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ABSTRACT
We introduce FinisherSC, a repeat-aware and scalable tool for

upgrading de-novo assembly using long reads. Experiments with real
data suggest that FinisherSC can provide longer and higher quality
contigs than existing tools while maintaining high concordance.
Availability: The tool and data are available and will be maintained
at http://kakitone.github.io/finishingTool/
Contact: dntse@stanford.edu

1 INTRODUCTION
In de-novo assembly pipelines for long reads, reads are often
trimmed or thrown away. Moreover, there is no evidence that state-
of-the-art assembly pipelines are data-efficient. In this work, we
ask whether state-of-the-art assembly pipelines for long reads have
already used up all the available information from raw reads to
construct assembly of the highest possible quality. To answer this
question, we first collect output contigs from the HGAP pipeline
and the associated raw reads. Then, we pass them into our tool
FinisherSC[6] to see if higher quality assemblies can be consistently
obtained after post-processing.

2 METHODS
2.1 Usage and pipeline
FinisherSC is designed to upgrade de-novo assembly using long
reads(e.g. PacBio R© reads). It is especially suitable for data
consisting of a single long reads library. Input to FinisherSC
are contigs(contigs.fasta) constructed by an assembler and all the
raw reads(raw reads.fasta). Output of FinisherSC are upgraded
contigs(improved3.fasta) which are expected to be of higher quality
than its input (e.g. longer N50, longer longest contigs, fewer number
of contigs, high percentage match with reference, high genome
fraction, etc). An example use case of FinisherSC is shown in Fig
1 . As shown in Fig 1, FinisherSC can be readily incorporated into
state-of-the-art assembly pipelines (e.g. PacBio R© HGAP).

2.2 Algorithm and features
The algorithm of FinisherSC is summarized in Fig 1. Detailed
description of the algorithm is in the supplementary materials. We
summarize the key features of FinisherSC as follows.
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• Repeat-aware: FinisherSC uses a repeat-aware rule to define
overlap. It uses string graphs to capture overlap information
and to handle repeats so that FinisherSC can robustly merge
contigs. Moreover, there is an optional component[5] that can
resolve long approximate repeats with two copies by using the
polymorphisms between them.

• Data-efficient: FinisherSC utilizes ALL the raw reads to
perform re-layout. This can fill gaps and improve robustness
in handling repeats.

• Scalable: FinisherSC streams raw reads to identify relevant
reads for re-layout and refined analysis. MUMMER[4] does
the core of the sequence alignment. These techniques allow
FinisherSC to be easily scalable to high volume of data.

3 RESULTS AND DISCUSSION
3.1 Experimental evaluation
We evaluated the performance of FinisherSC as follows. Raw
reads were processed according to the use case in Fig 1. They
were first error corrected and then assembled into contigs by an
existing pipeline (i.e. HGAP[1]). Contigs were upgraded using
FinisherSC and evaluated for quality with Quast[3]. The data
used for assessment are real PacBio R© reads. These include data
recently produced at JGI and data available online supporting the
HGAP publication. We compared the assembly quality of the
contigs coming out from the Celera assembler[7] of HGAP pipeline,
the upgraded contigs by FinisherSC and the upgraded contigs
by PBJelly[2]. A summary of the results is shown in Table 1.
We find that FinisherSC can upgrade the assembly from HGAP
without sacrifice on accuracy. Moreover, the upgraded contigs by
FinisherSC are generally of higher quality than those upgraded by
PBJelly. This suggests that there is extra information from the reads
that is not fully utilized by state-of-the-art assembly pipelines for
long reads.
3.2 Discussion
Although FinisherSC was originally designed to improve de-novo
assembly by long reads, it can also be used to scaffold long
contigs(formed by short reads) using long reads. For that use case,
we note that the contigs formed by short reads can sometimes have
length shorter than the average length of long reads. Therefore, we
suggest users to filter out those short contigs before passing them
into FinisherSC.
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Fig. 1: Pipeline where FinisherSC can fit in

Genome name (a) (b) (c) (d) (e)

Genome size 5167383 5167383 4639221 3097457 5167383
Coverage of raw reads 50 30 50 55 53.1

Coverage of corrected reads 32.93 17.74 10.1 11.3 9.5
Coverage of input to Celera 32.93 17.74 10.1 11.3 9.5

N50 of HGAP output 4097401 89239 392114 1053479 1403814
N50 of FinisherSC upgraded output 5168551 215810 1525398 3099349 2913716

N50 of PBJelly upgraded output 4099674 145441 1200847 1715191 3343452
Number of contigs of HGAP output 45 163 21 3 18

Number of contigs of FinisherSC upgraded output 4 41 7 1 5
Number of contigs of PBJelly upgraded output 44 115 14 2 8
Length of the longest contig of HGAP output 4097401 254277 1241016 1390744 2103385

Length of the longest contig of FinisherSC upgraded output 5168551 637485 2044060 3099349 2913716
Length of the longest contig of PBJelly upgraded output 4099674 495596 1958341 1715191 3343452

Percentage match of HGAP output against reference 99.87 98.11 99.51 99.96 99.85
Percentage match of FinisherSC upgraded output against reference 99.87 98.27 99.60 99.99 99.89

Percentage match of PBJelly upgraded output against reference 99.86 98.34 92.77 99.98 99.97
Total length of HGAP output 5340498 5536634 4689701 3102769 5184825

Total length of FinisherSC upgraded output 5212355 5139491 4660679 3099349 5167414
Total length of PBJelly upgraded output 5383836 5821106 4718818 3106774 5210862

Table 1. Experimental evaluation results. (a,b) : Pedobacter heparinus DSM 2366 (recent real long reads from JGI) (c, d, e) : Escherichia coli MG 1655,
Meiothermus ruber DSM 1279, Pedobacter heparinus DSM 2366 (real long reads supporting the HGAP publication). Detailed analysis by Quast is shown in
the supplementary material.
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4 SUPPLEMENTARY MATERIALS
4.1 Typical use cases
In this section, we describe example use cases of FinisherSC. Below
are several scenarios that FinisherSC is helpful to you.

4.1.1 Low coverage data There are many reasons that you end
up having low coverage reads. You may want to save chemicals, the
genome may be too long, some parts of the experimental setup may
just malfunction or you do not want to overwhelm the assembler
with huge amount of data. In any of these situations, you want to
utilize as much information from the reads as possible because of
the scarcity of read data.

4.1.2 Simple setup for assemblers There are normally a lot of
parameters that can be tuned for modern assemblers. It is also often
not clear what parameters work best for your data. However, you
do not want to waste time in repeatedly running the assembler by
varying different combinations of parameters/setting. In this case,
you need a tool that can efficiently and automatically improve your
assemblies from the raw reads without rerunning the assembler.

4.1.3 Scaffolding You may have long contigs prepared from one
library and long reads prepared from the other. In this case, you want
to robustly and seamlessly combine data from two libraries through
scaffolding.

4.2 Instructions on using FinisherSC
Our software, FinisherSC, is helpful for the use cases discussed
above. It processes long contigs with long reads. You only need to
supply the input data files and issue a one-line command as follows
to perform the processing. Let us assume that mumP is the path
to your MUMMER and destP is the location where the input and
output files stay.

• Input : raw reads.fasta, contigs.fasta

• Output : improved3.fasta

• Command :
python finisherSC.py destP/ mumP/

We provide a sandbox example in the Dropbox folder linked in
our webpage. Besides the standard usage, there is an extra option,
which can resolve long approximate repeat with two copies. To
experiment with this, you should first run FinisherSC as above and
then issue the following command.
python experimental/newPhasing.py destP/ mumP/

4.3 Detailed description of the algorithm
We adopt the terminology in [5]. Random flanking region refers
to the neighborhood of a repeat interior. A copy of a repeat being
bridged means that some reads cover the copy into the random
flanking region. Subroutine 1 removes embedded contigs that would
otherwise confuse the later string graph operations. Subroutines 2,
3, 6, 7 are designed to handle repeats. Subroutines 2, 3 resolve
repeats whose copies are all bridged by some reads. Subroutines
6, 7 resolve two-copies repeats of which only one copy is bridged.

Subroutines 4, 5 utilize neglected information from raw reads. They
define merges at locations which are not parts of any long repeats. 1

Algorithm 1: Subroutine 1: Filter completely embedded contigs
Input : contigs.fasta
Output: noEmbed.fasta

1. Obtain alignment among contigs from contigs.fasta

2. For any (x,y) contig pair, if x is completely embedded in y,
then we add x to removeList

3. Remove all contigs specified in removetList from
contigs.fasta. The resultant set of contigs are outputted as
noEmbed.fasta

Algorithm 2: Subroutine 2: Form a string graph with the BEST
successors/predecessors as edges
Input : noEmbed.fasta
Output: String graph 1

1. Initialize the nodes of G to be contigs from noEmbed.fasta

2. Obtain alignment among contigs from noEmbed.fasta

3. for each contig x do
Find predecessor y and successor z with the largest overlap
with x
if such y exists then

add an edge y → x to G
if such z exists then

add an edge x→ z to G

4. Output G as String graph 1

Algorithm 3: Subroutine 3: Condense the string graph by
contracting edges with both in-degree and out-degree being 1
Input : String graph 1, noEmbed.fasta
Output: improved1.fasta

1. for each edge u→ v in String graph 1, do
if out-deg(u) = in-deg(v) =1 then

condense(u,v) into a single node and concatenate the
node labels

2. for each node x in the transformed String graph 1 do
output the concatenation of contigs associated with node x
to be a merged contig

3. Output all the merged contigs as improved1.fasta

1 To simplify discussion, the subroutines described are based on the
assumption that reads are extracted from a single-stranded DNA. However,
we remark that we have implemented FinisherSC by taking into account that
reads are extracted from both forward and reverse strands.
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Fig. 2: Repeat patterns, typical String graph 1, typical String graph 3

Algorithm 4: Subroutine 4: Use raw reads to declare potential
successors/predecessors of dangling contigs
Input : improved1.fasta, raw reads.fasta
Output: String graph 2

1. Initialize nodes of G to be contigs from improved1.fasta

2. Divide raw reads into batches BS

3. Stream the data in BS .
for b ∈ BS do

i) align b with contigs from improved1.fasta
ii) record the overlap information in I

4. for each pair of nodes u, v in G do
if u→ v is a predecessor-successor pair then

Add an edge u→ v to G
if there exists read R such that (u,R) and (R, v) are
predecessor-successor pairs according to I then

Add an edge u→ v to G

5. Output graph G as String graph 2

4.4 Justification of the algorithm
4.4.1 Big picture There are two main parts of the algorithm
underlying FinisherSC. They are

1. Gap filling

2. Repeat resolution

With uniform sampling assumption, the gaps are unlikely to land on
the few long repeats on bacterial genomes. Therefore, subroutines
4, 5 can close most of the gaps. For repeat resolution, subroutines
1, 2, 3, 6, 7 robustly define merges using various transformations of
string graphs. Detailed discussion is in the coming section.

Algorithm 5: Subroutine 5: Merge contigs(with gaps filled
by reads) when they respectively only have 1 successor/1
predecessor
Input : improved1.fasta, String graph 2
Output: improved2.fasta, connectivity info

1. for each edge u→ v of String graph 2 do
if out-deg(u) = in-deg(v) =1 then

condense(u,v) into a single node and concatenate the
node labels

2. for each node in the transformed String graph 2 do
output concatenated contigs as new contigs (with reads
filling the gaps) and connectivity information to
connectivity info

Algorithm 6: Subroutine 6: Form a string graph with ALL
successors/predecessors as edges
Input : improved2.fasta, connectivity info
Output: String graph 3

1. Use connectivity info to form a graph G with nodes from
improved2.fasta. All predecessor-successor pairs are edges in
G.

2. Output the corresponding graph as String graph 3

4.4.2 Detailed justification on repeat resolution We focus the
discussion on a long repeat with two copies. To simplify discussion,
we further assume that each base of the genome is covered by some
reads and the read length is fixed. The goal here is to correctly merge
as many reads as possible in the presence of that repeat. The claim
is that Subroutines 2, 3, 6, 7 collectively can achieve this goal. In the

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2014. ; https://doi.org/10.1101/010215doi: bioRxiv preprint 

https://doi.org/10.1101/010215
http://creativecommons.org/licenses/by/4.0/


FinisherSC

Algorithm 7: Subroutine 7: Merge contigs with only 1
predecessor or 1 successor and each has no more than two
competing edges
Input : improved2.fasta, String graph 3
Output: improved3.fasta

1. Traverse the String graph 3 for pattern of u1→ u3, u2→ u3
, u2→ u4 and that out-deg(u1) =1, out-deg(u2) = 2,
in-deg(u3) =2, in-deg(u4) =1, if found, then,
a) Delete the edge u2→ u3
b) Condense the graph
c) Continue until the whole graph is traversed

2. Output the merged contigs as improved3.fasta

case of one repeat, we only need consider the reads either bridging
the repeat copies/ reads at the interior of repeats/ touching the repeat
copies of that repeat. We separate the discussion on each of the cases
depicted in the rows of Fig 2. They are listed as follows.

1. Both copies are bridged

2. Only one copy is bridged

3. Both copies are not bridged

Let us first clarify some terminologies before proceeding. A read
y is called a successor of another read x if they have significant head-
to-tail overlap in the order of x → y. y is called the best successor
of x if the overlap length is the largest among all the successors of x.
y is called the true immediate successor of x if y is the closest read
to x’s right side in the sequencing process. Similarly, we can also
define the corresponding notion for predecessors.

In the first case, without loss of generality, let us consider any
read R emerging from the left flanking region of the left copy. It will
get merged with its best successor when condensing String graph 1.
Moreover, the best successor is also the true immediate successor.
It is because reads from the other copy of the repeat either have
smaller overlap length or are not successors.

Now, let us move to the second case. Since there is a bridging
read, there are no reads completely embedded in the interior
of the repeat. Without loss of generality, we consider the case
that the left copy is bridged and the right copy is not. Now we
label R2 as the bridging read, R1/R3 respectively as the true
immediate predecessor/successor of the bridging read, R4/R5 as
the most penetrating reads into the second copy of the repeat.
For all other reads, they get merged with their true immediate
successors/predecessors when condensing in String graph 1. For
the remaining five items of interest, the main question is whether
there is an edge between R4 and R5 in String graph 1 (i.e. whether
the best successor of R4 is R3). If not, then condensing in
String graph 1 will merge R4 with R5, which is the true immediate
successor. If such an edge exists, then we end up with the
pattern shown in Fig 2 for String graph 3. This means that only
R1 is merged to R2 when condensing String graph 1. However,
given the existence of the Z-shape pattern, graph operations on
String graph 3, the subroutine 7 will merge R2 and R3, and also
will merge R4 and R5.

Fig. 3: Z-pattern in string graph

Fig. 4: Using string graph to define repeat interiors and flanking
regions

Finally, consider the third case, when both repeat copies are not
bridged. For reads that are not closest to the repeat copies, they get
merged correctly when condensing String graph 1. Without loss of
generality, we consider a read x closest to the left flanking region
of the left copy of the repeat. An illustration of this situation in
String graph 1 is shown in Fig 3. Let its true immediate successor
be T. We are going to show that it will not get merged with the
wrong read in String graph 1 through a proof by contradiction. If
x got merged with some wrong F, then x → F would be an edge.
Let y be the read closest the left flanking region of the right copy of
the repeat. Then, y → F is also an edge. Therefore, there should
be no merges of x → F , which results in contradiction. Now we
consider String graph 3, if x has only 1 successor, then it should
be T. Otherwise, it is connected to both T and some F. Then, we
consider the y coming from the left flanking region of the right copy.
There must be an edge from y to F. If there is also an edge from y to
T, then both x and y are not merged in String graph 3. However, if
there is no edge from y to T, then x is merged with T and y with F
correctly.

4.5 The optional repeat phasing step
The optional repeat phasing step involves two main parts.

1. Identify repeat interior and its flanking regions

2. Merge contigs by phasing the polymorphisms within the repeat

Algorithm 8 achieves the first part by performing various operations
on a string graph. The nodes of the string graph are either contigs or
reads near the end points of the contigs. An illustration of a typical
string graph is shown in Fig 4. The contigs are indicated by solid
circles and reads are indicated by rectangles. The dotted circles
specify the random flanking region and repeat interior that we want
to infer through Algorithm 8. The X-phasing step in [5] achieves the

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2014. ; https://doi.org/10.1101/010215doi: bioRxiv preprint 

https://doi.org/10.1101/010215
http://creativecommons.org/licenses/by/4.0/


Lam et al

second part. It utilizes the polymorphisms within the repeat interior
to help distinguish the repeat copies. Interested readers may refer to
Xphased-Multibridging in [5] for more details. In FinisherSC, we
use the implementation of the Xphasing step in [5].

Algorithm 8: Repeat phasing option
Input : improved3.fasta, raw read.fasta
Output: improved4.fasta

1. Stream reads to identify reads that are associated with end
points of contigs

2. Form a 2-color graph with black nodes as reads and red nodes
as contigs. Name it as G

3. for each red node in G do
Perform graph search to determine other red nodes that are
reachable by it through path consisting of black nodes only

4. Form a bipartite graph B = (BL, BR) with nodes on left/right
side representing left/right ends of the contigs. An edge
L→ R exists, where L ∈ BL, R ∈ BR, if there exists a path
of black nodes in G such that R is reachable from L

5. Find connected components in B

6. for each connected component at b ∈ B do
if |b ∩BL| = 2 and |b ∩BR| = 2 then

define b as a two-copies repeat

7. for each two-copies repeat[ with associated nodes (L1,L2;
R1, R2) ] do

a) Go back to graph G, and label nodes reachable from each
of L1/L2 and to each of R1/R2 through black paths.
b) For each black node in G connected to all L1/L2/R1/R2,
name it as inside nodes. If it only misses one of the four,
then label it as miss x node where x is the missed item
c) Define start node S as an inside node connected to some
miss L1 nodes and miss L2 nodes. Similarly, define end
node E as an inside node connected to some miss R1 nodes
and miss R2 nodes
d) Define repeat interior and flanking region
i) Find a black path between S and E and label it as a repeat
path (this is the repeat interior)
ii) Find paths from L1 to S, L2 to S , E to R1, E to R2
respectively (these are the flanking regions)
e) For each black node involved with this repeat,
i) If it is connected to nodes on paths L1 to S, add it to L1
to S read set. Similarly, do it for L2 to S, E to R1 and E to
R2 read sets
ii) If it is connected to inside nodes only, then add it to
repeat read set
iii) Use the separated read sets to perform repeat phasing as
described in [5]
iv) Declare merging of contigs based on the phasing results

4.6 Future work
FinisherSC is a step forward in utilizing read information. However,
there are still many interesting follow-ups to further improve quality
of assemblies. These include resolution of long tandem repeats and
long repeats with many copies.

4.7 Detailed experimental results
In this section, we provide the detailed Quast report for the results
described in Table 1. Moreover, we compare in Fig 5 the memory
consumption and running time of FinisherSC with those of PBJelly.
The computing experiments were performed on the genepool cluster
at JGI. Below are commands used to run PBJelly.
Jelly.py setup Protocol.xml -x "--minGap=1"
Jelly.py mapping Protocol.xml
Jelly.py support Protocol.xml -x " --debug"
Jelly.py extraction Protocol.xml
Jelly.py assembly Protocol.xml -x "--nproc=16"
Jelly.py output Protocol.xml
The BLASR configuration in Protocol.xml is
-minMatch 8 -minPctIdentity 70 -bestn 8
-nCandidates 30 -maxScore -500 -nproc 16
-noSplitSubreads
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Fig. 5: Running time and memory consumption comparison of FinisherSC and PBJelly . (a) to (e) are the corresponding data sets in Table 1.
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Table 2. (a) in Table 1. All statistics are based on contigs of size ≥ 500 bp,
unless otherwise noted (e.g., ”# contigs (≥ 0 bp)” and ”Total length (≥ 0
bp)” include all contigs).

Assembly HGAP FinisherSC PBJelly
# contigs (≥ 0 bp) 45 4 44
# contigs (≥ 1000 bp) 45 4 44
Total length (≥ 0 bp) 5340498 5212355 5383836
Total length (≥ 1000 bp) 5340498 5212355 5383836
# contigs 45 4 44
Largest contig 4097401 5168551 4099674
Total length 5340498 5212355 5383836
Reference length 5167383 5167383 5167383
GC (%) 42.16 42.06 42.19
Reference GC (%) 42.05 42.05 42.05
N50 4097401 5168551 4099674
NG50 4097401 5168551 4099674
N75 4097401 5168551 4099674
NG75 4097401 5168551 4099674
L50 1 1 1
LG50 1 1 1
L75 1 1 1
LG75 1 1 1
# misassemblies 1 1 3
# misassembled contigs 1 1 2
Misassembled contigs length 9679 9679 4117533
# local misassemblies 2 3 4
# unaligned contigs 39 + 0 part 1 + 0 part 39 + 0 part
Unaligned length 135514 17453 163702
Genome fraction (%) 100.000 100.000 100.000
Duplication ratio 1.007 1.005 1.010
# N’s per 100 kbp 4.25 0.48 4.46
# mismatches per 100 kbp 9.56 1.30 10.14
# indels per 100 kbp 92.62 54.90 94.75
Largest alignment 4097400 5168480 4098915
NA50 4097400 5168480 4098915
NGA50 4097400 5168480 4098915
NA75 4097400 5168480 4098915
NGA75 4097400 5168480 4098915
LA50 1 1 1
LGA50 1 1 1
LA75 1 1 1
LGA75 1 1 1

Table 3. (b) in Table 1. All statistics are based on contigs of size ≥ 500 bp,
unless otherwise noted (e.g., ”# contigs (≥ 0 bp)” and ”Total length (≥ 0
bp)” include all contigs).

Assembly HGAP FinisherSC PBJelly
# contigs (≥ 0 bp) 163 41 115
# contigs (≥ 1000 bp) 163 41 115
Total length (≥ 0 bp) 5536634 5139491 5821106
Total length (≥ 1000 bp) 5536634 5139491 5821106
# contigs 163 41 115
Largest contig 254277 637485 495596
Total length 5536634 5139491 5821106
Reference length 5167383 5167383 5167383
GC (%) 41.98 41.96 42.01
Reference GC (%) 42.05 42.05 42.05
N50 89239 215810 145441
NG50 94672 215810 161517
N75 44568 117879 98297
NG75 53723 117879 116800
L50 20 9 14
LG50 18 9 12
L75 42 17 26
LG75 36 17 21
# misassemblies 0 0 12
# misassembled contigs 0 0 10
Misassembled contigs length 0 0 439591
# local misassemblies 0 3 3
# unaligned contigs 46 + 1 part 1 + 0 part 43 + 22 part
Unaligned length 200727 11862 302804
Genome fraction (%) 98.727 98.957 99.964
Duplication ratio 1.046 1.003 1.068
# N’s per 100 kbp 15.64 6.17 9.50
# mismatches per 100 kbp 63.00 67.78 68.92
# indels per 100 kbp 577.98 589.72 597.99
Largest alignment 254274 637485 495589
NA50 89239 215810 145441
NGA50 94672 215810 161490
NA75 44567 117879 98293
NGA75 50860 117879 115834
LA50 20 9 14
LGA50 18 9 12
LA75 42 17 26
LGA75 36 17 21
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FinisherSC

Table 4. (c) in Table 1. All statistics are based on contigs of size ≥ 500 bp,
unless otherwise noted (e.g., ”# contigs (≥ 0 bp)” and ”Total length (≥ 0
bp)” include all contigs).

Assembly HGAP FinisherSC PBJelly
# contigs (≥ 0 bp) 21 7 14
# contigs (≥ 1000 bp) 21 7 14
Total length (≥ 0 bp) 4689701 4660679 4718818
Total length (≥ 1000 bp) 4689701 4660679 4718818
# contigs 21 7 14
Largest contig 1241016 2044060 1958341
Total length 4689701 4660679 4718818
Reference length 4639221 4639221 4639221
GC (%) 50.87 50.85 50.85
Reference GC (%) 50.79 50.79 50.79
N50 392114 1525398 1200847
NG50 392114 1525398 1200847
N75 252384 1525398 275618
NG75 252384 1525398 321636
L50 3 2 2
LG50 3 2 2
L75 7 2 4
LG75 7 2 3
# misassemblies 8 8 12
# misassembled contigs 4 3 5
Misassembled contigs length 2530799 3584781 3672462
# local misassemblies 3 3 4
# unaligned contigs 0 + 1 part 0 + 0 part 0 + 3 part
Unaligned length 205 0 2605
Genome fraction (%) 99.583 99.656 99.689
Duplication ratio 1.015 1.008 1.021
# N’s per 100 kbp 0.00 0.00 0.00
# mismatches per 100 kbp 3.66 4.61 4.11
# indels per 100 kbp 8.36 13.82 10.75
Largest alignment 683967 1094192 949307
NA50 339478 860437 685586
NGA50 339478 860437 685586
NA75 229039 378942 255377
NGA75 229039 378942 255377
LA50 5 3 3
LGA50 5 3 3
LA75 9 5 7
LGA75 9 5 7

Table 5. (d) in Table 1. All statistics are based on contigs of size ≥ 500 bp,
unless otherwise noted (e.g., ”# contigs (≥ 0 bp)” and ”Total length (≥ 0
bp)” include all contigs).

Assembly HGAP FinisherSC PBJelly
# contigs (≥ 0 bp) 3 1 2
# contigs (≥ 1000 bp) 3 1 2
Total length (≥ 0 bp) 3102769 3099349 3106774
Total length (≥ 1000 bp) 3102769 3099349 3106774
# contigs 3 1 2
Largest contig 1390744 3099349 1715191
Total length 3102769 3099349 3106774
Reference length 3097457 3097457 3097457
GC (%) 63.38 63.39 63.38
Reference GC (%) 63.38 63.38 63.38
N50 1053479 3099349 1715191
NG50 1053479 3099349 1715191
N75 1053479 3099349 1391583
NG75 1053479 3099349 1391583
L50 2 1 1
LG50 2 1 1
L75 2 1 2
LG75 2 1 2
# misassemblies 0 0 0
# misassembled contigs 0 0 0
Misassembled contigs length 0 0 0
# local misassemblies 2 2 2
# unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part
Unaligned length 0 0 0
Genome fraction (%) 99.966 99.986 99.986
Duplication ratio 1.002 1.001 1.003
# N’s per 100 kbp 0.00 0.00 0.00
# mismatches per 100 kbp 0.03 0.26 0.10
# indels per 100 kbp 1.10 3.87 1.32
Largest alignment 1390744 3099004 1713236
NA50 1053134 3099004 1713236
NGA50 1053134 3099004 1713236
NA75 1053134 3099004 1391558
NGA75 1053134 3099004 1391558
LA50 2 1 1
LGA50 2 1 1
LA75 2 1 2
LGA75 2 1 2
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Lam et al

Table 6. (e) in Table 1. All statistics are based on contigs of size ≥ 500 bp,
unless otherwise noted (e.g., ”# contigs (≥ 0 bp)” and ”Total length (≥ 0
bp)” include all contigs).

Assembly HGAP FinisherSC PBJelly
# contigs (≥ 0 bp) 18 5 8
# contigs (≥ 1000 bp) 18 5 8
Total length (≥ 0 bp) 5184825 5167414 5210862
Total length (≥ 1000 bp) 5184825 5167414 5210862
# contigs 18 5 8
Largest contig 2103385 2913716 3343452
Total length 5184825 5167414 5210862
Reference length 5167383 5167383 5167383
GC (%) 42.05 42.05 42.07
Reference GC (%) 42.05 42.05 42.05
N50 1403814 2913716 3343452
NG50 1403814 2913716 3343452
N75 790287 2225895 1814491
NG75 790287 2225895 1814491
L50 2 1 1
LG50 2 1 1
L75 3 2 2
LG75 3 2 2
# misassemblies 1 1 2
# misassembled contigs 1 1 2
Misassembled contigs length 1403814 2913716 1820739
# local misassemblies 0 0 1
# unaligned contigs 0 + 0 part 0 + 0 part 0 + 3 part
Unaligned length 0 0 13698
Genome fraction (%) 99.900 99.934 99.954
Duplication ratio 1.005 1.001 1.007
# N’s per 100 kbp 0.00 0.00 0.00
# mismatches per 100 kbp 3.41 3.56 2.28
# indels per 100 kbp 2.91 5.31 5.21
Largest alignment 2103385 2225895 3343452
NA50 1259090 1656831 3343452
NGA50 1259090 1656831 3343452
NA75 790287 1656831 1270970
NGA75 790287 1656831 1270970
LA50 2 2 1
LGA50 2 2 1
LA75 3 2 2
LGA75 3 2 2
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