BIOINFORMATICS APPLICATIONS NOTE Vol. 00 no. 00 2014 Pages 1-6 # FinisherSC: A repeat-aware tool for upgrading de-novo assembly using long reads Ka-Kit Lam 1, Kurt LaButti 2, Asif Khalak 3*and David Tse 1,4† ¹Department of Electrical Engineering and Computer Sciences, UC Berkeley Received on XXX; revised on XXX accepted on XXX Associate Editor: XXXXXXX #### **ABSTRACT** We introduce FinisherSC, a repeat-aware and scalable tool for upgrading de-novo assembly using long reads. Experiments with real data suggest that FinisherSC can provide longer and higher quality contigs than existing tools while maintaining high concordance. Availability: The tool and data are available and will be maintained at http://kakitone.github.io/finishingTool/ Contact: dntse@stanford.edu ## INTRODUCTION In de-novo assembly pipelines for long reads, reads are often trimmed or thrown away. Moreover, there is no evidence that stateof-the-art assembly pipelines are data-efficient. In this work, we ask whether state-of-the-art assembly pipelines for long reads have already used up all the available information from raw reads to construct assembly of the highest possible quality. To answer this question, we first collect output contigs from the HGAP pipeline and the associated raw reads. Then, we pass them into our tool FinisherSC[6] to see if higher quality assemblies can be consistently obtained after post-processing. ### **METHODS** ### Usage and pipeline FinisherSC is designed to upgrade de-novo assembly using long reads(e.g. PacBio® reads). It is especially suitable for data consisting of a single long reads library. Input to FinisherSC are contigs(contigs.fasta) constructed by an assembler and all the raw reads(raw_reads.fasta). Output of FinisherSC are upgraded contigs(improved3.fasta) which are expected to be of higher quality than its input (e.g. longer N50, longer longest contigs, fewer number of contigs, high percentage match with reference, high genome fraction, etc). An example use case of FinisherSC is shown in Fig 1 . As shown in Fig 1, FinisherSC can be readily incorporated into state-of-the-art assembly pipelines (e.g. PacBio[®] HGAP). ### 2.2 Algorithm and features The algorithm of FinisherSC is summarized in Fig 1. Detailed description of the algorithm is in the supplementary materials. We summarize the key features of FinisherSC as follows. - Repeat-aware: FinisherSC uses a repeat-aware rule to define overlap. It uses string graphs to capture overlap information and to handle repeats so that FinisherSC can robustly merge contigs. Moreover, there is an optional component[5] that can resolve long approximate repeats with two copies by using the polymorphisms between them. - Data-efficient: FinisherSC utilizes ALL the raw reads to perform re-layout. This can fill gaps and improve robustness in handling repeats. - Scalable: FinisherSC streams raw reads to identify relevant reads for re-layout and refined analysis. MUMMER[4] does the core of the sequence alignment. These techniques allow FinisherSC to be easily scalable to high volume of data. ### 3 RESULTS AND DISCUSSION #### 3.1 Experimental evaluation We evaluated the performance of FinisherSC as follows. Raw reads were processed according to the use case in Fig 1. They were first error corrected and then assembled into contigs by an existing pipeline (i.e. HGAP[1]). Contigs were upgraded using FinisherSC and evaluated for quality with Quast[3]. The data used for assessment are real PacBio® reads. These include data recently produced at JGI and data available online supporting the HGAP publication. We compared the assembly quality of the contigs coming out from the Celera assembler[7] of HGAP pipeline, the upgraded contigs by FinisherSC and the upgraded contigs by PBJelly[2]. A summary of the results is shown in Table 1. We find that FinisherSC can upgrade the assembly from HGAP without sacrifice on accuracy. Moreover, the upgraded contigs by FinisherSC are generally of higher quality than those upgraded by PBJelly. This suggests that there is extra information from the reads that is not fully utilized by state-of-the-art assembly pipelines for long reads. 3.2 Discussion Although FinisherSC was originally designed to improve de-novo assembly by long reads, it can also be used to scaffold long contigs(formed by short reads) using long reads. For that use case, we note that the contigs formed by short reads can sometimes have length shorter than the average length of long reads. Therefore, we suggest users to filter out those short contigs before passing them into FinisherSC. 1 ²U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA ³Pacific Biosciences, Menlo Park, CA, USA ⁴Department of Electrical Engineering, Stanford University ^{*}Current affiliation: Samsung SSIC [†]To whom correspondence should be addressed Fig. 1: Pipeline where FinisherSC can fit in | Genome name | (a) | (b) | (c) | (d) | (e) | |--|---------|---------|---------|---------|---------| | Genome size | 5167383 | 5167383 | 4639221 | 3097457 | 5167383 | | Coverage of raw reads | 50 | 30 | 50 | 55 | 53.1 | | Coverage of corrected reads | 32.93 | 17.74 | 10.1 | 11.3 | 9.5 | | Coverage of input to Celera | 32.93 | 17.74 | 10.1 | 11.3 | 9.5 | | N50 of HGAP output | 4097401 | 89239 | 392114 | 1053479 | 1403814 | | N50 of FinisherSC upgraded output | 5168551 | 215810 | 1525398 | 3099349 | 2913716 | | N50 of PBJelly upgraded output | 4099674 | 145441 | 1200847 | 1715191 | 3343452 | | Number of contigs of HGAP output | 45 | 163 | 21 | 3 | 18 | | Number of contigs of FinisherSC upgraded output | 4 | 41 | 7 | 1 | 5 | | Number of contigs of PBJelly upgraded output | 44 | 115 | 14 | 2 | 8 | | Length of the longest contig of HGAP output | 4097401 | 254277 | 1241016 | 1390744 | 2103385 | | Length of the longest contig of FinisherSC upgraded output | 5168551 | 637485 | 2044060 | 3099349 | 2913716 | | Length of the longest contig of PBJelly upgraded output | 4099674 | 495596 | 1958341 | 1715191 | 3343452 | | Percentage match of HGAP output against reference | 99.87 | 98.11 | 99.51 | 99.96 | 99.85 | | Percentage match of FinisherSC upgraded output against reference | 99.87 | 98.27 | 99.60 | 99.99 | 99.89 | | Percentage match of PBJelly upgraded output against reference | 99.86 | 98.34 | 92.77 | 99.98 | 99.97 | | Total length of HGAP output | 5340498 | 5536634 | 4689701 | 3102769 | 5184825 | | Total length of FinisherSC upgraded output | 5212355 | 5139491 | 4660679 | 3099349 | 5167414 | | Total length of PBJelly upgraded output | 5383836 | 5821106 | 4718818 | 3106774 | 5210862 | Table 1. Experimental evaluation results. (a,b): Pedobacter heparinus DSM 2366 (recent real long reads from JGI) (c, d, e): Escherichia coli MG 1655, Meiothermus ruber DSM 1279, Pedobacter heparinus DSM 2366 (real long reads supporting the HGAP publication). Detailed analysis by Quast is shown in the supplementary material. **FinisherSC** #### 4 SUPPLEMENTARY MATERIALS ### 4.1 Typical use cases In this section, we describe example use cases of FinisherSC. Below are several scenarios that FinisherSC is helpful to you. 4.1.1 Low coverage data There are many reasons that you end up having low coverage reads. You may want to save chemicals, the genome may be too long, some parts of the experimental setup may just malfunction or you do not want to overwhelm the assembler with huge amount of data. In any of these situations, you want to utilize as much information from the reads as possible because of the scarcity of read data. 4.1.2 Simple setup for assemblers There are normally a lot of parameters that can be tuned for modern assemblers. It is also often not clear what parameters work best for your data. However, you do not want to waste time in repeatedly running the assembler by varying different combinations of parameters/setting. In this case, you need a tool that can efficiently and automatically improve your assemblies from the raw reads without rerunning the assembler. 4.1.3 Scaffolding You may have long contigs prepared from one library and long reads prepared from the other. In this case, you want to robustly and seamlessly combine data from two libraries through scaffolding. ### 4.2 Instructions on using FinisherSC Our software, FinisherSC, is helpful for the use cases discussed above. It processes long contigs with long reads. You only need to supply the input data files and issue a one-line command as follows to perform the processing. Let us assume that mumP is the path to your MUMMER and destP is the location where the input and output files stay. • Input : raw_reads.fasta, contigs.fasta • Output: improved3.fasta • Command: python finisherSC.py destP/ mumP/ We provide a sandbox example in the Dropbox folder linked in our webpage. Besides the standard usage, there is an extra option, which can resolve long approximate repeat with two copies. To experiment with this, you should first run FinisherSC as above and then issue the following command. python experimental/newPhasing.py destP/ mumP/ ### 4.3 Detailed description of the algorithm We adopt the terminology in [5]. Random flanking region refers to the neighborhood of a repeat interior. A copy of a repeat being bridged means that some reads cover the copy into the random flanking region. Subroutine 1 removes embedded contigs that would otherwise confuse the later string graph operations. Subroutines 2, 3, 6, 7 are designed to handle repeats. Subroutines 2, 3 resolve repeats whose copies are all bridged by some reads. Subroutines 6, 7 resolve two-copies repeats of which only one copy is bridged. Subroutines 4, 5 utilize neglected information from raw reads. They define merges at locations which are not parts of any long repeats. ¹ Algorithm 1: Subroutine 1: Filter completely embedded contigs Input : contigs.fasta Output: noEmbed.fasta - 1. Obtain alignment among contigs from contigs.fasta - 2. For any
(x,y) contig pair, if x is completely embedded in y, then we add x to removeList - Remove all contigs specified in removetList from contigs.fasta. The resultant set of contigs are outputted as noEmbed fasta **Algorithm 2:** Subroutine 2: Form a string graph with the BEST successors/predecessors as edges Input : noEmbed.fasta Output: String_graph_1 - 1. Initialize the nodes of G to be contigs from noEmbed.fasta - 2. Obtain alignment among contigs from noEmbed.fasta - 3. **for** *each contig x* **do** Find predecessor y and successor z with the largest overlap with x if such y exists then if such z exists then \lfloor add an edge $x \to z$ to G 4. Output G as String_graph_1 **Algorithm 3:** Subroutine 3: Condense the string graph by contracting edges with both in-degree and out-degree being 1 Input : String_graph_1, noEmbed.fasta Output: improved1.fasta 1. **for** each edge $u \rightarrow v$ in String_graph_1, **do** **if** out-deg(u) = in-deg(v) = 1 **then** condense(u,v) into a single node and concatenate the node labels - 2. **for** *each node x in the transformed String_graph_1* **do** output the concatenation of contigs associated with node x to be a merged contig - 3. Output all the merged contigs as improved1.fasta ¹ To simplify discussion, the subroutines described are based on the assumption that reads are extracted from a single-stranded DNA. However, we remark that we have implemented FinisherSC by taking into account that reads are extracted from both forward and reverse strands. Fig. 2: Repeat patterns, typical String_graph_1, typical String_graph_3 Algorithm 4: Subroutine 4: Use raw reads to declare potential successors/predecessors of dangling contigs Input : improved1.fasta, raw_reads.fasta Output: String_graph_2 - 1. Initialize nodes of G to be contigs from improved1.fasta - 2. Divide raw_reads into batches B_S - 3. Stream the data in B_S . for $b \in B_S$ do - i) align b with contigs from improved1.fasta - ii) record the overlap information in I - 4. **for** each pair of nodes u, v in G **do** if $u \rightarrow v$ is a predecessor-successor pair then **if** there exists read R such that (u, R) and (R, v) are predecessor-successor pairs according to I then Add an edge $u \to v$ to G 5. Output graph G as String_graph_2 #### 4.4 Justification of the algorithm Big picture There are two main parts of the algorithm underlying FinisherSC. They are - 1. Gap filling - 2. Repeat resolution With uniform sampling assumption, the gaps are unlikely to land on the few long repeats on bacterial genomes. Therefore, subroutines 4, 5 can close most of the gaps. For repeat resolution, subroutines 1, 2, 3, 6, 7 robustly define merges using various transformations of string graphs. Detailed discussion is in the coming section. Algorithm 5: Subroutine 5: Merge contigs(with gaps filled by reads) when they respectively only have 1 successor/1 predecessor Input : improved1.fasta, String_graph_2 Output: improved2.fasta, connectivity_info 1. **for** each edge $u \rightarrow v$ of String_graph_2 **do** **if** out-deg(u) = in-deg(v) = 1 **then** condense(u,v) into a single node and concatenate the node labels 2. for each node in the transformed String_graph_2 do output concatenated contigs as new contigs (with reads filling the gaps) and connectivity information to connectivity_info Algorithm 6: Subroutine 6: Form a string graph with ALL successors/predecessors as edges Input : improved2.fasta, connectivity_info Output: String_graph_3 - 1. Use connectivity_info to form a graph G with nodes from improved2.fasta. All predecessor-successor pairs are edges in - 2. Output the corresponding graph as String_graph_3 4.4.2 Detailed justification on repeat resolution We focus the discussion on a long repeat with two copies. To simplify discussion, we further assume that each base of the genome is covered by some reads and the read length is fixed. The goal here is to correctly merge as many reads as possible in the presence of that repeat. The claim is that Subroutines 2, 3, 6, 7 collectively can achieve this goal. In the **Algorithm 7:** Subroutine 7: Merge contigs with only 1 predecessor or 1 successor and each has no more than two competing edges Input : improved2.fasta, String_graph_3 Output: improved3.fasta - 1. Traverse the String_graph_3 for pattern of $u1 \rightarrow u3$, $u2 \rightarrow u3$, $u2 \rightarrow u4$ and that out-deg(u1) =1, out-deg(u2) = 2, in-deg(u3) =2, in-deg(u4) =1, if found, then, - a) Delete the edge $u2 \rightarrow u3$ - b) Condense the graph - c) Continue until the whole graph is traversed - 2. Output the merged contigs as improved3.fasta case of one repeat, we only need consider the reads either bridging the repeat copies/ reads at the interior of repeats/ touching the repeat copies of that repeat. We separate the discussion on each of the cases depicted in the rows of Fig 2. They are listed as follows. - 1. Both copies are bridged - 2. Only one copy is bridged - 3. Both copies are not bridged Let us first clarify some terminologies before proceeding. A read y is called a successor of another read x if they have significant head-to-tail overlap in the order of $x \to y$. y is called the best successor of x if the overlap length is the largest among all the successors of x. y is called the true immediate successor of x if y is the closest read to x's right side in the sequencing process. Similarly, we can also define the corresponding notion for predecessors. In the first case, without loss of generality, let us consider any read R emerging from the left flanking region of the left copy. It will get merged with its best successor when condensing String_graph_1. Moreover, the best successor is also the true immediate successor. It is because reads from the other copy of the repeat either have smaller overlap length or are not successors. Now, let us move to the second case. Since there is a bridging read, there are no reads completely embedded in the interior of the repeat. Without loss of generality, we consider the case that the left copy is bridged and the right copy is not. Now we label R2 as the bridging read, R1/R3 respectively as the true immediate predecessor/successor of the bridging read, R4/R5 as the most penetrating reads into the second copy of the repeat. For all other reads, they get merged with their true immediate successors/predecessors when condensing in String_graph_1. For the remaining five items of interest, the main question is whether there is an edge between R4 and R5 in String_graph_1 (i.e. whether the best successor of R4 is R3). If not, then condensing in String_graph_1 will merge R4 with R5, which is the true immediate successor. If such an edge exists, then we end up with the pattern shown in Fig 2 for String_graph_3. This means that only R1 is merged to R2 when condensing String_graph_1. However, given the existence of the Z-shape pattern, graph operations on String_graph_3, the subroutine 7 will merge R2 and R3, and also will merge R4 and R5. Fig. 3: Z-pattern in string graph Fig. 4: Using string graph to define repeat interiors and flanking regions Finally, consider the third case, when both repeat copies are not bridged. For reads that are not closest to the repeat copies, they get merged correctly when condensing String_graph_1. Without loss of generality, we consider a read x closest to the left flanking region of the left copy of the repeat. An illustration of this situation in String_graph_1 is shown in Fig 3. Let its true immediate successor be T. We are going to show that it will not get merged with the wrong read in String_graph_1 through a proof by contradiction. If x got merged with some wrong F, then $x \to F$ would be an edge. Let y be the read closest the left flanking region of the right copy of the repeat. Then, $y \to F$ is also an edge. Therefore, there should be no merges of $x \to F$, which results in contradiction. Now we consider String_graph_3, if x has only 1 successor, then it should be T. Otherwise, it is connected to both T and some F. Then, we consider the y coming from the left flanking region of the right copy. There must be an edge from y to F. If there is also an edge from y to T, then both x and y are not merged in String_graph_3. However, if there is no edge from y to T, then x is merged with T and y with F correctly. #### 4.5 The optional repeat phasing step The optional repeat phasing step involves two main parts. - 1. Identify repeat interior and its flanking regions - 2. Merge contigs by phasing the polymorphisms within the repeat Algorithm 8 achieves the first part by performing various operations on a string graph. The nodes of the string graph are either contigs or reads near the end points of the contigs. An illustration of a typical string graph is shown in Fig 4. The contigs are indicated by solid circles and reads are indicated by rectangles. The dotted circles specify the random flanking region and repeat interior that we want to infer through Algorithm 8. The X-phasing step in [5] achieves the second part. It utilizes the polymorphisms within the repeat interior to help distinguish the repeat copies. Interested readers may refer to Xphased-Multibridging in [5] for more details. In FinisherSC, we use the implementation of the Xphasing step in [5]. #### **Algorithm 8:** Repeat phasing option Input: improved3.fasta, raw_read.fasta Output: improved4.fasta - 1. Stream reads to identify reads that are associated with end points of contigs - Form a 2-color graph with black nodes as reads and red nodes as contigs. Name it as G - 3. **for** each red node in G **do** Perform graph search to determine other red nodes that are reachable by it through path consisting of black nodes only - 4. Form a bipartite graph $B=(B_L,B_R)$ with nodes on left/right side representing left/right ends of the contigs. An edge $L\to R$ exists, where $L\in B_L, R\in B_R$, if there exists a path of black nodes in G such that R is reachable from L -
5. Find connected components in B - 7. **for** each two-copies repeat[with associated nodes (L1,L2; R1, R2)] **do** - a) Go back to graph G, and label nodes reachable from each of L1/L2 and to each of R1/R2 through black paths. - b) For each black node in G connected to all L1/L2/R1/R2, name it as inside nodes. If it only misses one of the four, then label it as miss_x node where x is the missed item - c) Define start node S as an inside node connected to some miss_L1 nodes and miss_L2 nodes. Similarly, define end node E as an inside node connected to some miss_R1 nodes and miss_R2 nodes - d) Define repeat interior and flanking region - i) Find a black path between S and E and label it as a repeat path (this is the repeat interior) - ii) Find paths from L1 to S, L2 to S, E to R1, E to R2 respectively (these are the flanking regions) - e) For each black node involved with this repeat, - i) If it is connected to nodes on paths L1 to S, add it to L1 to S read set. Similarly, do it for L2 to S, E to R1 and E to R2 read sets - ii) If it is connected to inside nodes only, then add it to repeat read set - iii) Use the separated read sets to perform repeat phasing as described in [5] - iv) Declare merging of contigs based on the phasing results #### 4.6 Future work FinisherSC is a step forward in utilizing read information. However, there are still many interesting follow-ups to further improve quality of assemblies. These include resolution of long tandem repeats and long repeats with many copies. #### 4.7 Detailed experimental results In this section, we provide the detailed Quast report for the results described in Table 1. Moreover, we compare in Fig 5 the memory consumption and running time of FinisherSC with those of PBJelly. The computing experiments were performed on the genepool cluster at JGI. Below are commands used to run PBJelly. ``` Jelly.py setup Protocol.xml -x "--minGap=1" Jelly.py mapping Protocol.xml Jelly.py support Protocol.xml -x "--debug" Jelly.py extraction Protocol.xml Jelly.py assembly Protocol.xml -x "--nproc=16" Jelly.py output Protocol.xml The BLASR configuration in Protocol.xml is -minMatch 8 -minPctIdentity 70 -bestn 8 -nCandidates 30 -maxScore -500 -nproc 16 -noSplitSubreads ``` #### 5 ACKNOWLEDGEMENT The authors K.K.L and D.T. are partially supported by the Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement CCF-0939370. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. #### **REFERENCES** - [1]Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E Eichler, et al. Nonhybrid, finished microbial genome assemblies from long-read smrt sequencing data. *Nature methods*, 2013. - [2]Adam C English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu, Xiang Qin, Donna M Muzny, Jeffrey G Reid, Kim C Worley, et al. Mind the gap: Upgrading genomes with pacific biosciences rs long-read sequencing technology. PLoS ONE, 7:47768, 2012. - [3]Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast: quality assessment tool for genome assemblies. *Bioinformatics*, 29(8):1072–1075, 2013. - [4]Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Corina Antonescu, and Steven L Salzberg. Versatile and open software for comparing large genomes. *Genome biology*, 5(2):R12, 2004. - [5]Ka-Kit Lam, Asif Khalak, and David Tse. Near-optimal assembly for shotgun sequencing with noisy reads. BMC Bioinformatics, 2014. - [6]Ka-Kit Lam, Kurt LaButti, Asif Khalak, and David Tse. http://kakitone.github.io/finishingTool/. - [7]Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P Fasulo, Michael J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A Remington, et al. A whole-genome assembly of drosophila. Fig. 5: Running time and memory consumption comparison of FinisherSC and PBJelly . (a) to (e) are the corresponding data sets in Table 1. **Table 2.** (a) in Table 1. All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted (e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs). **Table 3.** (b) in Table 1. All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted (e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs). | Assembly | HGAP | FinisherSC | PBJelly | |---|--|--|--| | # contigs (≥ 0 bp) | 45 | 4 | 44 | | # contigs (> 1000 bp) | 45 | 4 | 44 | | Total length (≥ 0 bp) | 5340498 | 5212355 | 5383836 | | Total length (≥ 1000 bp) | 5340498 | 5212355 | 5383836 | | # contigs | 45 | 4 | 44 | | Largest contig | 4097401 | 5168551 | 4099674 | | Total length | 5340498 | 5212355 | 5383836 | | Reference length | 5167383 | 5167383 | 5167383 | | GC (%) | 42.16 | 42.06 | 42.19 | | Reference GC (%) | 42.05 | 42.05 | 42.05 | | N50 | 4097401 | 5168551 | 4099674 | | NG50 | 4097401 | 5168551 | 4099674 | | N75 | 4097401 | 5168551 | 4099674 | | NG75 | 4097401 | 5168551 | 4099674 | | L50 | 1 | 1 | 1 | | LG50 | 1 | 1 | 1 | | L75 | 1 | 1 | 1 | | LG75 | 1 | 1 | 1 | | # misassemblies | 1 | 1 | 3 | | # misassembled contigs | 1 | 1 | 2 | | Misassembled contigs length | 9679 | 9679 | 4117533 | | # local misassemblies | 2 | 3 | 4 | | # unaligned contigs | 39 + 0 part | 1 + 0 part | 39 + 0 part | | | | P | | | Unaligned length | 135514 | 17453 | 163702 | | Genome fraction (%) | | | | | Genome fraction (%) Duplication ratio | 135514
100.000
1.007 | 17453 | 163702 | | Genome fraction (%) Duplication ratio # N's per 100 kbp | 135514
100.000
1.007
4.25 | 17453
100.000
1.005
0.48 | 163702
100.000 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp | 135514
100.000
1.007
4.25
9.56 | 17453
100.000
1.005
0.48
1.30 | 163702
100.000
1.010
4.46
10.14 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp | 135514
100.000
1.007
4.25
9.56
92.62 | 17453
100.000
1.005
0.48
1.30
54.90 | 163702
100.000
1.010
4.46
10.14
94.75 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment | 135514
100.000
1.007
4.25
9.56
92.62
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp | 135514
100.000
1.007
4.25
9.56
92.62 | 17453
100.000
1.005
0.48
1.30
54.90 | 163702
100.000
1.010
4.46
10.14
94.75 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment NA50 NGA50 NA75 | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480
5168480
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment NA50 NGA50 NA75 NGA75 | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment NA50 NGA50 NA75 NGA75 LA50 | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480
5168480
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment NA50 NGA50 NA75 NGA75 LA50 LGA50 | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400
4097400
4097400 | 17453
100.000
1.005
0.48
1.30
54.90
5168480
5168480
5168480
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915
4098915
4098915 | | Genome fraction (%) Duplication ratio # N's per 100 kbp # mismatches per 100 kbp # indels per 100 kbp Largest alignment NA50 NGA50 NA75 NGA75 LA50 | 135514
100.000
1.007
4.25
9.56
92.62
4097400
4097400
4097400
4097400
1 | 17453
100.000
1.005
0.48
1.30
54.90
5168480
5168480
5168480
5168480 | 163702
100.000
1.010
4.46
10.14
94.75
4098915
4098915
4098915
4098915 | | # contigs (≥ 0 bp) | Assembly | HGAP | FinisherSC | PBJelly |
---|-----------------------------|-------------|------------|--------------| | # contigs (≥ 1000 bp) | 1 | | | | | Total length (≥ 0 bp) 5536634 5139491 5821106 Total length (≥ 1000 bp) 5536634 5139491 5821106 # contigs 163 41 115 Largest contig 254277 637485 495596 Total length 5536634 5139491 5821106 Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassembled contigs 0 0 12 # misassembled contigs 0 0 | | | | | | Total length (≥ 1000 bp) 5536634 5139491 5821106 # contigs 163 41 115 Largest contig 254277 637485 495596 Total length 5536634 5139491 5821106 Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 0 439591 # unaligned length 200727 | | | | | | # contigs 163 41 115 Largest contig 254277 637485 495596 Total length 5536634 5139491 5821106 Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 439591 # local misassemblies 0 0 439591 # unaligned length 200727 11862 302804 < | | | | | | Largest contig 254277 637485 495596 Total length 5536634 5139491 5821106 Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 10 Misassembled contigs 0 0 439591 # local misassemblies 0 0 439591 # unaligned contigs 0 0 439591 # unaligned length 200727 11862 302804 <td></td> <td></td> <td></td> <td></td> | | | | | | Total length 5536634 5139491 5821106 Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassembles 0 0 439591 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 | | | | | | Reference length 5167383 5167383 5167383 GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 0 439591 # unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 <td></td> <td></td> <td></td> <td></td> | | | | | | GC (%) 41.98 41.96 42.01 Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 12 # misassembled contigs length 0 0 439591 # local misassemblies 0 0 439591 # local misassemblies 0 0 439591 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 < | | | | | | Reference GC (%) 42.05 42.05 42.05 N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 12 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 | | | | | | N50 89239 215810 145441 NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 12 # misassembled contigs 0 0 439591 # local misassemblies 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 53.00 67.78 | | | | | | NG50 94672 215810 161517 N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 | Reference GC (%) | 42.05 | 42.05 | | | N75 44568 117879 98297 NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 <td>N50</td> <td>89239</td> <td>215810</td> <td>145441</td> | N50 | 89239 | 215810 | 145441 | | NG75 53723 117879 116800 L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 < | | 94672 | | 161517 | | L50 20 9 14 LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 161490 NA75 < | | 44568 | 117879 | 98297 | | LG50 18 9 12 L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75< | NG75 | 53723 | 117879 | 116800 | | L75 42 17 26 LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 | L50 | 20 | 9 | 14 | | LG75 36 17 21 # misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 | LG50 | 18 | 9 | 12 | | #
misassemblies 0 0 12 # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 | L75 | 42 | 17 | 26 | | # misassembled contigs 0 0 10 Misassembled contigs length 0 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 | LG75 | 36 | 17 | 21 | | Misassembled contigs length 0 439591 # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # misassemblies | 0 | 0 | 12 | | # local misassemblies 0 3 3 # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # misassembled contigs | 0 | 0 | 10 | | # unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | Misassembled contigs length | 0 | 0 | 439591 | | Unaligned length 200727 11862 302804 Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # local misassemblies | 0 | 3 | 3 | | Genome fraction (%) 98.727 98.957 99.964 Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # unaligned contigs | 46 + 1 part | 1 + 0 part | 43 + 22 part | | Duplication ratio 1.046 1.003 1.068 # N's per 100 kbp 15.64 6.17 9.50 # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | Unaligned length | 200727 | 11862 | 302804 | | # N's per 100 kbp | Genome fraction (%) | 98.727 | 98.957 | 99.964 | | # mismatches per 100 kbp 63.00 67.78 68.92 # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | Duplication ratio | 1.046 | 1.003 | 1.068 | | # indels per 100 kbp 577.98 589.72 597.99 Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # N's per 100 kbp | 15.64 | 6.17 | 9.50 | | Largest alignment 254274 637485 495589 NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # mismatches per 100 kbp | 63.00 | 67.78 | 68.92 | | NA50 89239 215810 145441 NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | # indels per 100 kbp | 577.98 | 589.72 | 597.99 | | NGA50 94672 215810 161490 NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | Largest alignment | 254274 | 637485 | 495589 | | NA75 44567 117879 98293 NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | NA50 | 89239 | 215810 | 145441 | | NGA75 50860 117879 115834 LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | NGA50 | 94672 | 215810 | 161490 | | LA50 20 9 14 LGA50 18 9 12 LA75 42 17 26 | NA75 | 44567 | 117879 | 98293 | | LGA50 18 9 12 LA75 42 17 26 | NGA75 | 50860 | 117879 | 115834 | | LA75 42 17 26 | LA50 | 20 | 9 | 14 | | | LGA50 | 18 | 9 | 12 | | LGA75 36 17 21 | LA75 | 42 | 17 | 26 | | | LGA75 | 36 | 17 | 21 | **Table 4.** (c) in Table 1. All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted (e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs). **Table 5.** (d) in Table 1. All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted (e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs). | # contigs (≥ 0 bp) | Assembly | HGAP | FinisherSC | PBJelly | |--|-----------------------------|------------|------------|------------| | # contigs (≥ 1000 bp) | | | | | | Total length (≥ 0 bp) 4689701 4660679 4718818 Total length (≥ 1000 bp) 4689701 4660679 4718818 # contigs 21 7 14 Largest contig 1241016 2044060 1958341 Total length 4689701 4660679 4718818 Reference length 4639221 4639221 4639221 GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 NG75 252384 1525398 275618 NG75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 <td></td> <td></td> <td>,</td> <td></td> | | | , | | | Total length (≥ 1000 bp) 4689701 4660679 4718818 # contigs 21 7 14 Largest contig 1241016 2044060 1958341 Total length 4689701 4660679 4718818 Reference length 4639221 4639221 4639221 GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs 2530799 3584781 3672462 </td <td></td> <td></td> <td></td> <td></td> | | | | | | # contigs | | | | | | Largest contig 1241016 2044060 1958341 Total length 4689701 4660679 4718818 Reference length 4639221 4639221 4639221 GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 LG75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 | | | | | | Total length 4689701 4660679 4718818 Reference length 4639221 4639221 4639221 GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 LG75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 <t< td=""><td>_</td><td></td><td></td><td></td></t<> | _ | | | | | Reference length 4639221 4639221 4639221 4639221 GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75
252384 1525398 321636 L50 3 2 2 LG50 3 2 2 LG75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs 9 3584781 3672462 # local misassemblies 3 3 4 # unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 | | | | | | GC (%) 50.87 50.85 50.85 Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 LG75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0+1 part 0+0 part 0+3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.02 | | | | | | Reference GC (%) 50.79 50.79 50.79 N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 LG75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 3.66 4.61 | | | | | | N50 392114 1525398 1200847 NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 3.66 4.61 | | | | | | NG50 392114 1525398 1200847 N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1 | | | | | | N75 252384 1525398 275618 NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 | - 10 0 | | | | | NG75 252384 1525398 321636 L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 | | | | | | L50 3 2 2 LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NA75 229039 | | | | | | LG50 3 2 2 L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NA75 | | | | | | L75 7 2 4 LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 LA5 | | _ | _ | _ | | LG75 7 2 3 # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 <tr< td=""><td></td><td></td><td>_</td><td></td></tr<> | | | _ | | | # misassemblies 8 8 12 # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 LA50 5 3 3 LA50 5 3 3 LA50 5 3 3 LA55 9 5 </td <td></td> <td></td> <td>2</td> <td>1</td> | | | 2 | 1 | | # misassembled contigs 4 3 5 Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 3 4 # unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 < | | | _ | | | Misassembled contigs length 2530799 3584781 3672462 # local misassemblies 3 4 # unaligned contigs 0+1 part 0+0 part 0+3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | | 8 | | | | # local misassemblies 3 3 4 4 # unaligned contigs 0+1 part 0+0 part 0+3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 3 LGA50 5 3 3 3 LGA50 5 7 | # misassembled contigs | 4 | 3 | 5 | | # unaligned contigs 0+1 part 0+0 part 0+3 part Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | Misassembled contigs length | 2530799 | 3584781 | 3672462 | | Unaligned length 205 0 2605 Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | # local misassemblies | 3 | 3 | 4 | | Genome fraction (%) 99.583 99.656 99.689 Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | | 0 + 1 part | 0 + 0 part | 0 + 3 part | | Duplication ratio 1.015 1.008 1.021 # N's per 100 kbp 0.00 0.00 0.00 # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | Unaligned length | 205 | 0 | 2605 | | # N's per 100 kbp | Genome fraction (%) | 99.583 | 99.656 | 99.689 | | # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | Duplication ratio | 1.015 | 1.008 | 1.021
 | # mismatches per 100 kbp 3.66 4.61 4.11 # indels per 100 kbp 8.36 13.82 10.75 Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | # N's per 100 kbp | 0.00 | 0.00 | 0.00 | | Largest alignment 683967 1094192 949307 NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | # mismatches per 100 kbp | 3.66 | 4.61 | 4.11 | | NA50 339478 860437 685586 NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | # indels per 100 kbp | 8.36 | 13.82 | 10.75 | | NGA50 339478 860437 685586 NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | Largest alignment | 683967 | 1094192 | 949307 | | NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | NA50 | 339478 | 860437 | 685586 | | NA75 229039 378942 255377 NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | NGA50 | 339478 | 860437 | 685586 | | NGA75 229039 378942 255377 LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | NA75 | 229039 | 378942 | | | LA50 5 3 3 LGA50 5 3 3 LA75 9 5 7 | NGA75 | 229039 | 378942 | | | LGA50 5 3 3 LA75 9 5 7 | | | | | | LA75 9 5 7 | | | 3 | | | | | | | | | | LGA75 | 9 | | 7 | | Assembly | HGAP | FinisherSC | PBJelly | |---|----------|------------|------------------| | # contigs (≥ 0 bp) | 3 | 1 | 2 | | # contigs (\geq 0 bp) # contigs (\geq 1000 bp) | 3 | 1 | 2 | | Total length (≥ 0 bp) | 3102769 | 3099349 | 3106774 | | Total length ($\geq 0 \text{ bp}$) Total length ($\geq 1000 \text{ bp}$) | 3102769 | 3099349 | 3106774 | | # contigs | 3102709 | 3099349 | 2 | | | 1390744 | 3099349 | 1715191 | | Largest contig | 3102769 | 3099349 | 3106774 | | Total length | 3102769 | | | | Reference length | | 3097457 | 3097457
63.38 | | GC (%) | 63.38 | 63.39 | | | Reference GC (%) | 63.38 | 63.38 | 63.38 | | N50 | 1053479 | 3099349 | 1715191 | | NG50 | 1053479 | 3099349 | 1715191 | | N75 | 1053479 | 3099349 | 1391583 | | NG75 | 1053479 | 3099349 | 1391583 | | L50 | 2 | 1 | 1 | | LG50 | 2 | 1 | 1 | | L75 | 2 | 1 | 2 | | LG75 | 2 | 1 | 2 | | # misassemblies | 0 | 0 | 0 | | # misassembled contigs | 0 | 0 | 0 | | Misassembled contigs length | 0 | 0 | 0 | | # local misassemblies | 2 | 2 | 2 | | # unaligned contigs | 0+0 part | 0+0 part | 0+0 part | | Unaligned length | 0 | 0 | 0 | | Genome fraction (%) | 99.966 | 99.986 | 99.986 | | Duplication ratio | 1.002 | 1.001 | 1.003 | | # N's per 100 kbp | 0.00 | 0.00 | 0.00 | | # mismatches per 100 kbp | 0.03 | 0.26 | 0.10 | | # indels per 100 kbp | 1.10 | 3.87 | 1.32 | | Largest alignment | 1390744 | 3099004 | 1713236 | | NA50 | 1053134 | 3099004 | 1713236 | | NGA50 | 1053134 | 3099004 | 1713236 | | NA75 | 1053134 | 3099004 | 1391558 | | NGA75 | 1053134 | 3099004 | 1391558 | | LA50 | 2 | 1 | 1 | | LGA50 | 2 | 1 | 1 | | LA75 | 2 | 1 | 2 | | LGA75 | 2 | 1 | 2 | | | | <u> </u> | | **Table 6.** (e) in Table 1. All statistics are based on contigs of size ≥ 500 bp, unless otherwise noted (e.g., "# contigs (≥ 0 bp)" and "Total length (≥ 0 bp)" include all contigs). | Assembly | HGAP | FinisherSC | PBJelly | |-----------------------------|------------|------------|------------| | # contigs (≥ 0 bp) | 18 | 5 | 8 | | # contigs (≥ 1000 bp) | 18 | 5 | 8 | | Total length (≥ 0 bp) | 5184825 | 5167414 | 5210862 | | Total length (≥ 1000 bp) | 5184825 | 5167414 | 5210862 | | # contigs | 18 | 5 | 8 | | Largest contig | 2103385 | 2913716 | 3343452 | | Total length | 5184825 | 5167414 | 5210862 | | Reference length | 5167383 | 5167383 | 5167383 | | GC (%) | 42.05 | 42.05 | 42.07 | | Reference GC (%) | 42.05 | 42.05 | 42.05 | | N50 | 1403814 | 2913716 | 3343452 | | NG50 | 1403814 | 2913716 | 3343452 | | N75 | 790287 | 2225895 | 1814491 | | NG75 | 790287 | 2225895 | 1814491 | | L50 | 2 | 1 | 1 | | LG50 | 2 | 1 | 1 | | L75 | 3 | 2 | 2 | | LG75 | 3 | 2 | 2 | | # misassemblies | 1 | 1 | 2 | | # misassembled contigs | 1 | 1 | 2 | | Misassembled contigs length | 1403814 | 2913716 | 1820739 | | # local misassemblies | 0 | 0 | 1 | | # unaligned contigs | 0 + 0 part | 0 + 0 part | 0 + 3 part | | Unaligned length | 0 | 0 | 13698 | | Genome fraction (%) | 99.900 | 99.934 | 99.954 | | Duplication ratio | 1.005 | 1.001 | 1.007 | | # N's per 100 kbp | 0.00 | 0.00 | 0.00 | | # mismatches per 100 kbp | 3.41 | 3.56 | 2.28 | | # indels per 100 kbp | 2.91 | 5.31 | 5.21 | | Largest alignment | 2103385 | 2225895 | 3343452 | | NA50 | 1259090 | 1656831 | 3343452 | | NGA50 | 1259090 | 1656831 | 3343452 | | NA75 | 790287 | 1656831 | 1270970 | | NGA75 | 790287 | 1656831 | 1270970 | | LA50 | 2 | 2 | 1 | | LGA50 | 2 | 2 | 1 | | LA75 | 3 | 2 | 2 | | LGA75 | 3 | 2 | 2 |