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Abstract

This article describes a new package called STACEY for
BEAST?2 which is capable of both species delimitation and
species tree estimation using DNA sequences from mul-
tiple loci. The focus in this article is on species delimi-
tation. STACEY is based on the multispecies coalescent
model, and builds on earlier software (DISSECT), which
uses a ‘birth-death-collapse’ prior to deal with delimita-
tions without the need for reversible-jump Markov chain
Monte Carlo moves. Like DISSECT, it requires no a priori
assignment of individuals to species or populations, and no
guide tree. This paper introduces two innovations. The
first is a new model for the populations along the branches
of the species tree, and the second is a new MCMC move
for exploring the posterior when the multispecies coalescent
model is assumed. The main benefit of STACEY over DIS-
SECT is much better convergence. Current practice, using
a pipeline approach to species delimitation under the multi-
species coalescent, has been shown to have major problems
on simulated data. The same simulated data set is used to
demonstrate the accuracy and efficiency of STACEY.

1 Introduction

1.1 Previous work

Over the past ten years, the multispecies coalescent model
has become the standard approach for species tree estima-
tion using sequences from multiple loci. It accounts for in-
complete lineage sorting, a major source of discord between
gene trees. More recently, it has been used for species de-
limitation, in BPP (Yang and Rannala, 2010; Rannala and
Yang, 2013; Yang and Rannala, 2014) and DISSECT (Jones
et al., 2014). DISSECT provided the first program which
required no a priori assignment of individuals to species or
populations, and no guide tree. More details and discus-
sion of alternative approaches can be found in Jones et al.
(2014), Olave et al. (2014), and Zhang et al. (2014).

The birth-death-collapse model in DISSECT uses a prior
for the species tree in which the usual birth-death model
is replaced by one which incorporates a spike near zero in

the density for node heights. This is a computational ap-
proximation to a model in which the dimensionality of the
parameter space changes as the number of species changes.
As explained in Jones et al. (2014), the birth-death-collapse
model effectively converts the species tree into a tree in
which the tip nodes are minimal clusters of individuals.
Other nodes represent unions of these clusters, including
the inferred species. I will refer to this tree as the SMC-
tree meaning the ‘species or minimal clusters tree’.

Olave et al. (2014) simulated sequences under the multi-
species coalescent model, and then analyzed the data using
a standard ‘pipeline’ method using Structurama (Pritchard
et al., 2000; Huelsenbeck and Andolfatto, 2007), *BEAST
(Heled and Drummond, 2010), and BPP (Rannala and
Yang, 2013). The analysis showed there were major prob-
lems with the method.

1.2 Overview of the present method

The method presented here replaces this pipeline with a
single analysis. It is implemented as a package called
STACEY (Species Tree And Classification Estimation,
Yarely) for BEAST2 (Bouckaert et al., 2014). STACEY
is aimed mainly at species delimitation, but can also be
used as an alternative to *BEAST (Heled and Drum-
mond, 2010). A beta version of STACEY can be found
at www.indriid.com. It incorporates a new model for the
populations along the branches of the SMC-tree, and a new
MCMC move for exploring the posterior when the multi-
species coalescent model is assumed.

The multispecies coalescent model requires a model for
the populations along the branches of the SMC-tree. The
simplest option is to assume that the population in all
branches is identical and constant along each branch. An-
other option is to introduce one or more population pa-
rameters for each branch. The method described here is
between these. It is assumed that each branch in has a
population parameter which is constant along the branch,
and that these parameters are independent and identically
distributed. Instead of sampling these parameters, they
are integrated out. The method caters for variation among
branches, but does not allow individual populations to be
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estimated. The method is analogous to the common one
for modeling site rate heterogeneity where it is assumed
that each site independently ‘chooses’ a rate from a gamma
(or other) distribution. Unlike the site heterogeneity case,
there is no need to approximate the integral.

The MCMC move, called ‘NodesNudge’, changes the
height of a node in a SMC-tree, and changes the height
of certain ‘nearby’ nodes in the gene trees. It does this
in a way that leaves the all tree topologies unchanged, and
preserves the compatibility of the gene trees with the SMC-
tree. It is a subtle move, in that it typically changes the
node heights by a small amount, but it appears to have a
large beneficial effect on the convergence, at least on some
data sets.

The details of the population model and the MCMC
move are in sections 2 and 3, followed by the results ob-
tained on the data set of Olave et al. (2014). All trees are
rooted and binary. Times are measured backwards from
zero at present.

2 The population model

Consider a single gene and a single branch. The coales-
cent model of Kingman (see Chapters 26-28 of Felsenstein
(2003)) is assumed. The probability density for the coales-
cent times takes the following form (simplified from equa-
tion (3), p572, of Heled and Drummond (2010)):

fL(L|IP) =
EP‘lgeXp<—/t;i+l <n2_i)P_1dt> =
}rkmp<_{§im+y_m(”;g}P4) (1)

i=0

where L is the lineage history of a gene tree within a single
branch, and P is the effective number of gene copies in
the population for this branch, which is assumed constant
along the branch in this paper. P is the expected number of
generations for a pair of gene copies to coalesce. The lineage
history L consists of the number n of lineages at the tipward
end of the branch, the number k of coalescences within the
branch, plus the times (ty < t1, ...t < tx+1) where tg is the
node height at the tipward end, ¢;11 is the node height at
the rootward end, and (¢1,...t;) are the coalescence times
within the branch. Between t; and t;;; there are n — ¢
lineages. The complete multispecies coalescent probability
density is the double product, over genes and over branches,
of terms like this.

As usual, we convert P into substitution units by mul-
tiplying by the mutation rate measured in substitutions
per site per generation. Denote the effective population in
branch b by N, and the mutation rate by pp. The effective

number of gene copies is obtained from N, by multiplying
by a factor p; for gene j. This p; depends on the type of
gene involved, and is 2 for the common case of autosomal
nuclear genes in most diploid species. Exceptions include
genes from sex chromosomes and organelles. For gene j in
branch b, we thus need to replace P by p; Ny in equation
(1).

To write down the full expression, some more notation is
needed. The branches in the SMC-tree are indexed by b. A
sum or product over b should be understood as being over
all branches. Note that this includes the root, so that all
gene lineages eventually coalesce. The number of branches
is B. Set 0, = Npup. The vector (01,05, ...,0p) is denoted
by ©. The genes are indexed by j. A sum or product over j
should be understood as being over all genes. The number
of coalescences of gene j within branch b is denoted by k;p.
The number of lineages in gene tree j at the tipward end of
branch b is denoted by nj,. Thus the number of lineages in
gene tree j at the rootward end of branch b is nj, —kj,. The
time interval between the tipward and rootward branch b is
divided into k;,+1 intervals by the coalescent times of gene
j. These kj;, +1 intervals are denoted by ¢jp; (0 <7 < kjp).
There are nj, —1 lineages in gene tree j, branch b during the
time interval cj;;. Let G denote all the lineage histories of
all the genes in all the branches. The complete multispecies
coalescent probability density is

16(@10) = TITIw0n ** x
i b
exp (— [jz_jzcjbi (nij_ Z)} (Pij)1>
= TIm0 ™ exp (—n0,") (2)
b
where

@=> ki, o= HP;kjba and
J J

kb .
o —1 o n]b —1
=Y e (). ®)
J =0
For each b this has the form of an unnormalised inverse
gamma density for ;. The normalised inverse gamma den-
sity is
(e}

-
IG(z; 0, B) = I‘(a)x

where « and (8 are parameters in (0,00). If, a priori, the
0, are assumed independent and are assumed to have an
inverse gamma density it is possible to integrate out the 6,
analytically. In fact the prior can be more general than a
single inverse gamma density: an overall scaling parameter
o can be introduced, together with hyperprior m, (o) for

*~Lexp(—fa71)1p,00)
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it; and a mixture of inverse gamma densities can be used.
This mixture takes the form

ZAJQ (3 e, o)

c=1

h(z|o) =

Here O, the A., the a., and the §. (1 < ¢ < C) are user-
chosen values, which are constant for the analysis. The A,
are positive and sum to one, and the o and . are arbitrary
positive numbers. The density 7, is also user-chosen and
can be any density with support contained in [0, 00). Each
0y is then an independent draw from the density h. So the
joint prior density for © and o is
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where R¥ is the positive orthant in R.
Then combining (2) and (4), the posterior density for the
multispecies coalescent is
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Now O can be integrated out from the posterior, using the
fact that 7G integrates to 1 to obtain

/ (G106 (O]0) s (0)dO =
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Equations (5) and (3) provide the information needed to
implement the method.

(o)
+ r}/b ac+qp

F(ac + Qb)
F(QC)

- ()

3 The NodesNudge move

3.1 Conventions and notation

Lower case letters are used for gene tree nodes, and upper
case for SMC-tree nodes and in situations where the type
of tree does not matter. For either type of node X, its
parent is denoted by anc(X) and its node time by t(X).
The branch that leads from anc(X) to X is referred to as
‘the branch X’. A tree topology should be understood as
a labeled topology, that is, it includes the assignment of
labels to tips.

For a node X in the SMC-tree, let I(X) denote the set
of the individuals belonging to X (that is, assigned to a
tip node which is a descendant of X). For a node x in a
gene tree, let I(x) denote the set of the individuals which
provided a sequence belonging to x. Furthermore, if X is
not a tip, let R(X) and L(X) denote the set of individuals
belonging to the two children of X. Note that I(X) =
L(X)UR(X) for both SMC-tree nodes and gene tree nodes,
so they can be calculated recursively from the tips, and all
these sets of individuals are unions of minimal clusters. In
the SMC-tree the unions are disjoint, and a node is uniquely
identified by its set of individuals. In the gene tree case,
neither of these is true in general. However, the set I(z) and
time t(z) for a gene tree node x are enough to assign x to a
unique branch in the SMC-tree, as follows. If the SMC-tree
is cut across at time t(x), this will intersect some branches
X1, Xo,..., X, say. All the I(X;) are pairwise disjoint, and
I(x) cannot intersect more than one of them non-trivially
or the gene tree would be incompatible with the SMC-tree.
Thus I(z) C I(X;) for some 4 thus identifying the branch
X, as the one which contains x.

3.2 Algorithm

We describe a more general algorithm than the move which
is currently implemented, since it may be useful to use vari-
ants of the move. It uses the concept of a connected com-
ponent from graph theory. Given a subset A of the nodes
in a gene tree, we first remove the nodes not in A, then
divide what is left into the connected components. Fig-
ure 1 illustrates the idea. On the left is a gene tree, in
which nodes are shown by solid diamonds if they are in A
and open diamonds otherwise. On the right, the three con-
nected components in A are shown as diamonds and solid
lines. For any gene tree node z € A, let C(z) denote the
connected component in the gene tree to which x belongs.
Furthermore, define the set C*(x) to be the set of nodes
¢ in the gene tree such that anc(c) € C(x) and ¢ ¢ C(x).
Their positions are at the tops of the dotted lines in the
right of the figure, and can be thought of as the ‘children’
of C(z). Finally let r(z) be the oldest node in C(x), the
root of C(x). Here is the algorithm:
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Figure 1: Example of connected components

1. Choose uniformly and at random any internal node S
in the SMC-tree which is not the root.

2. Let A(S) = {s1,...,8,} be a set of internal gene tree
nodes defined by a criterion which only depends on .S,
and the topologies of the SMC-tree and gene trees.

3. Let dyp = maxx {t(X) : anc(X) = S}, which is the time
of the most ancient of the two child nodes of S, and
let up = t(anc(9)).

4. For 1 <i<n, let

d; =t(s;) + méax{t(c) —t(anc(c)) : c € C*(s;)}

and let u; = oo if s; is the root, otherwise let u; =
t(s;) + t(anc(r(s;))) — t(r(s;)).

5. Let
D = o%?gxn(di — t(si) +1(5))
and
U= Oglllgn(uz —t(s;) +t(9)).
6. [Choo]se a new node height t/(S) for S uniformly in
D,U].

7. Change the height of all gene tree nodes in A(S) by
the same amount, that is, by ¢'(S) — ¢(S).

We formally prove some properties of this move be-
low; here is an informal description of the ideas behind
the proofs. The value dy (step 3) can be written as
t(S) + maxx {¢t(X) — t(S) : anc(X) = S} which empha-
sizes the similarity with the other d; (step 4).

Returning to Figure 1, note that the minimum length
of the dotted edges leaving each connected component de-
termines the maximum amount by which the nodes in the
connected component can move forward in time. The old-
est node in each connected component usually provides a
limit (the length of the dashed line) on how far back in time
the connected component can move; the exception is if it is
the root node of the gene tree, as in the case of connected
component C. The key property of connected components
is that the limit of movement back and forwards in time

of one connected component is determined by the times
of nodes which cannot belong to another connected com-
ponent. This ensures that the definitions of D and U are
unaffected by the move. Also note that all nodes are moved
by the same amount, so the internal structure of C'(s;) does
not change.

3.3 Properties

Proposition 1. The move preserves all the tree topologies
and keeps all branch lengths nonegative.

Proof. From step 6, D < t/(S) < U, and from step 5,
do < t'(S) < ug, and so it follows from step 3 that

m)f{xx{t(X) canc(X) = S} < #'(9) < t(anc(9))

hence the new height lies between that of S’s oldest child
and its parent.

Now assume 1 < ¢ < n. From step 7, the new height
t'(s;) is t(s;) + t'(S) — ¢t(S). From steps 5 and 6,

d; —t(s;) +1(S) < () < uy —t(s;) + t(S)

SO
di S t/(Si) S Wy .

The next step is to show that the definition of d; and u; in
step 4 preserves the topologies and keeps all branch lengths
nonegative in the gene trees. The condition ¢ € C*(s;)
identifies all pairs of nodes (¢, anc(c)) such that anc(c) is in
the connected component and ¢ outside, so the maximum
of t(¢) — t(anc(c)) over such c is the biggest negative value
by which this connected component can move. Likewise
t(anc(r(s;))) — t(r(s;)) is the maximum positive value by
which this connected component can move. Thus any new
times for the nodes s; € C(s;) that are in [d},u;] for all j
such that s; € C(s;) will preserve this connected compo-
nent.

Put § = t/(S) — t(S), the amount by which the node
times are changed. Then from step 6,

D<V(S)<U
SO
D —t(S) <6 <U—t(S)

and for all 7,
di —t(si) +(S) — t(S) <6 <y — t(si) +(S) — 1(S)

hence
di <t(s;) +60 <y

as required.

Proposition 2. The move is symmetric.

Proof. First note that the choice of S in step 1 has the
same probability for the reverse move. Then, the key prop-
erty of connected components described earlier together
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with Proposition 1, ensures that A(S) is unaffected by the
move. It only remains to show that the interval [D,U] is
unaffected by the move. Primes (') are used to denote the
various quantities after the move. From step 4, before the
move,

d; =t(s;) + mcin{t(c) —t(anc(c)) : c € C*(s;)}

and since all the t(c) values are unaffected by the move,
and all t(anc(c)) are changed by 4, as is t(s;), it follows
that

d = t'(s;) +
mcin{t’(c) — t'(anc(c)) : c € C*(s;)}
= t(s;)+d+
mcin{t(c) — 0 —t(anc(c)) : c € C*(s;)}
= d;.

Similarly, u; = u;, and it follows that [D’,U’] = [D,U].
Since the choice of ¢/(S) in [D, U] is uniform, the move is
symmetric.

3.4 The definition of A(S)

In the NodesNudge move as currently implemented, A(S)
is defined to be all the internal gene tree nodes s such that:

((L(s) C L(S)) A (R(s) C R(S))) v
((L(s) € R(S)) A (R(s) © L(S)))

and
(I(s)  L(S)) A (I(s) & R(S)).

The first condition says that one of L(s) and R(s) is con-
tained in one of L(S) and R(S), and the other one of L(s)
and R(s) is contained in the other one of L(S) and R(S).
The second condition says that I(s) is not contained in ei-
ther L(S) or R(S). The nodes in A(S) are the ‘first meet-
ings’ between sequences from L(S) and R(S). For this def-
inition of A(S), it is not possible for a node and its parent
to both belong to A(S), so all the connected components
C(z) in the algorithm consist of single nodes. This simpli-
fies the implementation, and can be used to simplify the
proofs of the two Propositions. However it is likely that
future versions of STACEY will exploit the more general
case.

4 Results on simulated data

As a proof-of-concept demonstration, I analyzed the simu-
lated data provided in the supplementary material of Olave
et al. (2014). The data was incorporated into XML files for

BEAST?2. Version 2.1.3 of BEAST2 and 0.1.0 of STACEY
were used. The program was run for 4 million genera-
tions on each replicate with the first 1 million discarded
as burnin. Samples were taken every 1000 generations, so
there were 3000 SMC-trees on which to base the species de-
limitations using SpeciesDelimitation Analyser (Jones et al.,
2014).

4.1 Priors and other settings

For the population variability among branches, a single in-
verse gamma component with mean and standard deviation
1 was used. (In equation (2), C =1,a; = 3.0,5, =2.0.) A
lognormal(-7.0,2.0) was used for the hyperprior 7, for the
overall population scaling factor. (Parameters to the log-
normal are given in log space.) The ‘coalescent factor’ p,
was set to 2 for all genes. The HKY model was assumed for
the substitution model. It was assumed that there was no
site rate heterogeneity (although the data set does contain
such heterogeneity). The relative clock rates of the genes
other than the first were estimated; a lognormal(0.0,1.0)
prior was assumed for these. A birth-death model was as-
sumed for the species tree, with a lognormal(4.6,2) hyper-
prior for the growth rate, and a Beta(3,1) hyperprior for
the relative death rate. The prior on the collapse weight
was uniform on [0, 1] so that there was a flat prior on the
number of species, and the collapse height ¢ was set to
0.0001. The 40 individuals were used as minimal clusters
(containing two sequences each) in STACEY. (See Jones
et al. (2014) for definitions of ‘minimal cluster’, ‘collapse
weight’ and ‘collapse height’.)

4.2 Results

The results are shown in Figure 2. The clustering with the
largest posterior probability was used as a point estimate
of the species delimitation. All errors in this point estimate
were false splits. Usually just one of the true species was
split, and occasionally, two true species were split. In all
600 replicates, the true clustering was in the 0.95 credible
set. The highest posterior probability assigned to a er-
roneous clustering was 0.82 (replicate 16 from YE4). The
estimated sample sizes (ESSs) as reported by Tracer (Ram-
baut et al., 2014) were low, generally around 70-140 for the
4-gene scenarios and 25-70 for the 14-gene scenarios.

5 Discussion

Based on tests so far, including some results not reported
here, STACEY converges much faster than DISSECT, espe-
cially when there is a strong signal in the data. I estimate it
would have taken around ten times as much computation to
obtain similar results as those presented here if DISSECT
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Figure 2: The upper boxplots show the posterior probability
of the true clustering over 50 replicates for eight configurations
YH4,... ZE14. In the labels for the configurations, the first
letter Y or Z denotes the tree shape, with Y for symmetric
and Z for asymmetric; the second letter denotes the degree of
incomplete lineage sorting, with H for N=0.4 (‘hard’) and E
for N=4 (‘easy’); this is followed by the number of loci: 4, 8,
or 14. The numbers between the boxplots are the number of
times out of 50 that the clustering with the largest posterior
probability was not the true clustering. The lower boxplots
show the measure of over-splitting of true species lineages
using the index I of Olave et al (2014). The black diamonds
show the mean values. Note that the vertical scale is about
one tenth of Fig 3 in Olave et al.

had been used. It is not yet clear how much of this im-
provement is due to the new model and how much to the
new move. It seems likely that the new move will improve
convergence in *BEAST in some cases at least, but this has
not been tried.

The number of generations (4 million) in the MCMC
chain was chosen so that all 600 replicates could be run in
a reasonable amount of time with limited computational
resources (2 weeks on a desktop computer with 4 cores).
This resulted in lower ESS values than desirable. Given
the purpose of this paper, this does not seem important: if
anything longer runs would be expected to improve accu-
racy. When used ‘for real’, several longer runs are strongly
recommended.

There are two main types of ‘noise’ which interfere with
inference of delimitation and phylogeny: mutational vari-
ance and incomplete lineage sorting. In the context of phy-
logeny estimation, the relative importance of these was
studied in Huang et al. (2010). In their scenarios, up
to 75% of the errors in maximum likelihood estimates of
species trees were attributable to mutational variance. It
seems very likely that similar conclusions apply to Bayesian
species delimitation. The simulated data sets of Olave
et al. (2014) have low mutational variance. The species
tree branch lengths, measured in substitutions, range from
0.004 to 0.028 in the N=0.4 case and from 0.04 to 0.28
in the N=4 case. Since there are two sequences of length
1000bp per individual, the expected number of substitu-
tions per individual per locus along a branch is always
at least 0.004 * 2000 = 8. However, in many empirical
data sets the difficulties due to incomplete lineage sorting
will be compounded with large amounts of mutational vari-
ance. The simulations used in Jones et al. (2014) were much
harder in terms of the mutational variance: the sequences
were 500bp, there was only one sequence per individual,
and the shortest branch lengths were 0.001, so that the ex-
pected number of substitutions along the shortest branches
is only 0.5 instead of 8. The results of that paper may be
a better guide to to the accuracy of the approach on many
empirical data sets.

The results here should dispel some of the pessimism ex-
pressed in Olave et al. (2014) about DNA-based species
delimitation. It is usually the case that geographical and
morphological information is available as well (Zhang et al.,
2014), but it is rare that this provides certainty about
the assignment of individuals to clusters or populations.
I think that a more promising way ahead is to express the
geographical and morphological information in a Bayesian
prior on the space of all possible clusterings. A program
like STACEY can then explore the full space, taking into
account the extra information. The space of all clusterings
is huge, and it is not easy to construct sensible probability
distributions for it which reflect expert knowledge about
the organisms. Research is needed to find good ways of


https://doi.org/10.1101/010199
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/010199; this version posted December 11, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

doing this.
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