic cancellation result of Taylor [139, 140,

143] and others [119, 166] that says localized dispersal or population viscosity alone is not enough to create

selection for cooperation or altruism. The cancellation results shows that the benefits of cooperation are exactly

canceled by the costs of competing locally with kin when the population is homogeneously structured, density-

dependent regulation occurs after dispersal (hard selection), and generations are non-overlapping. Our risk

dominance result generalizes the cancellation result because it shows that the condition for cooperation to be

evolutionarily successful is still independent of the amount of population structure even with non-additive or

synergistic payoffs.

Moreover, our results go further because we showed how the risk dominance condition holds only in the
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limit of large total population size for the baseline demography of hard selection. When the total population

size is small, the cancellation results no longer holds and local competition with kin degrades some of the

benefit cooperators obtain when interacting with one another. More generally, the scale of competition can

either increase or decrease the strength of local competition relative to relatedness, which makes selection for

cooperation more or less stringent. Demographies with soft selection, where density-dependent regulation oc-

curs before dispersal and competition occurs within the group, have greatly increased local competition that

depends not only the total population size, but on the local group sizeN. In contrast, when the scale of compe-

tition is the total population, local competition is negligible and selection for cooperation depends primarily

on the degree of genetic relatedness. If relatedness is strong enough (M is small), then the evolutionary success

of the cooperation allele can be guaranteed. We can also relate these results back to the results in economics

that suggest risk dominance is equivalent to stochastic stability in structured populations [13, 31, 72] (see also

Sandholm [130] for a refinement of risk dominance). Our results suggest that models of learning and best-

response dynamics in economics make strong implicit biological assumptions that eliminate the potential of

population structure to affect strategic evolution; thus, these biological assumptions should be clearly specified

and studied in economic models.

6.3. The long-term TSS

Moving to the long-term TSS and a continuum of possible traits, we applied a substitution rate approach

that assumes the long-termprocess can be fully characterized by the rate a population jumps fromonemonomor-

phic state to another. This substitution or jump rate to a particularmutant trait z+δ from a resident trait z is the

number of mutants of type z+ δ times the probability these mutations fix. The substation rate in the long-term

TSS is analogous to the neural substitution rate of molecular evolution [77] except that the substitution rate is

an explicit function of trait value, population size, and other parameters. By assuming that mutational effects

are tightly clustered around the resident value, the substitution rates leads directly to a diffusion process [82]

that characterizes trait change under the long term TSS (eq. 61), which is analogous to the canonical diffusion

of adaptive dynamics [20].

From the long-term TSS diffusion, we obtained the stationary long-term trait density ρ(z) that can be used

to asses evolutionary success. Specifically, local peaks in the stationary density correspond to classic evolu-

tionary stable states [100] in linear or discrete games. In continuous trait games, these peaks correspond to

convergence stable states [22, 32], which are attracting evolutionarily stable states where the selection gradient
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crosses zero from above [82, 152]. Being located at a peak in the stationary density is then a natural criterion

for evolutionary success. Moreover, as the total population size goes to infinity and genetic drift becomes ex-

tremely weak compared to selection, only the highest peaks retain any positive probability at stationarity; all

other peaks, even if locally convergence stable, are visited by the population with zero probability. The traits

at these highest peaks are called stochastically stable. Since stochastically stable states are often unique, they

represent one of the simplest possible predictions for trait evolution in the long term.

Using the stochastic stability criterion (eq. 73), we showed that the long-termTSS diffusion can a reproduce

a range of results from the short-term TSS model presented here as well as results from other work using

TSS-type assumptions. To show this, we first transformed the selection gradient from a Hamilton’s rule form

with fitness effects and genetic relatedness to a form with fertility effects and “scaled relatedness” or κ. The

scaled relatedness combines the effects of demography on both genetic identity and local competition whereas

the fertility effects are strictly functions of the payoffs from the social interaction. Assuming “weak payoffs”,

the condition for stochastic stability using this expression for the selection gradient matches exactly with the

previous condition from Tarnita et al. [135] for the cooperation allele to be evolutionarily successful (πA|a >

πa|A) where scaled relatedness κ corresponds to their structure coefficient σ. Moreover, by using the values of

scaled relatedness κ that correspond to the soft selection and group competition demographies, we reproduced

the evolutionary success conditions derived from the short-term TSS. This is despite the fact that the selection

gradient used in the long-term TSS depends only on additive genetic interactions, whereas the results from

the short-term TSS and from Tarnita et al. [135] include non-additive interactions. We suggest below why the

additive selection gradient can recover the results of the non-additive analyses.

An intriguing aspect of the long-termTSS diffusion is that it only reproduced the short-termTSS results af-

ter assuming weak payoffs in the selection gradient. This suggested that strong payoffs in the selection gradient

might produce results analogous to strong selection in the short-term TSS. In fact, we found some numerical

evidence for this by comparing the results of the long-term TSS diffusion with the strong selection results of

Fudenberg et al. [45] (see Figure 4) who derived a condition for stochastic stability in a panmictic popula-

tion. This behavior is potentially analogous to how the classical diffusion approach for allele frequencies [38]

has a “strong selection” regime for NTω > 1 even though the diffusion requires that NT → ∞ and ω → 0.

Comparisons between the long-term TSS diffusion and strong selection in structured populations remain to

be done due to the lack of analytical results in that area (however see [103]) and the difficulty in defining a

scaled relatedness κ for strong selection. If such comparisons find additional support for the analogy between
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the long-term TSS diffusion and the classical diffusion from population genetics, then the long-term TSS may

be a powerful tool for the analysis of social evolution even under strong selection.

6.4. Non-additivity and the power of the additive long-term approach

One of the crucial points of this article is that our derivation ofHamilton’s rule in the context of a dynamical

model with selection, mutation, and genetic drift relies on three assumptions: (i) weak selection, (ii) weak

mutation to ensure the TSS, and (iii) additive genetic interactions. The impact of breaking the last assumption

and allowing non-additivity or synergy has been the subject ofmuch interest [e.g., 49, 65, 87, 112, 118, 137, 144],

and our analysis of the short-term TSS reinforces the importance of non-additivity in shaping the evolution of

social outcomes. Nevertheless, our analysis of the long-term TSS also shows that even additive interactions,

which generate Hamilton’s rule and the selection gradient used in the long-term TSS, can still generate useful

and even powerful results. This is in contrast to some suggestions that analyses based on inclusive fitness

methods are severely limited due to their assumption of additivity [6, 110], which does not appear to hold in

some empirical systems [23, 53, 97]. In order to better understand precisely the extent to which additivity is

limiting, we need to clarify the different levels at which additivity can hold and understand why additivity of

genetic interactions is more powerful than commonly assumed.

Throughout this article, we have used additivity to refer specifically to additive genetic interactions with

respect to fitness; this is equivalent to additivity of fitness effects with respect to allele frequency (d = 1 in eq.

17). With weak selection and the short-term TSS, we showed that additive genetic interactions lead directly to

Hamilton’s rule since evolutionary success depends directly on the derivative of the fixation probability with

respect to selection strength (i.e., the selection gradient), which is a sum of selection coefficients times pairwise

expected coalescence times or IBD probabilities. Analyzing the social interaction in Table 3 where individuals

carry either a cooperation (A) or noncooperation allele (a), we showed how assuming additivity of payoffs (i.e.,

the synergistic payoff D = 0) implies additive fitness effects. However, the converse is not true; additive fitness

effects do not imply that payoffs in the social interaction are additive.

To see this, consider an arbitrary fitness function for individual i, wi(z), which is a function of the (contin-

uous) trait values of all other individuals in the population. The fitness function depends on the traits values

of other individuals in part because individual i obtains payoff from a social interaction with some set of social

partners. This payoff can be highly nonlinear as a function of the trait values of the social partners, which re-

sults in nonlinearity of the fitness function. However, so long as the fitness function is differential with respect
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to the traits values, a weak selection expansion of the fixation probability with respect to the mutant deviation

δ can still be calculated, and the resulting δ-weak expansion has additive fitness effects. Thus, assuming a dif-

ferentiable fitness function and δ-weak selection imply that the selection gradient S(z) predicts the direction

of selection and that Hamilton’s rule holds, even when payoffs are non-additive.

A simple example of a nonlinear payoff function is equation (65), which comes from the social interaction

in Table 3. We showed this payoff function leads to the selection gradient in equation (68). We can apply

the short-term TSS δ-weak condition, S(z) > 0, to this selection gradient and determine for any probability

z of choosing the cooperation strategy whether a mutant trait z + δ is more common under the stationary

distribution, even for a synergistic payoff D ≠ 0. In general, the nonlinearities of the payoff function will have

important effects which traits are evolutionarily successful under the short-term TSS or convergence stable

under the long-term TSS; for example, synergistic effects as measure by mixed partial derivatives (e.g., 𝜕2fi
𝜕zi𝜕zj

)

can have a powerful effect on the evolution of cooperative behavior [2, 3]. Such effects are important even in

the absence of population structure [3] when such behavior would be amutualism according to Hamilton’s rule

(see Table 2). Cooperation is generated in these cases by reciprocity or behavioral responses [3], which can also

enhance cooperation in structured populations where relatedness is important [2].

The weakness of the short-term TSS with respect to additive genetic interactions is that it cannot directly

compare the relative evolutionary success of traits that differ by more than δ, such as full cooperation (z = 1)

and full noncooperation (z = 0). Comparing the evolutionary success of full cooperation and no cooperation

with the short-term TSS requires non-additive genetic interactions. In contrast, the long-term TSS measures

the relative evolutionary success of full cooperation and noncooperation using the diffusion process to integrate

population jumps over the whole trait space. Under weak payoffs for the long-term TSS, we showed that the

diffusion approach produces the same results as the short-term TSS even though the short-term TSS condition

includes non-additive genetic interactions and the long-term diffusion does not.

The likely explanation for this unexpected feature of the long-term TSS diffusion is that the social inter-

action we study (eqs. 37 and 65) has at most triplet genetic interactions and the triplet expected coalescence

times cancel out of the short-term TSS condition (eq. 24); in other words, the short-term evolutionary success

of cooperation versus noncooperation even with synergy (D ≠ 0) depends only on pairwise measures of genetic

identity. This fact is easily missed when analyzing the conditions πA|a > 1/NT and πa|A > 1/NT independently,

as is done in analyses based on the one-third law, since the triplet coalescence time terms cancel only in the

full evolutionary success condition πA|a > πa|A. For more complex non-additive interactions, condition (24)
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reveals that higher-order expected coalescence times may not cancel, which suggests that the long-term TSS

diffusion may have more difficulty approximating these interactions. The relationship between the long-term

approach based on the selection gradient and arbitrary non-additive genetic interactions remains a topic ripe

for further development. Nonetheless, the long-term TSS may be a powerful approach for modeling the evo-

lution of social traits in structured populations under simple forms of non-additivity and potentially under

strong selection.

6.5. Conclusion

Many of the analytical tools we have used and referenced in this review are much more sophisticated than

those readily available to Hamilton when he first discussed inclusive fitness and his eponymous rule [58]. Re-

gardless, the power of the inclusive fitness effect persists both in its ability to suggest broad qualitative patterns

connecting natural selection and sociality and in its recurrence as a quantity in complex models of social evo-

lution.
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Symbol Description

NT Total population size
N Group (or deme) size
n Number of groups (or demes)
m Migration rate
M Population migration rate, M = nNm/(n − 1)
pi (pgi) Frequency of allele A in haploid individual i (living in group g)
pg Mean frequency of allele A in group g
p (q) Mean frequency of allele A (a) in the population
p = (p1, … , pNT

) Vector of allele frequencies for the population
μ Probability an offspring carries a mutant allele
μA|a (μa|A) Probability an offspring carries allele a (A) with a parent carrying allele A (a)
zi (zgi) Phenotype of individual i (living in group g)
z = (z1, … , zNT

) Vector of phenotypes for the population
δ Phenotypic deviation of mutant phenotype from resident phenotype z

u(δ, z) Distribution of mutant deviations δ (mutational effects) given a mutation from resident
phenotype z

σ2(z) Second moment (raw variance) of the distribution of mutant deviations

k(δ, z) Instantaneous rate of substitution of population monomorphic for trait z with one
monomorphic for trait z + δ

ρ(z, t) (ρ(z)) Probability density that population is monomorphic for trait z at time t (t → ∞)
wi (wgi) Fitness of individual i (living in group g)
w Mean fitness in the population
b Fitness benefit to the focal individual of the expression of allele A in a social partner
c Fitness cost of the expression of allele A in the focal individual

fig, fg, f
Fertility of individual i in group g, mean fertility in group g, mean fertility in the popu-
lation

πA|a (πa|A) Probability of a single mutant A (a) allele fixing in a population of NT − 1 a (A) alleles

π° (π°(z)) Probability of a neutral allele (in a population resident for phenotype z) fixing in the
population

S(z) Derivative of fixation probability with respect to δ and evaluated at δ = 0; also called the
“selection gradient”

ω Selection strength
si,k1⋯kd Selection coefficient for individual i of the frequency of A in individuals k1, … , kd
Si(p) Sum of selection coefficients for individual i times their respective allele frequency prod-

ucts
S(p) = (S1(p), … , SNT

(p)) Vector of sums of selection coefficients and allele frequency products
E°[Tik1⋯kd] Expected coalescence time of alleles in individuals i and k1 through kd under neutrality
Qij Probability of identity by descent between alleles in individual i and j
r Genetic relatedness
κ Scaled relatedness coefficient
k Selection gradient proportionality constant

Table 1: Description of symbols.
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Effect on social partner (b)
Effect on
focal (−c) + −

+ Mutualism Selfishness
− Altruism Spite

Table 2: Definitions of social behavior using Hamilton’s rule (eq. 1)

61

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2014. ; https://doi.org/10.1101/010371doi: bioRxiv preprint 

https://doi.org/10.1101/010371
http://creativecommons.org/licenses/by-nc-nd/4.0/


Social partner
Focal

individual
A | coop a | noncoop

A | coop B − C + D −C
a | noncoop B 0

Table 3: Payoffs for the cooperation (coop) allele,A, and noncooperation (noncoop) allele, a, in the social game.
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Population migration rate
Success

condition
0 < M < ∞ M → ∞ M → 0

πA|a > 1/NT D > 3(1 − 1
3+2M)C D > 3C D > 2C

πa|A > 1/NT D < 3
2(1 + 1

3+4M)C D < 3
2C D < 2C

πA|a > πa|A D > 2C

Table 4: Evolutionary success conditions calculated in a infinite island model (N → ∞ and n → ∞) with
hard selection. The solid boxed condition is the one-third law [109] and the dashed box condition is the risk
dominance condition [31, 64, 72] that holds for all values of M.
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Figure 1: Log stationary density, log[ρ(z)], for NT = 20 and κ = 0 plotted as a function of the synergy
parameterD. The solid black line represents the mean trait value, E[z]. The first vertical dashed line represents
the boundary between a Prisoner’s Dilemma for D < C and a coordination game D > C. For D < 2C, full
noncooperation (z = 0) is risk dominant (see condition 45), and full cooperation is risk dominant forD > 2C.
Left panel: B = 1, and C = 0.5. Right panel: B = 1 × 10−2, and C = 0.5 × 10−2.
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Figure 2: Expected trait value E[z] at stationarity under the long-term TSS diffusion (eq. 70) as a function of
the synergistic payoff D. Total population size is given above each plot and scaled relatedness coefficients are
given by the line colors in the legend varying from κ = −0.5 in purple to κ = 0.5 in red. The remaining payoffs
are set at B = 1 and C = 0.5, which implies the game is a Prisoner’s Dilemma for D < 0.5 and a coordination
game for D > 0.5. For D < 1, the trait z = 0, full noncooperation, is risk dominant, and full cooperation or
z = 1 is risk dominant for D > 1.
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Figure 3: Expected trait value E[z] at stationarity under the long-term TSS diffusion as a function ofD for weak
payoffs where all payoffs are scaled by 10−2. Plots are otherwise identical to Figure 2.
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Figure 4: Threshold value of D according to condition (74) above which z = 1 and below which z = 0 are
stochastically stable (NT → ∞) as a function of scaled relatedness κ. Payoffs are scaled by selection intensity ω
where the black curve has ω = 1, blue ω = 10−2, and red ω = 10−4. The circled dots represent the analogous
threshold calculated for a panmictic population using condition (76) from Fudenberg et al. [45]. Payoffs are
set at B = 1 and C = 0.5.
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