2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

20

21

How predator hunting-modes affect prey behaviour: Capture deterrence in *Drosophila melanogaster* Abhijna Parigi^{1,2,3}, Cody Porter^{2,4}, Megan Cermak², William R. Pitchers^{1,3} and Ian Dworkin^{1,2,3*} **Affiliations:** 1 Program in Ecology, Evolutionary Biology, and Behaviour, Michigan State University, East Lansing, MI 48824, USA 2 Department of Zoology, Michigan State University, East Lansing, MI 48824, USA 3 BEACON Centre for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA 4 Current address: Department of Zoology and Physiology, University of Wyoming. Laramie, WY, USA. * Correspondence to Ian Dworkin: idworkin@msu.edu Links to videos (also available in supplement) 17 Abdominal Lifting http://dx.doi.org/10.6084/m9.figshare.1185638

Stopping Behaviour http://dx.doi.org/10.6084/m9.figshare.1185639

19 Retreat http://dx.doi.org/10.6084/m9.figshare.1185640

ABSTRACT

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Hunting mode or the distinct set of behavioural strategies that a predator employs while hunting can be an important determinant of the prey organism's behavioural response. However, few studies have considered the predator's hunting mode while describing differences in anti-predatory behaviours of a prey species. Here we document the influence of active hunters (zebra jumping spiders, Salticus scenicus) and ambush predators (Chinese praying mantids, Tenodera aridifolia sinensis) on the capture deterrence anti-predatory behavioural repertoire of the model organism, *Drosophila melanogaster*. We hypothesized that *D. melanogaster* would reduce overall locomotory activity in the presence of ambush predators, and increase them with active hunters. First we observed and described the behavioural repertoire of *D. melanogaster* in the presence of the predators. We documented three previously undescribed behaviours- abdominal lifting, stopping and retreat- which were performed at higher frequency by D. melanogaster in the presence of predators, and may aid in capture deterrence. Consistent with our predictions, we observed an increase in the overall activity of *D. melanogaster* in the presence of jumping spiders (active hunter). However, counter to our prediction, mantids (ambush hunter) had only a modest influence on activity. Given these new insights into *Drosophila* behaviour, and with the genetic tools available, dissecting the molecular mechanisms of anti-predator behaviours may now be feasible in this system.

INTRODUCTION

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Predation, a ubiquitous selective force, gives rise to and determines the nature of defensive traits in prey populations[1-7]. Predator hunting-modes, i.e., the set of behaviours that predators employ to pursue and capture their prey [8-10], have been shown to induce distinct prey responses [10,11] that in turn influence the productivity of ecological communities. For example it has been found that habitats dominated by active hunters had lower species evenness and higher above-ground net primary productivity compared to habitats dominated by ambush hunters [10]. The authors suggest the observed differences in prey productivity to be driven by hunting mode specific tradeoffs between foraging and seeking refuge [10]. However, studies describing the effects of predators on prey traits [12-14] have often ignored the role of predator hunting-mode. In this study we investigate segregating differences in the anti-predatory behavioural repertoire of the model fruit fly, *Drosophila melanogaster*, in response to two predator species differing in hunting modes. Based on [11], we predicted that fruit flies, in the presence of a familiar predator, would exhibit hunting-mode specific modifications in activity levels. We used D. melanogaster because, although it is one of the most well-studied model organisms, there is a relative paucity of information regarding D. melanogaster's natural ecology and behaviour, including habitat, food resources, and natural enemies (but see [18-24]). Meanwhile, though anti-predator behaviours in general are targets of selection in prey [2,15-17], the genetic bases of such behaviours have seldom been investigated due to lack of molecular genetic tools. Given the range of genetic and genomic tools available for D. melanogaster, along with its complex behavioural repertoire and suitability for experimental evolution, understanding

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

the anti-predatory behaviours persisting in a natural population of the fruit fly brings us one step closer to deciphering the molecular mechanisms of evolutionary response to predation as a selective agent. Previous work has examined the effects of natural enemies on population and community structures of *Drosophila spp*. For example, Worthen et al [25] studied the effects of predation by staphylinid coleopterans on the coexistence of three *Drosophila* species, and Escalante et al [26] showed that ant predators regulate population densities of wild D. starmeri (cactophillic fruit fly). Additionally, in D. melanogaster per se, the role of parasites in influencing larval as well as adult behaviour has been extensively studied [17,27-29]. Despite this literature, we know little about the predators of D. melanogaster adults in the wild, nor the nature of anti-predatory behaviours segregating in natural populations. We documented the influence of two predators, the zebra jumping spider (Salticus scenicus) and juvenile Chinese praying mantids (Tenodera aridifolia sinensis) on the capture-deterrence behaviours of D. melanogaster individuals derived from a wild-caught population. The zebra spider is an active hunter; locating prev visually (with an extensive visual field attained by antero-medially positioned simple eyes) [30,31]. Where as mantids are generally ambush predators; waiting for prey to enter their attack range [32]. Despite numerous differences, Zebra spiders and juvenile Chinese mantids are similar in two relevant ways. First, both species primarily detect prey visually [33-36] and are likely incapable of depth perception when their prey item is motionless [36,37]. Second, small adult diptera account form a substantial proportion of the diet of both predators in the wild [38,39].

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Based on the findings of Schmitz [11], we predicted that fruit flies, in the presence of a familiar predator, would exhibit hunting-mode specific modifications in activity levels. To maximize distance from the actively hunting spider, our prediction was that flies would increase their overall activity levels, whereas, to reduce the probability of encountering a stationary threat (the mantid, an ambush predator), we expected flies to decrease overall activity. Under controlled laboratory conditions, we documented the behaviours of individual adult D. melanogaster with and without the two predator species. Our results suggest that in the presence of zebra spiders, D. melanogaster increases its overall locomotory activity, performs a distinct "stopping" behaviour and substantially increases the performance of a newly described abdominal lifting behaviour (the function of which is as of yet unknown). Counter to our prediction though, D. melanogaster's locomotion, and most other behaviours are not substantially altered in the presence of mantids. However, upon direct encounter with a mantid, many individuals of D. melanogaster perform (a previously undescribed) retreat behaviour- a response not generally elicited by jumping spiders. We discuss our results within the broad context of conditionally expressed behaviours as they relate to predator hunting mode, as well as specifically with respect to broadening our understanding of the behavioural ecology of D. melanogaster.

METHODS

67 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Drosophila Population and Culture Conditions

The *Drosophila melanogaster* population used in this study originated from a natural population at Fenn Valley Vineyards in Fennville, Michigan (GPS coordinates: 42.57, -86.14) during the summer of 2010. A lab population (henceforth referred to as FVW) was initiated from this collection using the progeny of over 500 single-pair matings of field caught *D. melanogaster* as well as wild caught males. This design allowed us to screen out the sympatric congener, D. simulans, which was present in our collections at a frequency of about 5%. Screening involved setting up single pair mating in vials and discarding all lines with D. simulans-like genital morphology. After screening, ~1500 individuals were placed into cage (32.5cm³, BugDorm BD43030F) to establish the FVW population. The population is currently maintained in this cage at an adult density ~ 3000 individuals in a room maintained at 23°C (+/- 1°C), and 40-70% RH. Adults were allowed to lay eggs in 10 bottles with 50-60 ml of a standard yeast-cornmeal food for 2-3 days. These bottles were then removed and kept in a Percival incubator (Model: I41VLC8) at 24⁰C and 65% RH throughout the larval stages. All flies and larvae were maintained in a 12 hr light/dark cycle with lights on at 08:00 hours. For the experiments, pupae were collected 24 hours before they emerged as adults. Pupae were removed from bottles using forceps and individual pupae were placed into 1.5 ml microcentrifuge tubes. Each tube was pre-filled with ~ 0.5 ml of yeastcornmeal food and its cap was punctured for gas exchange. Upon emergence, adult flies were sexed visually without anesthesia and housed in these tubes in the incubator until needed for behavioural assays. Age of flies used in behaviour analysis was 3-7 days. By

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

using socially naïve flies in our assays, we were able to establish a consistent baseline of social experience among all individuals, allowing us to eliminate the potentially confounding influence of variation in social experience on behaviour that is welldocumented in *Drosophila* [40-44]. **Spiders** S. scenicus individuals were collected throughout the spring/summer of 2012 on the campus of Michigan State University. Spiders were housed individually in vials in a room maintained at 23° C (+/- 1° C) and 30-50% RH and fed ~5 D. melanogaster a week. Prior to use in behavioural assays, spiders were starved for at least 48 hours. Each spider was used in only a single behavioural assay. Mantids Mantid egg cases were both collected near the campus of Michigan State University as well as ordered from Nature's Control (Medford, Oregon). Mantid egg cases were stored at 4°C and transferred to 25°C and 70% RH for hatching. Given the substantial changes in mantid body size across moults [45], only first instar nymphs were used for experiments. Prior to behavioural assay, mantids were starved for at least 24 hours and each mantid was used only once. **Behavioural Assays** All assays were performed 1-4 hours after the incubator lights came on in the morning (08:00). Behavioural assays were recorded with an Aiptek AHD H23 digital

camcorder attached to a tripod under a combination of natural and fluorescent light that is present in the room wherein the FVW population and spiders are maintained. For each predator (spiders and mantids), we recorded the behaviour for each of 15 male and 15 female socially naïve, virgin flies (collected as described above). We used a chamber constructed from the bottom of a 100 x15mm petri dish inverted on top of a glass plate with a sheet of white paper beneath to maximize the visibility of flies and predators.

acclimate for 5 minutes. After this acclimation period, flies were recorded for 5 minutes.

A single spider or mantid was then introduced to the chamber and behaviours were recorded for an additional 10 minutes or until capture. The chamber was washed with 10-30% ethanol and rinsed with reverse osmosis water after each assay to remove olfactory cues.

For each assay, an individual fly was aspirated into the chamber and allowed to

Behaviours Recorded

All *Drosophila* behaviours were categorized and analysed as either "states" or "events". Behavioural states have measurable duration and are mutually exclusive with other states (e.g. individuals cannot simultaneously walk and run). Behavioural events are discrete behaviours that occur instantaneously and are also mutually exclusive with each other (e.g. turning versus jumping) but not always mutually exclusive with behavioural states. For example, an individual could perform a wing display (event) while simultaneously walking (state), but it could not jump (event) while simultaneously running (state). In this study we treated flying as an event because the structure of the experimental chamber was prohibitive to flight. Attempted flight by *D. melanogaster*

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

often resulted in landing due to collision with a wall of the petri dish. We also recorded when a fly was not visible (occluded) to the observers analysing video. We recorded a total of 6 discrete events and 5 behavioural states in D. melanogaster in response to predation by spiders and mantids (Table 1). In order to interpret an individual fly's behaviour in the context of predatory encounters, we designated two keys to describe the location of the predator in regard to its interactions with the fly. As flies might alter their behaviour when a predator is within striking distance, we recorded predator location based on whether or not it was within striking distance of the fly (~5mm from the spider/mantid, also see *Spider location/ Mantid location* in Figure 1). Video Processing Recorded behaviours were viewed with VLC media player (version 2.0.3) and analysed by two observers using a manual event recorder, JWatcher V1.0 software [46]. One observer (A.P.) viewed each video and verbally announced the occurrence of behaviours while the other observer (C.P./M.C.) recorded the occurrence of these behaviours with JWatcher. Because *Drosophila* anti-predatory behaviours are often complex and occur rapidly, we analysed all videos at 0.5X speed. Controlling for effects of season and disturbance We conducted all spider observations between October and December 2012 and all the mantid observation between March and May 2013. To confirm that predator speciesspecific behavioural differences were not confounded with seasonal differences in

behaviour, we performed 6 additional assays (alternating between spider and mantid

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

as random effects. Formally, the model was:

treatments) within the span of one week. Following a spider assay, the plates were wiped down with 30% ethanol followed by a rinse with RO water before a mantid assay was conducted. Additionally, the process of adding a predator to the arena invariably resulted in a disturbance that likely startled the fly (unrelated to the presence of a predator). To confirm that behaviours induced by this disturbance were not confounded with predator induced behavioural differences, we performed 3 control assays. Here, after 5 minutes of acclimatization without a predator (see above for more details), the arena containing the fruit fly was disturbed gently (~ magnitude of disturbance caused by the addition of a predator). For all controls, video processing and behaviours recorded were identical to mantid and spider treatments described above. See Supplement b, S1 for a detailed description of these control experiments and their results. Data processing and statistical analysis A custom Python script was used to parse Jwatcher formatted data files into a comma-separated-value (CSV) file for analysis in **R** (version 3.0.1). To analyse the effects of predator state (i.e., presence or absence of predators) on the time dedicated to locomotory behavioural states, and number of occurrence for behavioural events, we fit mixed effects models (using both glmer function; lme4 package version 1.0-5, and *MCMCglmm* function; MCMCglmm package version 2.17) with predator state, total duration of assay with and without a predator (duration), sex, temperature and recording time as fixed effects, and individual by predator state and date

 $\mathbf{y} \sim \beta_{0ij} + \beta_1 PS + \beta_2 D + \beta_3 Ag + \beta_4 T + \beta_5 ST + \beta_6 Sx + \epsilon$

Where \mathbf{y} is a vector of time spent in a behavioural state. β_1 is the regression coefficient for predator state, β_2 is for duration in each predator state, β_3 is for age of the fly, β_4 is for temperature, β_5 is for time at which assay was started, β_6 is for sex of the fly and β_7 is for date on which the assay was performed. We estimated random effects for individuals including variation in response to predator state and duration of assay, and we fit an independent random effect for date. Thus we fit a repeated effects (longitudinal) mixed effects model allowing for variation among individuals for the influence of predator presence and duration of assay where for the i^{th} individual

194
$$\begin{pmatrix} \beta_{0i} \\ \beta_{1i} \\ \beta_{2i} \end{pmatrix} \sim \text{MVN} \begin{bmatrix} \mu_{\beta_0} \\ \mu_{\beta_1} \\ \mu_{\beta_2} \end{bmatrix}, \begin{bmatrix} \sigma_{\beta_0}^2 & \sigma_{\beta_0,\beta_1} & \sigma_{\beta_0,\beta_2} \\ \sigma_{\beta_0,\beta_1} & \sigma_{\beta_1}^2 & \sigma_{\beta_1,\beta_2} \\ \sigma_{\beta_0,\beta_2} & \sigma_{\beta_1,\beta_2} & \sigma_{\beta_2}^2 \end{bmatrix}$$

and (independent of the above)

197
$$\beta_0 \sim N(0, \sigma_j^2) \text{ where } j = 1 \dots \text{ date}$$

Preliminary analyses were inconsistent with the need to fit higher order interactions among fixed effects, so interaction terms were not considered further.

To test for non-random associations in the temporal structure of behavioural patterns we constructed transition frequencies using the "msm" library (version 1.2) [47] in **R**. To test for both for first order Markov processes between behaviours (transition probabilities), as well as the influence of predator presence on these transition

probabilities, we fit log-linear models with the transition frequency matrices [48] using glm in **R**. As advocated by [48,49] we fit a saturated log-linear model (with lag0, lag1 and PredState as the effects in the model) and tested the influence of deleting the terms (i.e. third order interaction of main terms) on change in deviance. We used modified "Z-scores", adjusted using sequential Bonferroni to assess the deviation of particular cells in the transition frequency matrix from expected values (assuming independence). For the visual transition probability matrices, we combined the behavioural event "pause" with the behavioural state "stop" because 1) we wanted to reduce the complexity of the matrix and 2) the main difference between the two behaviours is that pause is instantaneous and stop has duration. All transition diagrams were constructed in Inkscape [50](version 0.48.2).

Table 1 Names and descriptions of all observed behaviours. Videos

are provided at the end of Supplement b.

Behaviour	Description
Abdominal lift (ab)	Momentary rearing up on abdomen (see video 1)
Fly	Moving through space by wing use
Jump	Instantaneous movement between points without wing use
Pause	Noticeable period of inactivity; transitional
Turn	180 degree change in orientation without change in position
Wing display (wd)	Momentary lifting up of wings without singing or vibration
Groom	Running legs over any body part-often while otherwise stationary
Walk	Movement through space by ambulation
Run	Rapid movement through space by ambulation
Stop	Immobile (see video 2)
Retreat	Walking in reverse upon encounter with an object (like a predator) (see video 3)

219

220

221

222

223

224

225

226

227

228

229

230

231

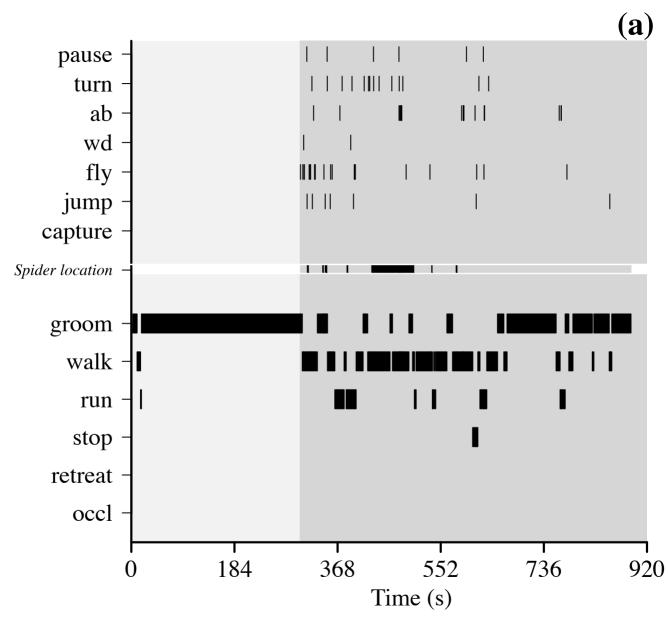
232

233

234

235

236


237

238

239

240

RESULTS From pilot observations (not included in analysis), we (I.D., A.P. and C.P.) catalogued and described *Drosophila melanogaster* behaviours observed in the presence of a predator (Table 1). Among the behaviours listed in Table 1, abdominal lifting (ab, supplement b, video 1) and retreat (supplement b, video 3), to our knowledge, have not been previously described in *D. melanogaster* literature. Flies perform a range of anti-predatory behaviours in response to a zebra spider To visualize each individual fruit fly's response to the presence of a zebra jumping spider, we generated ethograms (see Figure 1a and Supplement a). For the two predator states (spider present and spider absent) we measured the mean proportion of time dedicated to each behavioural state, as well as the number of occurrences per minute for each behavioural event. When a spider was present, D. melanogaster increased the proportion of time it spent walking and running while grooming less (Figure 2 and Supplement b Figure S1). While they were observed at low frequencies prior to the addition of spiders, D. melanogaster substantially increased the frequency of pauses, abdominal lifts, jumps and flights (per minute) in the presence of spiders (Figure 2. Supplement b Figure S3). Time allocated to "stopping"; a motionless state that likely aids in capture deterrence (see Videos 2, Supplement c) also increased significantly in the presence of spiders (Supplement b Figure S2). However, when interacting with spiders. flies were only observed to perform the "retreat" behaviour once (of 30 individuals). Given the design of our experiment, we were able to model the degree to which individuals varied in their responses to the jumping spiders. Individuals varied greatly

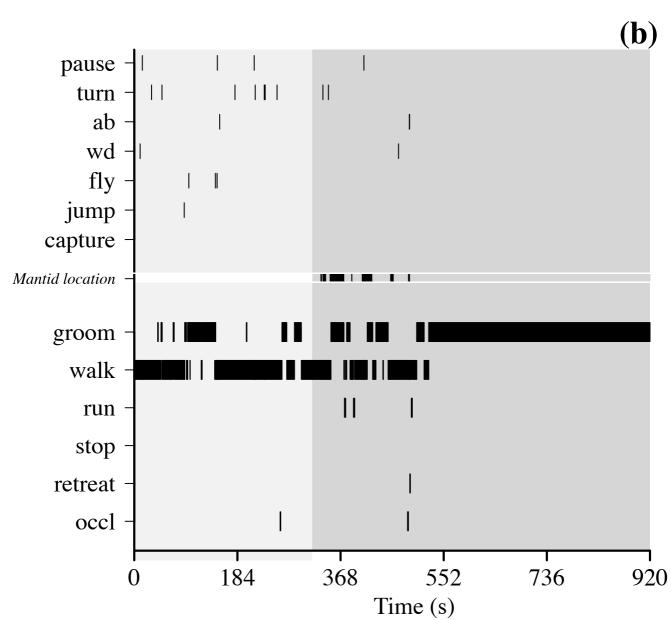


Figure 1

D. melanogaster used a greater proportion of its behavioural repertoire and performed each behaviour at a higher frequency in the presence of a jumping spider than in the presence of a juvenile mantid. a) Representative ethogram of a male, 4 day old D. melanogaster in response to a zebra jumping spider. b) Ethogram of a male, 5 day old D. melanogaster in response to a juvenile Chinese paying mantid. Light grey background represents time in the arena before the addition of a predator and dark grey background is when the predator was present in the chamber. Each black bar represents the occurrence of a behaviour during the observation period. Top half of the figure (separated by *Predator location*) consists of events and the bottom half consists of states. Because states have duration, the width of each black bar corresponds to the duration of a state. Predator location (i.e., Spider location in a and Mantid location in b) indicates whether or not the predator was within striking distance of the fruit fly at that time point. This information is relevant only after the predator was added to the chamber (~ 300 s into the assay). Dark grey bars in *Predator location* indicate that the spider was within striking distance and light grey regions indicate that the spider was out of striking distance. *Predator* location is white when the predator is absent from the arena or after successful capture. If

capture did not occur, predator location remains light grey in colour.

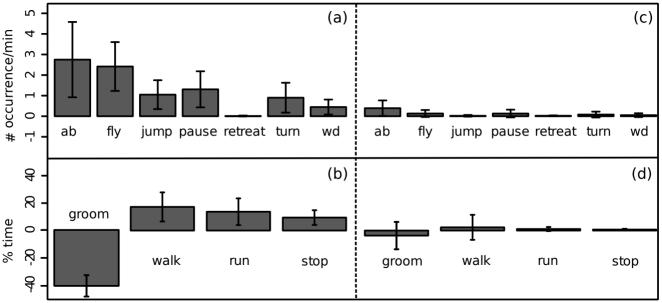


Figure 2

Fruit flies increase overall activity levels in the presence of jumping spiders (a) and (b) but not in the presence of mantids (c) and (d). Plots (a) and (b) show change in mean number of occurrences per minute of each behavioural state as a result of the addition of a predator. Plots (c) and (d) show mean change in percentage of total time spent in a given behavioural state caused by the addition of a predator. On the left of the dotted line, behavioural changes correspond to the presence of a spider whereas on the right of the dotted line, behavioural differences are due to the presence of a juvenile praying mantid. Error bars are \pm 95% CI

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

both in their baseline activity levels as well as in their propensities to respond to jumping spiders. While most individuals reduced their grooming activity in the presence of predators, the degree to which they did so varied substantially (Figure 3a and 3b). Interestingly, we did not see significant sex specific differences in either frequencies of occurrence (Supplement b Figure S3) or proportion of time allocated (Supplement b Figure S1) to the majority of measured behaviours (But see S3 panels "pause" and "turn"). There was an overall negative correlation between the amount of time individuals spent grooming before and after the addition of the spiders (Table 2). That is, on average, individuals who were more active prior to the addition of the spider reduced their activity to a greater extent in the presence of the spider. To visualise the temporal associations among behavioural sequences, we constructed transition matrices (Supplement b Tables S1, S2, S5 and S6) and transition probability diagrams for all pairs of behaviours in the absence (Supplement b Figure S7) and presence (Figure 4a) of predators. In response to jumping spiders, transitions among behaviours are somewhat more dispersed (with many connections between behaviours), suggesting that there is weak temporal association between fruit fly behaviours. Indeed these qualitative conclusions are supported based on the Z-scores. In the absence of spiders 8 possible transitions were significant (after controlling for multiple comparison, Supplement b Table S1), while 13 transitions were significant in the presence of the spider (Supplement b Table S2). Most of these differences were due to the increase in behaviours potentially involved with anti-predation activity (i.e. flight, abdominal lifting). However, while the results of the log-linear analysis (across the whole transition frequency matrix) supported the dependence of current behavioural states on the previous

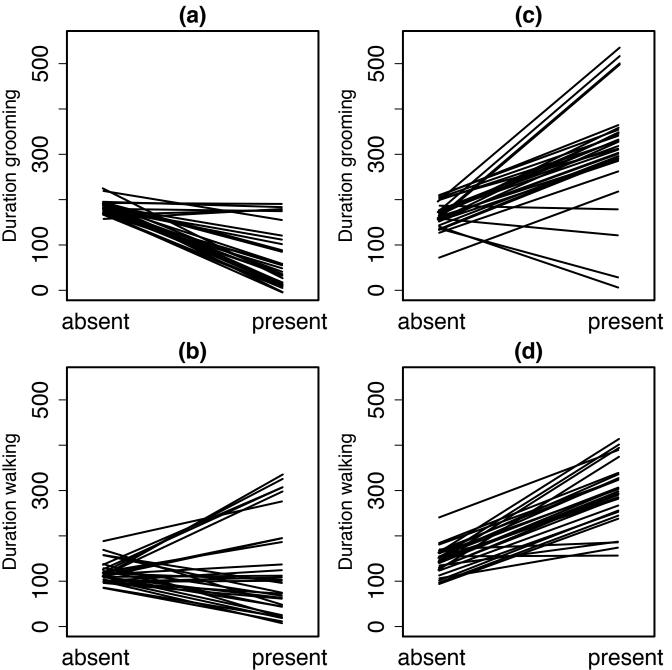


Table 2 Individual flies show negative correlations between behavioural states before and after the introduction of a predator. There is considerable variation among individuals in time spent performing specific behaviours (i.e. walking and grooming), with and without predators. However, there is a strong negative correlation within individuals for time spent before and after introduction of the predator. That is, individuals who spend more time performing a specific behaviour prior to the addition of a predator, reduce that behaviour to an even greater amount (than the average for the sample) once the predator is introduced. The one exception is for grooming for the mantid trials. Diagonals of the table contain the standard devation (mean of the posterior distribution) for individual behavioural responses (95% CIs in paratheses) from the random effects of the models. Above the diagonal are covariances between predictors (and CIs in parantheses). Below the diagonal are correlation coefficients for the covariances between the predictors.

Grooming, Spider Pred.State Intercept Time 89.2 (62.0, 115.3) 26.4 (14.0, 36.0) Intercept -68.2 (-88.7, -34.1) **Pred.State** -0.8461.7 (18.8, 84.5) -14 (-25.5, 17.1) 0.75 -0.310.4 (4.4, 14.9) Time Walking, Spider **Pred.State** Time Intercept 81.9 (43.3, 109.8) -60.2 (-89.5, 27.5) 25.6 (-8.8, 36.7) Intercept Pred.State -0.6667.3 (0.36, 98.5) 11.5 (-22.2, 29.2) **Time** 0.62 0.15 13 (5.6, 18.2) **Grooming, Mantid** Intercept Pred.State Time Intercept 122.8 (59.6, 175) -20.2 (-117, 106) 46.0 (-16.9, 74.5) **Pred.State** -0.05 60.5 (0.13, 100.2) -18.3 (-47.9, 34.0) 8.0 -0.2621.5 (2.6, 33.8) Time Walking, Mantid Intercept Pred.State Time Intercept 144.8 (86.2, 198) -100.3 (-162.6, 38.8) 63.2 (31.6, 90.3) Pred.State -0.8680.5 (0.21, 139.3) -45.2 (-76.4, 19.6) 0.94 -0.8629.4 (11.3, 43.5) Time

Figure 3

Inter individual behavioural variation in respone to predators is present in natural populations. Reaction norms visualize how each individual fruit fly responded to the introduction of a spider (plannels a and b) or a mantid (pannels c and d) into the assay chamber. Measures are in seconds. Each line corresponds to reponse of one individual. Estimates are derived from the predicted values for each individual from the mixed models.

265

266

267

268

269

270

271

272

273

274

275

276

277

278

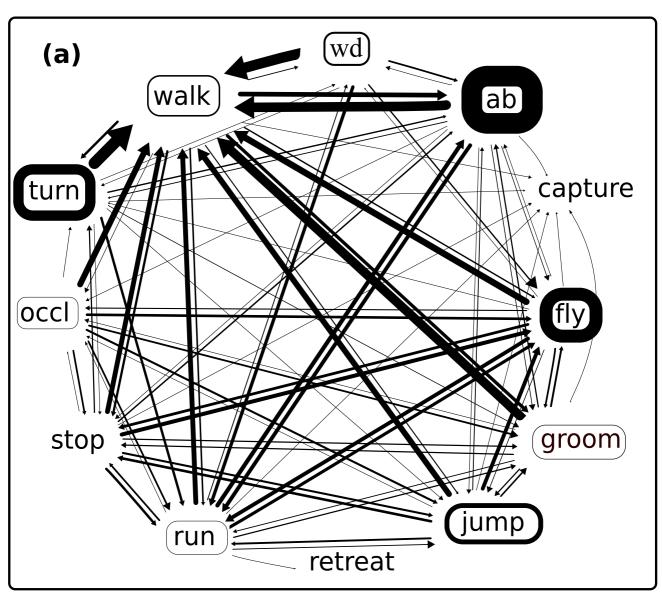
279

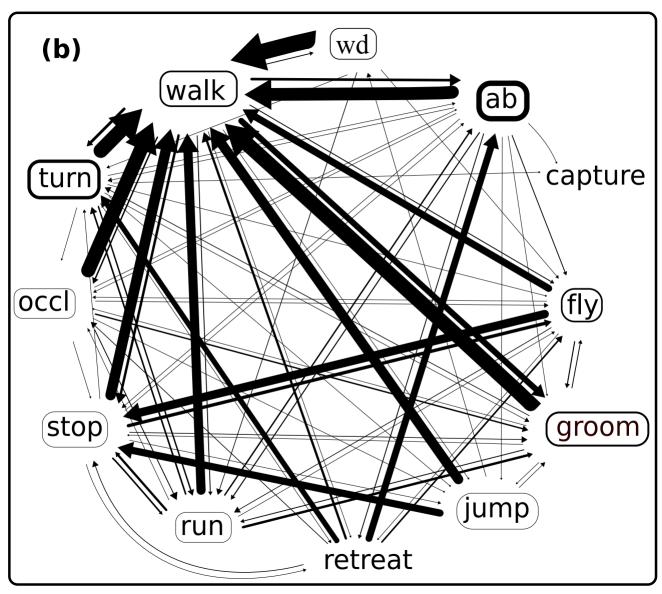
280

281

282

283


284


285

286

(Table 2).

state (resid df=71, deviance=632, p < 0.001), the inclusion of predator status did not influence this dependence (resid df = 71, deviance = 59, p = 0.8). Flies perform a previously undescribed retreat behaviour in response to mantids In contrast to their behaviour in the presence of jumping spiders, the presence of a juvenile praying mantid had minimal influence on D. melanogaster's locomotory activity (Figure 1, Supplement a). Time spent grooming, walking, running and stopping was largely unaffected by the presence of a juvenile praying mantid (Figure 2d, Supplement b Figures S1 and S2). Similarly, the presence of a mantid did not influence the frequency at which D. melanogaster tended to perform most instantaneous behaviours (Figure 2a, Supplement b Figure S4). However, as was observed with spiders, flies performed the abdominal lifting behaviours (ab) at a significantly higher rate in the presence of a juvenile praying mantid (Supplement b Figure S4). In addition, upon encounter with a mantid, half of the individuals (15/30) performed a previously undescribed reversal behaviour (Supplement c video 3), which we term "retreat". As with the zebra spiders, we saw no significant sex specific differences in response to mantids. Although the presence of a mantid had a small effect on fly behaviour, flies did vary considerably in their grooming and walking activities. Indeed, the among-individual variability in proportion of time spent grooming and walking is greater in magnitude in the presence of the mantids than spiders (Figure 3). The results from the mixed model did not demonstrate as strong support for the negative co-variation between an individual's activity (walking, grooming) before and after the addition of the mantid

Figure 4

Spiders and mantids had different effects on the temporal associations between pairs of D. melanogaster behaviours. a) A diagram representing probability of transitioning from one fly behavioural state to the other in the presence of a zebra jumping spider. b) A diagram representing probability of transitioning from one fly behavioural state to the other in the presence of a juvenile praying mantid. Thickness of arrows indicate transition probability between the two behaviours. The arrowhead points to the behaviour being transitioned to. Thickness of the box around behavioural state (groom, run, occl, retreat, stop and walk) indicate the mean proportion of total time spent in that behaviour, whereas thickness of the box around behavioural events (fly, jump, turn, wd, ab) indicates mean number of occurrences per minute of that behaviour. To reduce the complexity of the web we combined the behaviours "pause" with the behaviour "stop". Behavioural transitions that occurred less than 10 times have not been shown in the figure.

Transition matrices and transition probability diagrams (Supplement b Figure S7, Figure 4b and Tables S3, S4, S7 and S8) show patterns of temporal association among behaviours. In response to juvenile mantids, the transitions diagram is less dispersed than that in the presence of jumping spiders (Figure 4), suggesting that the degree of association between behaviours in the presence of mantids is more extreme. While most behaviours (abdominal lift, fly, groom, jump, run, stop, and turn) tend to transition to walking, we also see stronger associations between other pairs of behaviours. For example: after performing the retreat behaviour, fruit flies often either abdominal lift or turn, and flight is often followed by stopping. These observations are supported by the findings that in the absence of mantids, 12 transitions showed significant deviations from expectations (Supplement b, Table S4). In comparison, in the presence of mantids 23 transitions showed a significant deviation from expected values (Supplement b, Table S4). Interestingly, as with the spiders the log-linear model supports the non-independence of behavioural states (resid df=71, deviance=1054, p <0.001), but not for the additional influence of predator state on this non-independence (resid df = 71, deviance = 72, p=0.4).

DISCUSSION

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Prey organisms can alter their behaviour to reduce the likelihood of detection, capture or encounter with a predator [5]. For example, when predators are present, ground squirrels dedicate more time to vigilance behaviours (like scanning for a predator, see [51]) and some aquatic insects spend more time in refuges [52]. These changes in behaviour may alter the use of resources, and potentially the fitness of an organism.

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

However, the nature and intensity of non-consumptive effects of a predator on its prey are a function of several predator specific factors, one of which is the predator's hunting mode [10]. Predator hunting mode, i.e., the set of behavioural strategies that a predator employs to pursue and capture its prey [8-10] can be an important determinant of a prey organism's anti-predatory behavioural response [10,11]. In this study, we describe the anti-predatory behavioural repertoire of a natural population of *Drosophila melanogaster* in response to predation by the zebra jumping spider (Salticus scenicus) and juvenile Chinese praying mantids (*Tenodera aridifolia sinensis*) that, among other characteristics, differ in hunting mode. While we discuss our findings with respect to hunting mode differences, we recognize that other attributes differing among the predators may contribute to the observed differences in prey behavioural repertoires. However, as our experimental design was meant to minimize the effects of many possible confounding factors (e.g. time of day, temperature, humidity) it seems likely that, in part, our results reflect hunting mode differences. In response to active hunters (those that constantly patrol for prey), we predicted that fruit flies would increase their overall activity levels (including flight) in order to maintain maximum distance from the predator at all times [11]; To reduce the likelihood of an encounter with an ambush predator however (i.e., a predator that only attacks when a prey organism wanders in to its strike zone), we predicted that D. melanogaster would respond by decreasing locomotory activities. Our results, however, were only partially in line with these predictions. While the actively hunting jumping spiders induce a clear increase in overall activity, we found the presence of juvenile mantids- our ambush predators- to have minimal influence on fruit fly activity levels (Figure 2, Supplement b

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Figure S2). It has been previously argued that ambush predators might be a predictable source of threat to prev organisms [53,54] reviewed in [10] as opposed to the diffuse and variable threat imposed by active hunters [11]. Therefore, it is perhaps surprising that fruit flies show a stronger behavioural response to the threat of active hunters (zebra jumping spiders) (see [55]). However, our predictions are based on studies on a grasshopper and its two predatory spider species that differ in hunting mode. Given that selection pressures faced by adult diptera are different from those experienced by grasshoppers (orthoptera), such predictions may not be generalizable. Several factors including body size and dispersal patterns may contribute to this difference. Many species of jumping spiders, including S. scenicus, are often seen in the natural habitat of D. melanogaster (personal observations of A.P., C.P. and I.D.), and are likely to be ecologically relevant predators of *Drosophila*. Mantids however, are rarely found in areas where fruit flies are abundant (personal observations of A.P. and I.D.), at least in Eastern North America. Therefore, it is likely that fruit flies, having experienced a longer evolutionary history with small jumping spiders, are better able to recognize these spiders as a threat. In addition, the disturbance created by a constantly patrolling zebra spider may be partly responsible for the increased activity levels seen in D. melanogaster (either due to actual mechanical disturbance or because flies are able to detect moving objects quicker than stationary ones). In this study, we are unable to tease apart the effects of evolutionary recognition versus constant mechanical disturbance on the differences in flies' activity levels. Further experimentation with harmless but constantly moving heterospecifics (such as field crickets) or immobilized active hunters might be useful in addressing these issues.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

We also identified a number of (to our knowledge) undescribed behaviours of D. melanogaster, potentially relating to its interactions with predators. The behaviour we called "stopping" (Table 1) was observed numerous times after a direct (but failed) attack by a spider (Supplement 3 video 1). While D. melanogaster will spend time without any ambulatory activity (walking, running), they are almost always observed to be active (generally grooming) during these periods. However, when fruit flies performed the stopping behaviour, there was a complete lack of movement on the part of the fly, even when video was viewed at a few frames/second. When a fruit fly was "stopped", the spider had to search for the fly, irrespective of the physical proximity between the spider and the fly. In salticids, while the principal eyes have high spatial acuity [34], secondary eyes are primarily used to detect moving objects [56]. Because salticids are unable to accommodate by changing the shape of their lens, they need to extensively sample their visual field to see details in object shape and form [34,55,58]. Scanning for prey by such sampling is likely a slow process unless guided by the motion sensing peripheral eyes, giving motionless prey the advantage of staying hidden (at least for a few seconds) while in plain sight of their salticid predator. Thus, D. melanogaster may be using the "stopping" behaviour as a potential mechanism to reduce the likelihood of detection by the spider. Additionally, in the presence of both predators, *D. melanogaster* substantially increase the frequency at which it performed abdominal lifts. To our knowledge, abdominal lifting has not been described in D. melanogaster literature before and may be relevant in an anti-predatory context. While studying courtship behaviours in female D. melanogaster, Lasbleiz el al described two behaviours perhaps similar to the abdominal

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

lifting described here: abdominal drumming and abdominal extension [57]. Abdominal drumming (described as "quickly repeated vertical movements of the abdomen which is tapped on the substrate") was only seen in males during courtship display, and abdominal extensions (described as "abdomen raised by 15-30 degrees") were also closely associated with courtship. Because abdominal lifting was often directed at a predator or followed a failed predatory encounter, we suspect abdominal lifting to be different from abdominal extensions and abdominal drumming, and with a possibly anti-predatory function. We speculate that if abdominal lifting is indeed anti-predatory, it could function in one of several possible ways. First, abdominal lifting may be a signal of prey condition directed at the predator as a form of pursuit deterrence, comparable to stotting in the Thomson's gazelle [60]. Second, because *D. melanogaster* are often surrounded by conspecifics, abdominal lifting may be a means though which one fly warns its conspecifics of the presence of a potential threat (similar in function to fin flicking in tetras, [61]). Finally it may be an indication of some sort of physiological priming of the fly in preparation for a fight-or-flight response. Determining whether it is a specific antipredator behaviour, as well as the details of its function need to be a focus of future work. In response to the juvenile praying mantids, half of the fruit flies we observed (15/30) performed a reverse walking behaviour which we have called "retreat", where the flies walked in reverse, away from the predator (supplement c, video 3). This was often (but not always) interspersed with the abdominal lifting behaviour. Phenomenologically, this behaviour may be similar to that described in Bidaye et al [62], where the authors identified neurons that upon activation changed walking direction in D. melanogaster. Bidaye et al's reverse walking behaviour, appears to be a smooth and continuous

behaviour, whereas the "retreat" was often discontinuous and accompanied by abdominal lifting. If the two "retreat" behaviours are related, the observed disassociation between retreat and abdominal lifting as well as its continuous nature (in [62]) may be a function of how the neurons were perturbed.

We also investigated how the presence of the different predators may influence

non-random associations among behaviours. We observed that in the presence of both predators there was an increase in the number of behavioural transitions that deviated from expectations under independence (from 12 to 23 with the mantid, and 8 to 13 with the spider). Despite this, the log-linear model (analysing the whole transition frequency matrix) did not support the influence of predator state on the frequencies of transitions. This may be partly due to the relatively modest sample sizes (in terms of both individuals and transitions among behaviours). Further work is necessary to validate and extend this sequential analysis.

While we show that there are some predator hunting-mode specific behavioural differences in *D. melanogaster's* anti-predator response, we reiterate two important caveats. First, although the primary distinction between the zebra jumping spider and juvenile Chinese praying mantids as predators is their hunting-mode, other factors between these species (for example, size, colour, odour) may also influence differences in fruit fly behaviours. Replicating the observations with other predator pairs that differ in hunting-mode is necessary to confirm hunting-mode's influence on anti-predatory repertoires. Secondly, our assay chambers are an artificial environment and do not resemble the conditions under which *D. melanogaster* face predators in the wild. Due to the nature of our assay chamber, *D. melanogaster* were unable to employ behavioural

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

strategies that may reduce encounters with predators (e.g., utilizing a refuge). Therefore we were only able to describe the capture-deterrence repertoire of D. melanogaster behaviour. We believe that our study is a necessary first step to describing and documenting the complete anti-predatory behavioural repertoire of D. melanogaster and we foresee future work to be conducted in a modified chamber, under more "natural" conditions. Doing so will allow us to take this premier model genetic system and make it into an ecological model as well. **ACKNOWLEDGEMENTS** We thank Dr. Fred Dyer for loaning us video cameras, and members of the Dworkin lab for providing comments on the statistical analyses and manuscript. Thanks to Dr. Ben DeBivort for discussions and suggestions. Also, thanks to Dr. Reuven Dukas and Dr. Marla Sokolowski, and to all the reviewers for comments on the manuscript. This material is based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

443 444 *REFERENCES*

- 445 1. Edmunds, M. 1974 Defence in animals: a survey of anti-predator defences.
- Longman Harlow, New York.
- 447 2. Juliano, S. A. & Gravel, M. E. 2002 Predation and the evolution of prey behavior:
- an experiment with tree hole mosquitoes. *Behavioral Ecology* **13**, 301–311.
- 449 3. Gosline, A. K. & Rodd, F. H. 2007 Predator-induced plasticity in guppy (Poecilia
- reticulata) life history traits. *Aquat Ecol* **42**, 693–699. (doi:10.1007/s10452-007-
- 451 9138-7)
- 452 4. Langerhans, R. B. 2007 Evolutionary consequences of predation: avoidance,
- escape, reproduction, and diversification. *Predation in organisms* 177-220.
- 454 Springer Berlin Heidelberg. (doi: 10.1007/978-3-540-46046-6 10)
- Lima, S. L. 1998 Nonlethal effects in the ecology of predator-prey interactions.
- 456 *BioScience* **48**, 25–34.
- 457 6. Lima, S. L. & Dill, L. M. 1990 Behavioral decisions made under the risk of
- predation: a review and prospectus. Can. J. Zool. 68, 619–640.
- 459 7. Sansom, A., Lind, J. & Cresswell, W. 2009 Individual behavior and survival: the
- roles of predator avoidance, foraging success, and vigilance. *Behavioral Ecology*
- **20**, 1168–1174. (doi:10.1093/beheco/arp110)
- 8. Schoener, T. W. 1971 Theory of feeding strategies. *Annual review of Ecology and*
- *Systematics* **2**: 369–404.

- Huey, R. B. & Pianka, E. R. 1981 Ecological consequences of foraging mode.
- 465 *Ecology* **4**: 991-999.
- 466 10. Preisser, E. L., Orrock, J. L. & Schmitz, O. J. 2007 Predator hunting mode and
- habitat domain alter nonconsumptive effects in predator-prey interactions. *Ecology*
- **88**, 2744–2751.
- 469 11. Schmitz, O. J. 2008 Effects of predator hunting mode on grassland ecosystem
- function. *Science* **319**, 952–954. (doi:10.1126/science.1152355)
- 471 12. DeWitt, T. J., Robinson, B. W. & Wilson, D. S. 2000 Functional diversity among
- predators of a freshwater snail imposes an adaptive trade-off for shell morphology.
- *Evolutionary Ecology Research* **2**, 129–148.
- 474 13. Reznick, D., Butler, M. J., IV & Rodd, H. 2001 Life-history evolution in guppies
- VII. The comparative ecology of high and low predation environments. *The*
- 476 American Naturalist 157, 126–140. (doi:10.1086/318627)
- 477 14. Relyea, R. A. 2001 Morphological and behavioral plasticity of larval anurans in
- 478 response to different predators. *Ecology* **82**, 523–540.
- 479 15. Stoks, R., McPeek, M. A. & Mitchell, J. L. 2003 Evolution of prey behavior in
- response to changes in predation regime: damselflies in fish and dragonfly lakes.
- 481 Evolution **57**, 574–585.
- 482 16. Magurran, A. E., Seghers, B. H., Carvalho, G. R. & Shaw, P. W. 1992 Behavioural
- consequences of an artificial introduction of guppies (*Poecilia reticulata*) in N.

- Trinidad: Evidence for the evolution of anti-predator behaviour in the wild.
- 485 Proceedings of the Royal Society B: Biological Sciences **248**, 117–122.
- 486 (doi:10.1098/rspb.1992.0050)
- 487 17. Milan, N. F., Kacsoh, B. Z. & Schlenke, T. A. 2012 Alcohol consumption as self-
- medication against blood-borne parasites in the fruit fly. Current Biology 22, 488–
- 489 493. (doi:10.1016/j.cub.2012.01.045)
- 490 18. Reaume, C. J. & Sokolowski, M. B. 2006 The nature of *Drosophila melanogaster*.
- 491 *Current Biology* **16**, R623-R628.
- 492 19. David, J. R. & Capy, P. 1988 Genetic variation of *Drosophila melanogaster*
- 493 natural populations. *Trends in Genetics* **4**, 106–111.
- 494 20. Turelli, M. & Hoffmann, A. A. 1991 Rapid spread of an inherited incompatibility
- factor in California *Drosophila*. *Nature* **353**. 440–442.
- 496 21. Schmidt, P. S., Matzkin, L., Ippolito, M. & Eanes, W. F. 2005 Geographic
- variation in diapause incidence, life-history traits, and climatic adaptation in
- 498 *Drosophila melanogaster. Evolution* **59**, 1721–1732.
- 499 22. Fleury, F., Ris, N., Allemand, R., Fouillet, P., Carton, Y. & Boulétreau, M. 2004
- Ecological and genetic interactions in *Drosophila*-parasitoids communities: a case
- study with *D. melanogaster*, *D. simulans* and their common Leptopilina
- parasitoids in south-eastern France. *Genetica* **120**, 181–194.
- Wilfert, L. & Jiggins, F. M. 2014 Flies on the move: an inherited virus mirrors

504 Drosophila melanogaster's elusive ecology and demography. Mol Ecol 23, 2093– 505 2104. (doi:10.1111/mec.12709) 506 24. Stephan, W. & Li, H. 2006 The recent demographic and adaptive history of 507 Drosophila melanogaster. Heredity 98, 65–68. (doi:10.1038/sj.hdy.6800901) 508 25. Worthen, W. B. 1989 Predator-mediated coexistence in laboratory communities of 509 mycophagous Drosophila (Diptera: Drosophilidae). Ecological entomology 14, 510 117–126. 511 26. Escalante, A. & Benado, M. 1990 Predation on the cactophilic fly, *Drosophila* 512 starmeri, in the columnar cactus, *Pilosocereus lanuginosus*. *Biotropica*, 48–50. 513 27. Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. 2013 Fruit Flies 514 Medicate Offspring After Seeing Parasites. Science 339, 947–950. 515 (doi:10.1126/science.1229625) 516 28. Robertson, J. L., Tsubouchi, A. & Tracey, W. D. 2013 Larval Defense against 517 Attack from Parasitoid Wasps Requires Nociceptive Neurons. *PLoS ONE* **8**, 518 e78704. (doi:10.1371/journal.pone.0078704.s005) 519 29. Polak, M. & Starmer, W. T. 1998 Parasite-induced risk of mortality elevates 520 reproductive effort in male *Drosophila*. *Proceedings of the Royal Society B*: 521 *Biological Sciences* **265**, 2197–2201. (doi:10.1098/rspb.1998.0559) 522 Dill, L. M. 1975 Predatory behavior of the zebra spider, *Salticus scenicus* 30.

(Araneae: Salticidae). Can. J. Zool. 53, 1284-1289.

523

- Horner, N. V., Stangl, F. B. & Fuller, G. K. 1988 Natural history observations of
- 525 Salticus austinensis in north-central Texas. Journal of Arachnology 16, 260-262.
- 526 32. Prete, F. R., Klimek, C. A. & Grossman, S. P. 1990 The predatory strike of the
- praying mantis, Tenodera aridifolia sinensis. Journal of Insect Physiology **36**,
- 528 561–565.
- 529 33. Forster, L. M. 1979 Visual mechanisms of hunting behaviour in *Trite planiceps*, a
- jumping spider (Araneae: Salticidae). *New Zealand journal of zoology* **6**, 79–93.
- 531 (doi:10.1080/03014223.1979.10428351)
- Harland, D. P., Jackson, R. R. & Macnab, A. M. 1999 Distances at which jumping
- spiders (Araneae: Salticidae) distinguish between prey and conspecific rivals.
- 534 *Journal of Zoology* **247**, 357–364.
- 535 35. Jackson, R. R. & Blest, A. D. 1982 Short Communication: The distances at which
- a primitive jumping spider, *Portia fimbriata*, makes visual discriminations.
- *Journal of Experimental Biology* **97**, 441–445.
- 538 36. Prete, F. R. 1999 *The Praying Mantids* 93-141. Baltimore: The Johns Hopkins
- University Press.
- 540 37. Freed, A. N. 1984 Foraging behaviour in the jumping spider *Phidippus audax*:
- bases for selectivity. *Journal of Zoology* **203**, 49–61.
- 38. Iwasaki, T. 1998 Prey menus of two praying mantises, *Tenodera aridifolia* (Stoll)
- and *Tenodera angustipennis* Saussure (Mantodea: Mantidae). *Entomological*

- *science* **4**: 529-532.
- 545 39. Okuyama, T. 2007 Prey of two species of jumping spiders in the field. *Appl.*
- 546 Entomol. Zool. 42, 663–668. (doi:10.1303/aez.2007.663)
- 547 40. Yurkovic, A., Wang, O., Basu, A. C. & Kravitz, E. A. 2006 Learning and memory
- associated with aggression in *Drosophila melanogaster*. Proc. Natl. Acad. Sci.
- 549 *U.S.A.* **103**, 17519–17524. (doi:10.1073/pnas.0608211103)
- Levine, J. D. 2004 Sharing time on the fly. Current Opinion in Cell Biology 16,
- 551 210–216. (doi:10.1016/j.ceb.2004.02.009)
- 552 42. Krupp, J. J., Kent, C., Billeter, J.-C., Azanchi, R., So, A. K. C., Schonfeld, J. A.,
- Smith, B. P., Lucas, C. & Levine, J. D. 2008 Social experience modifies
- pheromone expression and mating behavior in male *Drosophila melanogaster*.
- 555 *Current Biology* **18**, 1373–1383. (doi:10.1016/j.cub.2008.07.089)
- Lefranc, A., Jeune, B., Thomas-Orillard, M. & Danchin, E. 2001 Non-
- independence of individuals in a population of *Drosophila melanogaster*: effects
- on spatial distribution and dispersal. C. R. Acad. Sci. III, Sci. Vie 324, 219–227.
- 559 44. Chabaud, M.-A., Isabel, G., Kaiser, L. & Preat, T. 2009 Social facilitation of long-
- lasting memory retrieval in *Drosophila*. Current Biology 19, 1654–1659.
- 561 (doi:10.1016/j.cub.2009.08.017)
- 562 45. Iwasaki, T. 1990 Predatory behavior of the praying mantis, Tenodera aridifolia I.
- Effect of prey size on prey recognition. *Journal of Ethology* **8**, 75–79.

- 564 46. Blumstein, D. T. 2006 The multi-predator hypothesis and the evolutionary
- persistence of antipredator behavior. *Ethology* **112**, 209–217. (doi:10.1111/j.1439-
- 566 0310.2006.01209.x)
- Jackson, C. H. 2011 Multi-State Models for Panel Data: The msm Package for R.
- Journal of Statistical Software 38(8), 1-29. URL http://www.jstatsoft.org/v38/i08/
- 569 48. Crawley, M. J. 2012 The R book. John Wiley & Sons.
- 570 49. Bakeman, R. & Gottman, J. M. 1997 Observing interactions. New York:
- 571 Cambridge University Press.
- 572 50. Harrington, B. et al 2004-2005 Inkscape. http://www.inkscape.org/
- 573 51. Bachman, G. C. 1993 The effect of body condition on the trade-off between
- vigilance and foraging in Belding's ground squirrels. *Animal Behaviour* **46**, 233–
- 575 244.
- 576 52. Kohler, S. L. & McPeek, M. A. 1989 Predation risk and the foraging behavior of
- 577 competing stream insects. *Ecology* **70**, 1811–1825.
- 578 53. Abrams, P. A. 1984 Foraging time optimization and interactions in food webs.
- 579 *American Naturalist* **124**, 80-96.
- 580 54. Abrams, P. A. 1995 Implications of dynamically variable traits for identifying,
- classifying, and measuring direct and indirect effects in ecological communities.
- 582 *American Naturalist* **146**, 112-134.
- 583 55. Lima, S. L. & Bednekoff, P. A. 1999 Temporal variation in danger drives

- antipredator behavior: the predation risk allocation hypothesis. *The American*Naturalist **153**, 649-659
- 586 56. Land, M. F. 1971 Orientation by jumping spiders in the absence of visual
- 587 feedback. *J. Exp. Biol.* **54**, 119–139.
- 588 57. Blest, A. D., Hardie, R. C. & McIntyre, P. 1981 The spectral sensitivities of
- identified receptors and the function of retinal tiering in the principal eyes of a
- jumping spider. *Journal of Comparative physiology* **145**, 227-239.
- 591 58. Land, M. F. 1969 Movements of the retinae of jumping spiders (Salticidae:
- dendryphantinae) in response to visual stimuli. *J. Exp. Biol.* **51**, 471–493.
- 593 59. Lasbleiz, C., Ferveur, J.-F. & Everaerts, C. 2006 Courtship behaviour of
- 594 Drosophila melanogaster revisited. Animal Behaviour 72, 1001–1012.
- 595 (doi:10.1016/j.anbehav.2006.01.027)
- 596 60. FitzGibbon, C. D. & Fanshawe, J. H. 1988 Stotting in Thomson's gazelles: an
- honest signal of condition. *Behavioral Ecology and Sociobiology* **23**, 69–74.
- 598 61. Brown, G., Godin, J. & Pedersen, J. 1999 Fin-flicking behaviour: a visual
- antipredator alarm signal in a characin fish, Hemigrammus erythrozonus. Animal
- *Behaviour* **58**, 469–475. (doi:10.1006/anbe.1999.1173)
- 601 62. Bidaye, S. S., Machacek, C., Wu, Y. & Dickson, B. J. 2014 Neuronal Control of
- 602 Drosophila Walking Direction. Science **344**, 97–101.
- 603 (doi:10.1126/science.1249964)

Supplemental material

Table of contents

Supplemental material type	Page numbers
Supporting information	1-2
Supplemental figures	2-8
Supplemental tables	9-16
Videos	16

Supporting information

Differential response to spiders versus mantids

Because spider and mantid population densities vary by season, we had to temporally segregate the spider assays from the mantid assays. We conducted all spider observations between October and December 2012 and all the mantid observations between March and May 2013. Comparing time allocation and frequencies of occurrences in the predator absent state between the two predator treatments suggest that behavioural modifications were predator induced, and not due to seasonal effects (Figure S5 and S6). Although the assays were carried out under highly controlled conditions, to confirm that predator species-specific behavioural differences were not confounded with seasonal differences in behaviour, we performed 6 additional assays (alternating between spider and mantid treatments) within the span of one week. The control experiments show no evidence of confounding effects of season with *D. melanogaster*'s anti-predator behavioural repertoire (Table S9, S11 and S12 below). Ethograms are shown in Supplement a. Furthermore, to confirm that the disturbance we caused (to the assay

chamber) during the addition of a predator did not confound behavioural responses to the predator, we did 3 "no predator" control assays. For these "no predator" controls, instead of adding a predator to the arena, we caused a mild disturbance (~ to intensity of disturbance caused while adding the predator) without actually adding any predator. We found that disturbance caused during predator addition was not responsible for observed behavioural modifications (Table S10 and S13). Finally, "no predator" controls also ruled our temporal differences in fruit fly activity levels (Table S10 and S13)

Supplemental figures

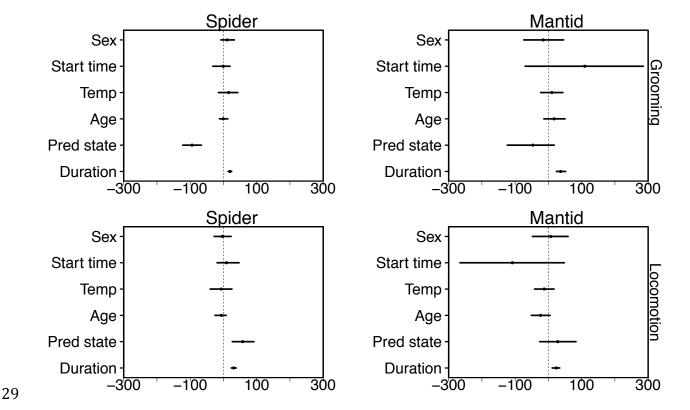
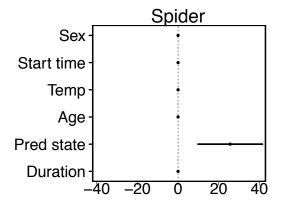



Figure S1

Addition of jumping spiders cause fruit flies to walk more and groom less, whereas the presence of mantids show weaker, more variable (and not significant) changes in fruit fly activity levels.

Here we show coefficient plots from the output of mixed effects models using the package MCMCglmm to visualize duration of two behaviours (grooming and locomotion) as a function of predator state (present vs absent of spiders, left panels and mantids, right panels), total duration of the assay, sex of the fly, start time of the assay, temperature in the room and age of the fly. Estimates are in seconds. Error bars are \pm 95% CI.

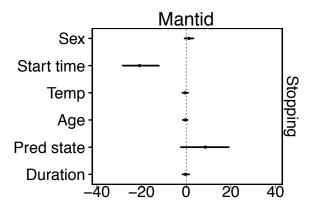


Figure S2

Fruit flies "stop" significantly longer in the presence of spiders (left panel), and to a much lesser extent (and not significantly) in the presence of mantids (right panel). Here we have coefficient plots made from the output of mixed effects models using the package MCMCglmm to visualize duration of "stopping" as a function of predator state (present vs absent), total duration of the assay, sex of the fly, start time of the assay, temperature in the room and age of the fly. Estimates are in seconds. Error bars are \pm 95% CI. Although assays were performed between 9 am and 12 pm each day, start time for the mantid assays significantly affected the total time that flies spent "stopping".

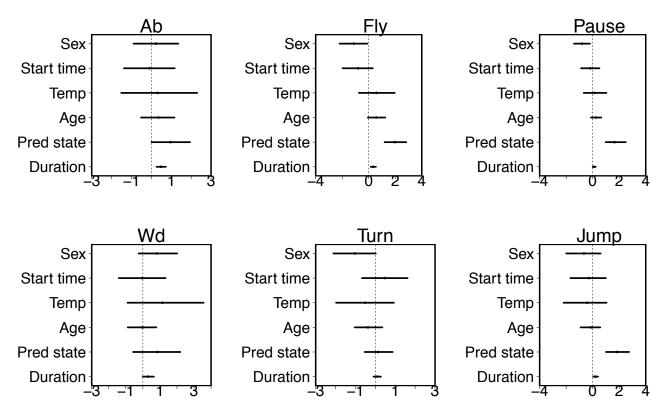


Figure S3

In the presence of spiders, fruit flies increased the frequency with which they performed flights, pauses and jumps. Here we show coefficient plots made from the output of mixed effects models using the package MCMCglmm to visualize duration of each individual behavioural event (ab, fly, pause, wd, turn and jump) as a function of predator state (present vs absent of a spider), total duration of the assay, sex of the fly, start time of the assay, temperature in the room and age of the fly. All estimates are scaled to number of events per minute. Error bars are \pm 95% CI.

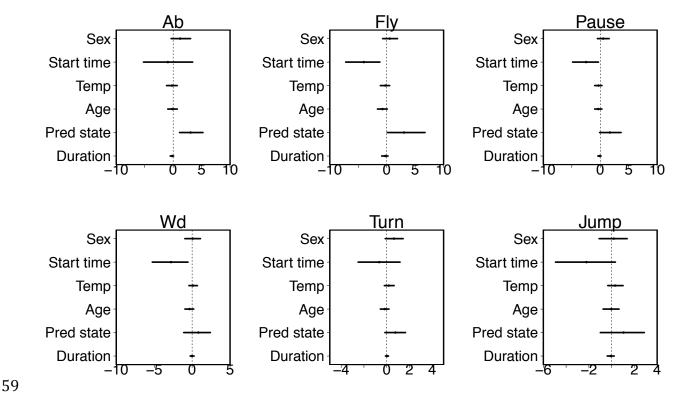


Figure S4

Fruit flies performed abdominal lifts are a higher frequency in the presence of a juvenile mantid. Here we show coefficient plots made from the output of mixed effects models using the package MCMCglmm to visualize duration of each individual behavioural event (ab, fly, pause, wd, turn and jump) as a function of predator state (present vs absent of a mantid), total duration of the assay, sex of the fly, start time of the assay, temperature in the room and age of the fly. All estimates are scaled to number of events per minute. Error bars are \pm 95% CI. Although assays were performed between 9 am and 12 pm each day, start time for the mantid assays significantly affected the frequency at which *D. melanogaster* performed the "Fly", "Wd" and "Jump" behaviours.

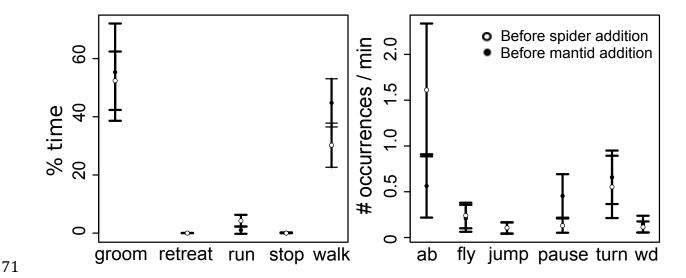


Figure S5

 Hunting mode induced behavioural differences in fruit fly behaviours were not confounded with seasonal effects. Here we show percentage time spent in each behavioural state (left) and number of occurrences per minute for each behavioural event (right) as measured for individual fruit flies before the addition of a spider (white circles) and before the introduction of a mantid (black circles) into the chamber. Error bars are \pm 2 * SEs. Overlapping error bars suggest that there was minimal effect of season on the behavioural repertoire of fruit flies.

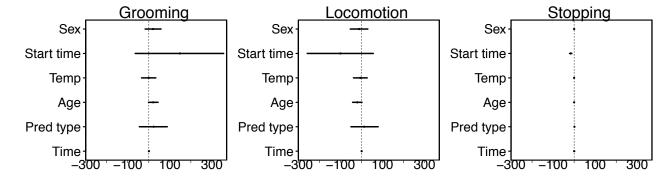


Figure S6

Seasonal differences in fruit fly behaviours did not confound behavioural differences induced by difference hunting-modes. Flies measured before the addition of a spider did not differ in behaviour from flies measured before the addition of a mantid.

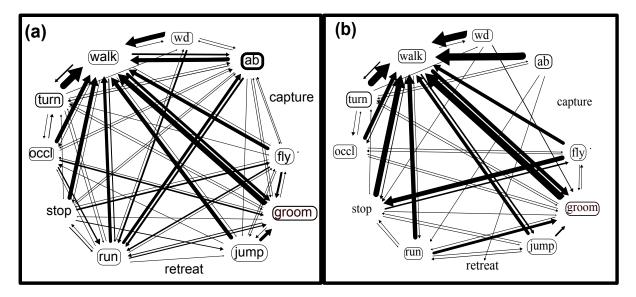


Figure S7

a) A diagram representing probability of transitioning from one fly behaviour to the other when individuals were measured before the addition of a spider b) A diagram representing probability of transitioning from one fly behaviour to the other for individuals measured before the addition of a juvenile mantid. Thickness of arrows indicates transition probability between the two behaviours. The arrowhead points to the behaviour being transitioned to. Thickness of the box around behavioural state (groom, run, occl, retreat, stop and walk) indicate the mean proportion of total time spent in that behaviour, whereas thickness of the box around behavioural events (fly, jump, turn, wd, ab) indicates mean number of occurrences per minute of that behaviour. To reduce the complexity of the web

we combined the behaviours "pause" with the behaviour "stop". Behavioural transitions that occurred less than 10 times have not been shown in the figure.

Supplemental tables

Table S1 Transition frequency matrix when a spider was present in the chamber. Each row represents the number of times one behaviour (row name) transitioned to another behaviour (column name). Numbers in blue represent transitions that occurred more often that expected under a model of independence, whereas numbers in red are transitions that occurred less often than expected (see methods).

S		

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd	Total
ab	0	2	8	9	7	0	45	6	5	10	112	7	211
capture	0	0	0	0	0	0	0	0	0	0	0	0	0
fly	4	2	0	15	7	0	34	25	10	1	58	1	157
groom	11	3	16	0	10	0	8	11	5	7	77	2	150
jump	4	2	19	8	0	0	9	13	2	0	28	0	85
retreat	1	0	0	0	0	0	0	0	0	0	0	0	1
run	43	4	33	13	9	1	0	18	3	4	51	9	188
stop	9	3	32	10	16	0	19	0	1	9	38	0	137
occl	3	0	6	4	5	0	4	4	0	1	14	0	41
turn	8	1	0	4	3	0	14	2	0	0	66	2	100
walk	122	7	36	87	26	0	42	60	14	63	0	24	481
wd	5	0	4	0	0	0	9	0	0	1	29	0	48
Total	210	24	154	150	83	1	184	139	40	96	473	45	1599

Table S2 Transition frequency matrix before a spider was added to the chamber. Each row represents the number of times one behaviour (row name) transitioned to another behaviour (column name). Numbers in blue represent transitions that occurred more often that expected under a model of independence, whereas numbers in red are transitions that occurred less often than expected (see methods)s.

No spider

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd	Total
ab	0	0	2	16	1	0	30	1	2	10	65	2	129
capture	0	0	0	0	0	0	0	0	0	0	0	0	0
fly	1	0	0	9	1	0	6	2	0	0	15	0	34
groom	7	0	11	0	8	0	18	1	5	10	122	0	182
jump	0	0	1	7	0	0	0	0	1	0	9	0	18
retreat	0	0	0	0	0	0	0	0	0	0	0	0	0
run	38	0	5	14	1	0	0	4	2	1	42	3	110
stop	1	0	4	0	2	0	2	0	0	1	10	0	20
occl	2	0	0	6	0	0	5	0	0	3	16	0	32
turn	4	0	1	5	0	0	2	0	3	0	72	1	88
walk	74	0	8	126	5	0	42	13	18	64	0	12	362
wd	1	0	0	0	0	0	4	0	0	0	13	0	18
Total	128	0	32	183	18	0	109	21	31	89	364	18	993

Table S3 Transition frequency in the presence of a juvenile praying mantid. Each row represents the number of times one behaviour (row name) transitioned to another behaviour (column name). Numbers in blue represent transitions that occurred more often that expected whereas numbers in red are transitions that occurred less often than expected.

Mantid

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd	Total
ab	0	1	9	2	1	9	10	5	4	6	127	0	174
capture	0	0	0	0	0	0	0	0	0	0	0	0	0
fly	0	0	0	7	0	1	5	60	2	0	50	0	125
groom	0	0	17	0	3	0	18	3	5	13	305	1	365
jump	0	0	0	1	0	0	0	13	0	0	18	1	33
retreat	9	0	2	0	0	0	0	1	1	7	3	0	23
run	11	0	3	18	0	0	0	17	1	12	68	0	130
stop	4	0	45	9	4	5	21	0	0	5	139	0	232
occl	1	0	3	7	1	0	5	1	0	0	73	0	91
turn	4	1	2	6	1	3	15	0	1	0	164	0	197
walk	145	2	43	326	23	5	51	132	73	150	0	49	999
wd	0	0	1	0	0	0	2	0	0	1	47	0	51
Total	174	4	125	376	33	23	127	232	87	194	994	51	2420

Table S4 Transition frequency matrix before a juvenile mantid was added to the chamber. Each row represents the number of times one behaviour (row name) transitioned to another behaviour

(column name). Numbers in blue represent transitions that occurred more often that expected whereas numbers in red are transitions that occurred less often than expected.

No mantid

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd	Total
ab	0	0	0	0	0	1	1	0	0	1	31	0	34
capture	0	0	0	0	0	0	0	0	0	0	0	0	0
fly	0	0	0	1	0	0	0	19	1	0	11	0	32
groom	0	0	9	0	1	0	4	1	3	12	212	0	242
jump	0	0	0	3	0	0	1	4	0	0	6	0	14
retreat	1	0	0	0	0	0	0	1	1	0	0	0	3
run	0	0	0	9	1	0	0	1	0	0	15	0	26
stop	0	0	14	1	1	0	1	0	0	1	54	0	72
occl	0	0	1	2	0	0	0	0	0	1	55	0	59
turn	2	0	0	2	0	0	0	0	4	0	79	0	87
walk	31	0	8	236	10	1	19	45	48	71	0	21	490
wd	0	0	0	2	0	0	0	1	0	0	18	0	21
Total	34	0	32	256	13	2	26	72	57	86	481	21	1080

Table S5 Transition probability from one behaviour (row name) to the other (column name) in the presence of a zebra jumping spider. Transition probabilities are obtained by dividing each transition frequeny (see table S1) between a pair of behaviours by the total number of times a given behaviour was performed (row sums in table S1).

Spider

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd
ab	0.00	0.01	0.04	0.04	0.03	0.00	0.22	0.03	0.02	0.05	0.55	0.03
capture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fly	0.03	0.01	0.00	0.10	0.04	0.00	0.22	0.16	0.06	0.01	0.37	0.01
groom	0.07	0.02	0.11	0.00	0.07	0.00	0.05	0.07	0.03	0.05	0.52	0.01
jump	0.05	0.02	0.22	0.09	0.00	0.00	0.11	0.15	0.02	0.00	0.33	0.00
retreat	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
run	0.24	0.02	0.18	0.07	0.05	0.01	0.00	0.10	0.02	0.02	0.28	0.05
stop	0.07	0.02	0.23	0.07	0.12	0.00	0.14	0.00	0.01	0.07	0.28	0.00
occl	0.07	0.00	0.15	0.10	0.12	0.00	0.10	0.10	0.00	0.02	0.34	0.00
turn	0.08	0.01	0.00	0.04	0.03	0.00	0.14	0.02	0.00	0.00	0.67	0.02
walk	0.27	0.02	0.08	0.19	0.06	0.00	0.09	0.13	0.03	0.14	0.00	0.05
wd	0.10	0.00	0.08	0.00	0.00	0.00	0.19	0.00	0.00	0.02	0.60	0.00

Table S6 Transition probability from one behaviour (row name) to the other (column name) before a zebra jumping spider was introduced into the arena. Transition probabilites are obtained by dividing each transition frequeny (see table S1) between a pair of behaviours by the total number of times a given behaviour was performed (row sums in table S1).

No spider

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd
ab	0.00	0.00	0.02	0.13	0.01	0.00	0.24	0.01	0.02	0.08	0.51	0.02
capture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fly	0.03	0.00	0.00	0.26	0.03	0.00	0.18	0.06	0.00	0.00	0.44	0.00
groom	0.04	0.00	0.06	0.00	0.04	0.00	0.10	0.01	0.03	0.05	0.67	0.00
jump	0.00	0.00	0.06	0.39	0.00	0.00	0.00	0.00	0.06	0.00	0.50	0.00
retreat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
run	0.36	0.00	0.05	0.13	0.01	0.00	0.00	0.04	0.02	0.01	0.39	0.03
stop	0.05	0.00	0.20	0.00	0.10	0.00	0.10	0.00	0.00	0.05	0.50	0.00
occl	0.06	0.00	0.00	0.19	0.00	0.00	0.16	0.00	0.00	0.09	0.50	0.00
turn	0.05	0.00	0.01	0.06	0.00	0.00	0.02	0.00	0.03	0.00	0.83	0.01
walk	0.21	0.00	0.02	0.36	0.01	0.00	0.12	0.04	0.05	0.18	0.00	0.03
wd	0.06	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.72	0.00

Table S7 Transition probability from one behaviour (row name) to the other (column name) in the presence of a juvenile praying mantid. Transition probabilites are obtained by dividing each transition frequeny (see table S1) between a pair of behaviours by the total number of times a given behaviour was performed (row sums in table S1).

Mantid

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd
ab	0.00	0.01	0.05	0.01	0.01	0.05	0.06	0.03	0.02	0.03	0.73	0.00
capture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fly	0.00	0.00	0.00	0.06	0.00	0.01	0.04	0.48	0.02	0.00	0.40	0.00
groom	0.00	0.00	0.05	0.00	0.01	0.00	0.05	0.01	0.01	0.04	0.84	0.00
jump	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.41	0.00	0.00	0.56	0.03
retreat	0.39	0.00	0.09	0.00	0.00	0.00	0.00	0.04	0.04	0.30	0.13	0.00
run	0.08	0.00	0.02	0.14	0.00	0.00	0.00	0.13	0.01	0.09	0.52	0.00
stop	0.02	0.00	0.19	0.04	0.02	0.02	0.09	0.00	0.00	0.02	0.60	0.00
occl	0.01	0.00	0.03	0.08	0.01	0.00	0.05	0.01	0.00	0.00	0.80	0.00
turn	0.02	0.01	0.01	0.03	0.01	0.02	0.08	0.00	0.01	0.00	0.83	0.00
walk	0.15	0.00	0.05	0.34	0.02	0.01	0.05	0.14	0.08	0.16	0.00	0.05
wd	0.00	0.00	0.02	0.00	0.00	0.00	0.04	0.00	0.00	0.02	0.92	0.00

Table S8 Transition probability from one behaviour (row name) to the other (column name) before a juvenile praying mantid was introduced into the arena. Transition probabilites are obtained by dividing each transition frequeny (see table S1) between a pair of behaviours by the total number of times a given behaviour was performed (row sums in table S1).

No mantid

Behavior	ab	capture	fly	groom	jump	retreat	run	stop	occl	turn	walk	wd
ab	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00	0.03	0.91	0.00
capture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fly	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.59	0.03	0.00	0.34	0.00
groom	0.00	0.00	0.04	0.00	0.00	0.00	0.02	0.00	0.01	0.05	0.88	0.00
jump	0.00	0.00	0.00	0.21	0.00	0.00	0.07	0.29	0.00	0.00	0.43	0.00
retreat	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.33	0.00	0.00	0.00
run	0.00	0.00	0.00	0.35	0.04	0.00	0.00	0.04	0.00	0.00	0.58	0.00
stop	0.00	0.00	0.19	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.75	0.00
occl	0.00	0.00	0.02	0.03	0.00	0.00	0.00	0.00	0.00	0.02	0.93	0.00
turn	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.05	0.00	0.91	0.00
walk	0.07	0.00	0.02	0.50	0.02	0.00	0.04	0.10	0.10	0.15	0.00	0.04
wd	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.05	0.00	0.00	0.86	0.00

Table S9 Proportion of time spent in a given behavioural state by each individual fruit fly before and after introducing a treatment (i.e., a disturbance, spider or mantid) to the assay chamber.

		Groo	ming	Wa	lking	Run	ning	Stop	ping	Ret	reat
Treatment	Individual	Absent	Present								
	1	0.820	0.728	0.180	0.265	0.000	0.005	0.000	0.000	0.000	0.000
Disturbance	2	0.590	0.265	0.338	0.658	0.000	0.009	0.044	0.015	0.000	0.000
	3	0.264	0.219	0.658	0.685	0.048	0.036	0.013	0.052	0.000	0.000
	1	0.528	0.490	0.359	0.394	0.022	0.011	0.000	0.003	0.000	0.000
Spider	2	0.116	0.000	0.844	0.861	0.000	0.086	0.000	0.053	0.000	0.000
	3	0.706	0.181	0.262	0.368	0.010	0.076	0.000	0.347	0.005	0.002
	1	0.419	0.764	0.474	0.217	0.008	0.005	0.061	0.014	0.000	0.000
Mantid	2	0.673	0.075	0.327	0.785	0.000	0.014	0.000	0.093	0.000	0.006
	3	0.684	0.963	0.309	0.037	0.000	0.000	0.000	0.000	0.000	0.000

Table S10 Number of occurrences per minute of each behavioural event before and after theintroduction of a treatment (i.e., a disturbance, spider or mantid) to the assay chamber.

155

159

		Pa	use	Τι	ırn	A	۸b	V	/d	F	ly	Ju	mp
Treatment	Individual	Absent	Present										
	1	0.000	0.006	0.000	0.006	0.000	0.003	0.000	0.000	0.000	0.002	0.000	0.003
Disturbance	2	0.003	0.013	0.003	0.013	0.060	0.023	0.003	0.005	0.082	0.027	0.000	0.005
	3	0.000	0.002	0.000	0.002	0.027	0.052	0.003	0.010	0.045	0.090	0.018	0.016
	1	0.009	0.013	0.000	0.005	0.043	0.046	0.006	0.000	0.006	0.003	0.000	0.000
Spider	2	0.020	0.018	0.032	0.045	0.012	0.000	0.012	0.027	0.048	0.252	0.000	0.000
	3	0.015	0.011	0.003	0.011	0.026	0.090	0.000	0.002	0.018	0.041	0.003	0.000
	1	0.052	0.017	0.016	0.006	0.031	0.002	0.008	0.002	0.070	0.020	0.003	0.000
Mantid	2	0.005	0.060	0.005	0.012	0.023	0.111	0.000	0.003	0.000	0.076	0.000	0.006
	3	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

160 Table S11 Coefficients from a linear model (lm) for control individuals meansured before and after161 the addition of a spider. While estimate of posterior means are similar to those of the main spider162 dataset, Due to low sample sizes, CIs are large.

Grooming					
Coefficient	Posterior mean	Lower CI	Upper CI		
Intercept	181.88	-23.34	387.10		
Predator state	-75.38	-377.82	227.05		
Duration	0.45	-0.34	1.24		
Locomotion					
Intercept	156.76	37.32	276.21		
Predator state	17.27	-158.75	193.29		
Duration	0.24	-0.22	0.70		

Table S12 Coefficients from a linear model (lm) for control individuals meansured before and 166 after the addition of a mantid. Estimate of posterior means are similar to those of the main mantid 167 dataset, but due to low sample sizes, CIs large.

Grooming					
Coefficient	Posterior mean	Lower CI	Upper CI		
Intercept	134.79	-1399.38	1668.96		
Predator state	341.56	-2661.10	3344.23		
Duration	-0.80	-12.76	11.17		
Locomotion					
Intercept	345.69	-919.99	1611.36		
Predator state	-323.02	-2800.19	2154.15		
Duration	1.64	-8.24	11.51		

Table S13 Coefficients from a linear model (lm) for control individuals meansured before and after 171 a disturbance. Despite low sample sizes, it is clear that disturbance had minimal effect on fruit fly 172 behaviours.

Grooming					
Coefficient	Posterior mean	Lower CI	Upper Cl		
Intercept	200.00	60.11	339.81		
Disturbance	0.00	-197.78	197.78		
Duration	2.38	-0.53	5.29		
Locomotion					
Intercept	132.30	-0.28	264.84		
Disturbance	0.00	-187.47	187.47		
Duration	-1.05	-3.81	1.70		

175 Links to videos describing novel behaviours

174

- 176 1) Abdominal Lifting http://dx.doi.org/10.6084/m9.figshare.1185638
- 177 2) Stopping Behaviour http://dx.doi.org/10.6084/m9.figshare.1185639
- 178 3) Retreat http://dx.doi.org/10.6084/m9.figshare.1185640