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Abstract 1 

 2 

Many lines of evidence indicate GC-biased gene conversion (gBGC) has a major 3 

impact on the evolution of mammalian genomes. However, up to now, this process had not 4 

been properly quantified. In principle, the strength of gBGC can be measured from the 5 

analysis of derived allele frequency spectra. However, this approach is sensitive to a number 6 

of confounding factors. In particular, we show by simulations that the inference is pervasively 7 

affected by polymorphism polarization errors, especially at hypermutable sites, and spatial 8 

heterogeneity in gBGC strength. Here we propose a new method to quantify gBGC from DAF 9 

spectra, incorporating polarization errors and taking spatial heterogeneity into account. This 10 

method is very general in that it does not require any prior knowledge about the source of 11 

polarization errors and also provides information about mutation patterns. We apply this 12 

approach to human polymorphism data from the 1000 genomes project. We show that the 13 

strength of gBGC does not differ between hypermutable CpG sites and non-CpG sites, 14 

suggesting that in humans gBGC is not caused by the base-excision repair machinery. We 15 

further find that the impact of gBGC is concentrated primarily within recombination hotspots: 16 

genome-wide, the strength of gBGC is in the nearly neutral area, but 2% of the human 17 

genome is subject to strong gBGC, with population-scaled gBGC coefficients above 5. Given 18 

that the location of recombination hotspots evolves very rapidly, our analysis predicts that in 19 

the long term, a large fraction of the genome is affected by short episodes of strong gBGC.  20 

 21 

[249 words] 22 
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 3 

Introduction 23 

The process of GC-biased gene conversion (gBGC) has a major impact on the 24 

evolution of mammalian genomes (Duret and Galtier 2009; Romiguier et al. 2010; Katzman 25 

et al. 2011) and is known or suspected to a play a role in many other groups of eukaryotes 26 

(Webster et al. 2006; Escobar et al. 2011; Pessia et al. 2012; Serres-Giardi et al. 2012). gBGC 27 

is a recombination-associated process favoring G:C (S for strong, hereafter) over A:T (W for 28 

weak, hereafter) bases during the repair of mismatches that occur within heteroduplex DNA 29 

during meiotic recombination (Marais 2003; Lesecque et al. 2013). From a population 30 

genetics point of view, gBGC is equivalent to natural selection in favor of S alleles, 31 

increasing their frequency and probability of fixation (Nagylaki 1983). gBGC therefore tends 32 

to increase GC content and W→S substitution rates in highly recombining regions.  33 

There are at least two reasons why we should worry about gBGC. First, as 34 

recombination rate is highly heterogeneous across the genome and most recombination events 35 

occur in evolutionarily short-lived hotspots (Myers et al. 2005; Ptak et al. 2005; Winckler et 36 

al. 2005; Coop and Myers 2007; Auton et al. 2012), gBGC-induced GC-enrichment is 37 

expected to occur through short, localized episodic events. Such a sudden, locus and lineage 38 

specific acceleration of substitution rates can easily mimic the signature of positive selection 39 

(Galtier and Duret 2007; Berglund et al. 2009; Ratnakumar et al. 2010; Kostka et al. 2012). 40 

Accordingly, it was estimated that up to 20% of signatures of positive selection in the human 41 

genome could be explained by gBGC (Ratnakumar et al. 2010). Clearly, the effects of gBGC 42 

must be taken into account seriously in studies of molecular adaptation in humans, mammals 43 

and other taxa.  44 

Secondly, gBGC can actually oppose natural selection. This occurs when the S allele 45 

is less favorable for the fitness than the W allele. In this case, gBGC tends to maintain 46 

deleterious alleles at intermediate or high frequency in populations, possibly until fixation, 47 

depending on selection and dominance coefficients (Glémin 2010). Accordingly, gBGC tracts 48 

are enriched in disease-associated polymorphisms (Capra et al. 2013) and W→S disease-49 

causing mutations segregate at higher frequency than S→W mutations (Necsulea et al. 2011; 50 

Lachance and Tishkoff 2014). High rates of fixation of non-synonymous, likely deleterious, 51 

mutations are also associated with gBGC episodes in primates (Galtier et al. 2009).  52 

The magnitude of the above-mentioned effects strongly depends on the intensity of 53 

gBGC that can be measured by the population-scaled coefficient B = 4Neb, where Ne is the 54 

effective population size and b is the intensity of the conversion bias (Nagylaki 1983). Similar 55 
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to selection, gBGC is only considered to be effective in that it dominates over random genetic 56 

drift if B is substantially greater than one. For example, the magnitude of gBGC-induced 57 

deleterious effects depends on the distribution of B values relative to selection: strong gBGC 58 

episodes in a few hotspots is a more harmful situation than homogeneous but low gBGC level 59 

(Glémin 2010). For a proper assessment of the impact of gBGC on genome evolution, it is 60 

therefore essential to accurately quantify the B parameter.  61 

Previous studies have used substitution patterns along phylogenetic lineages to 62 

estimate the intensity of gBGC. On average over the whole genome, gBGC was found to be 63 

relatively weak B = 0.2 to 0.36 (Lachance and Tishkoff 2014). However, based on the 64 

estimated proportion of recombination hotspots, Duret and Arndt (2008) evaluated that an 65 

average gBGC intensity of B = 5 to 6.5 in these hotspots are required to explain the patterns 66 

of substitution rates in the human lineage. Recently, Lartillot (2013b) developed a Bayesian 67 

method that directly estimates B along a phylogeny, incorporating variations both among 68 

branches and among genes. Analyzing sets of exons at the scale of the mammalian phylogeny, 69 

he showed that B could reach average values of about 5 in small-sized mammalian lineages 70 

that have high effective population size, with a small percentage of exons evolving under very 71 

strong gBGC (B > 10). He also confirmed that gBGC is weaker in the human lineage, and 72 

more generally in primates than in small-sized, short-lived mammals, which can explain the 73 

erosion of GC-rich isochores in this group (Duret et al. 2002; Duret et al. 2006). Capra et al. 74 

(2013) also developed a phylogenetic method to capture gBGC heterogeneity and detect 75 

gBGC tracts, which they applied to the human and chimp genomes. However, these authors 76 

did not quantify the intensity of gBGC in these tracts. In fact, their method requires fixing the 77 

value of B expected in hotpots (they used B = 3). These two methods were successful in 78 

capturing (part of) the heterogeneity of gBGC genome-wide, but they describe and quantify 79 

the process over millions of years of evolution. Because recombination hotspots, and hence 80 

also gBGC hotspots, have a very short lifespan (Ptak et al. 2005; Winckler et al. 2005; Auton 81 

et al. 2012; Lesecque et al. 2014) the intensity of gBGC currently experienced by the human 82 

population cannot be properly estimated by the methods described above. 83 

Estimates of gBGC in more recent time periods can in principle be obtained from 84 

polymorphism data by fitting models of gBGC to the site frequency spectra (SFS) of W→S 85 

and S→W mutations (hereafter denoted WS and SW respectively). Within this framework, 86 

Spencer et al. (2006) estimated B = 1.3 for the 20% highest recombination fraction of the 87 

human genome. However, several methodological issues have not been considered in their 88 

approach. First, as demography also affects SFS, it must be taken into account into inference 89 
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approaches. This can be achieved by incorporating a demographic scenario into the model 90 

(usually a simple change in population size is used) (Eyre-Walker et al. 2006; Boyko et al. 91 

2008) or by adding noise parameters to account for the non-selective factors that affect the 92 

shape of the SFSs (Eyre-Walker et al. 2006 and see below). Second, errors in the polarization 93 

of mutations into ancestral and derived alleles, especially because of homoplasy due to CpG 94 

hypermutability, are known to affect the SFS, which can lead to spurious signatures of gBGC 95 

(Hernandez et al. 2007). One way to circumvent this problem is to use folded spectra, in 96 

which mutations are not polarized. However, gBGC intensity can be estimated from the shape 97 

of the folded SFS only under the assumption of mutation/gBGC/drift balance equilibrium 98 

(Smith and Eyre-Walker 2001). When this assumption is relaxed, derived allele frequency 99 

(DAF) spectra are required to disentangle mutation bias and gBGC. Recently, De Maio et al. 100 

(2013) combined polymorphism and divergence data in a global framework to both correct 101 

for polarization errors due to CpG and distinguish mutation bias from gBGC (De Maio et al. 102 

2013). However, they assumed a constant population size in their model. Finally, a third issue 103 

concerns the dynamics of gBGC episodes. Both Spencer et al. (Spencer et al. 2006) and De 104 

Maio et al. (2013) found rather low values of gBGC (maximum around B = 1) but they did 105 

not properly take gBGC heterogeneity into account, and it is not clear how this affects B 106 

estimates. 107 

Here, we propose a new framework for estimating the intensity of gBGC that solves 108 

the issues discussed above. We show by simulations that an important bias in SFS-based 109 

estimates of gBGC due to mis-polarization has been consistently overlooked in previous 110 

studies, but can be fully corrected within the framework of our method. We also show that 111 

strong heterogeneity in B can lead to its underestimation, and develop an extension of our 112 

approach that accounts for this problem. We apply our inference method to the African (AFR) 113 

population of the 1000 genomes dataset (Abecasis et al. 2012) to quantify gBGC and its 114 

variation across the human genome and analyze the effect of local recombination rate on these 115 

variations. 116 

117 
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Results 118 

Signatures of gBGC in DAF spectra are obscured by (unexpected) polarization 119 

artifacts 120 

To investigate fixation biases affecting WS and SW mutations in the human genome, 121 

we analyzed SNP data from the AFR population of the 1000 genomes project (Abecasis et al. 122 

2012). We selected all SNPs located in non-coding regions (i.e., presumably neutrally 123 

evolving SNPs) from autosomes. We excluded sex chromosomes to avoid biases due to their 124 

specific features – both in terms of mutation pattern and demography. Mutations were 125 

polarized using ancestral state predictions based on 4-way multiple alignments (Homo 126 

sapiens, Pan troglodytes, Pongo pygmaeus, Macaca mulatta) (Paten et al. 2008), which are 127 

provided in the original SNP data file (Abecasis et al. 2012). We excluded SNPs for which 128 

information about the ancestral state was reported as being unreliable (see methods). 129 

We first focused our analyses on non-CpG SNPs. In agreement with previous reports 130 

(Katzman et al. 2011), we observed that, on a genome-wide scale, the DAF spectra of WS 131 

SNPs are significantly biased towards higher frequencies compared with the DAF spectra of 132 

SW SNPs (Figure 1A). As predicted by the gBGC model, this shift in DAF spectra is much 133 

stronger for SNPs located in regions of high recombination (Figure 1C) compared to SNPs 134 

located in regions of low recombination (Figure 1B), which is in agreement with previous 135 

analyses (Katzman et al. 2011; Lachance and Tishkoff 2014). The difference in mean DAF 136 

between WS and SW non-CpG mutations increases steadily with increasing recombination 137 

rate, from almost 0 (as expected in absence of gBGC and selection) to about 3.5% (Figure 138 

1D).  139 

 The difference in DAF spectra between WS and SW mutations provides information 140 

about the intensity of gBGC. We previously developed a generic maximum likelihood model 141 

that allows one to quantify the strength of gBGC from the comparison of the DAF spectra of 142 

WS and SW mutations, using the DAF spectrum of WW and SS mutations as a neutral 143 

reference (2011). In brief, this model can be written as follows. The probability of observing 144 

ki SNPs having i derived alleles out of n follows a Poisson distribution, P(μ,ki), with mean: 145 

  
μ

neutral
(i) =

4N
e
vLr

i

i
 (1a) 146 

for neutral WW and SS mutations, 147 
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μ

WS
(i) = 2N

e
uL(1− p

GC
)r

i
C

n
i xi (1− x)n− i H

W →S
(x)dx

0

1

∫  (1b) 148 

for W�S mutations, and 149 

  
μ

SW
(i) = 2N

e
λuLp

GC
r

i
C

n
i xi (1− x)n− i H

S →W
(x) dx

0

1

∫  (1c) 150 

for SW mutations, where Ne is the effective population size, v the mutation rate from W to W 151 

and from S to S mutations, u the mutation rate from W to S, λu the mutation rate from S to 152 

W,  λ  being the mutational bias towards AT, L the sequence length, and pGC the GC-content 153 

of the sequence. We assumed that pGC is constant, that is, the ongoing substitution process 154 

does not significantly affect base composition over the time scale over which polymorphisms 155 

persist. Importantly, this parameterization – instead of assuming a different 4Neu for each 156 

mutation category – allows estimating the mutational bias, but does not affect the estimate of 157 

gBGC parameters.   HSW
(x)  and   HWS

(x)  are the expected times that a WS, respectively SW, 158 

mutation spends at population frequency between x and x + dx. These terms are functions of B 159 

= 4Neb, where b is the gBGC coefficient (see Material and Methods and below for the 160 

different models we used). The coefficients ri have been introduced by Eyre-Walker et al. 161 

(2006) to account for distortions in DAF spectra due to demography (and/or population 162 

structure and/or sampling). The key assumption underlying their approach is that demography 163 

affects the DAF spectra of the three different classes of SNPs, neutral, SW and WS, all in a 164 

similar way. Thus, the same coefficient ri is used for each DAF class and corresponds to the 165 

deviation from the standard equilibrium model relative to the singleton class, r1 being set to 166 

one. 167 

It has been shown that such models are sufficiently robust to demographic (and/or 168 

sampling) (for a detailed discussion of the robustness of this kind of models, see Eyre-Walker 169 

et al. 2006; Muyle et al. 2011 and discussion). However, one important difficulty is that the 170 

estimation of DAF spectra remains highly sensitive to polarization errors: any WS 171 

(respectively SW) mutation observed at frequency x = i/n in the sample that is mis-polarized 172 

is considered as a SW (WS) mutation at frequency (n – i)/n. Given that the majority of 173 

derived alleles are rare (i.e., x is generally much smaller than 0.5), polarization errors shift the 174 

inferred DAF spectra towards higher frequencies. And, given that the SW mutation rate is 175 

higher than the rate of WS mutation, the risk of mis-polarization is higher for SW mutations 176 

(which are then erroneously counted as WS mutations) (Eyre-Walker 1998). Hence, this 177 

polarization artifact leads to overestimating the fixation bias in favor of WS mutations 178 

(Hernandez et al. 2007). This artifact is expected to be particularly strong at hypermutable 179 
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CpG sites, where the inference of the ancestral state is less reliable. And indeed, CpG sites 180 

show very peculiar DAF spectra, with a strong peak of WS SNPs segregating at very high 181 

frequency (Figure 2A). One possible interpretation is that gBGC might be much stronger on 182 

CpG than on non-CpG sites. However this peak is observed regardless of recombination rate 183 

(Figure 2B, 2C), and the difference in mean DAF between WS and SW mutations is very high 184 

(~8%) even in regions of very low recombination (Figure 2D). All these observations indicate 185 

that the strong excess of WS CpG SNPs segregating at very high frequency is not due to 186 

gBGC.  187 

To assess the impact of polarization errors on DAF spectra and on estimators of gBGC 188 

strength, we performed extensive simulation analyses (see details in Material and Methods). 189 

Simulation parameters were set so as to mimic the situation observed in the human genome, 190 

where we estimate that the polarization error rate is about 1% to 4% when using the 191 

polarization provided by the 1000 genomes data (see below). In the human genome, as in 192 

other mammals, the base composition varies strongly along chromosomes, and generally does 193 

not correspond to the mutational equilibrium (Duret and Arndt 2008). We therefore simulated 194 

genomes composed of sequences of different GC-content, subject to the same mutational bias 195 

 (λ  = 2). We simulated both genomes with gBGC (with stronger gBGC in regions of higher 196 

GC-content) and genomes not subject to any gBGC. 197 

Our simulations revealed both expected and unexpected patterns. As expected, and in 198 

agreement with previous reports (Hernandez et al. 2007), gBGC is overestimated when the 199 

polarization error rate is higher for SW mutations than for WS mutations (typically as for 200 

CpG sites) (Figure S1). However, even when polarization error rates are symmetrical (i.e., we 201 

assume the same rate of polarization error for WS and SW mutations), estimates of B are 202 

biased. This bias leads to a spurious positive relationship between B and the local GC-content, 203 

and can even lead to the inference of negative average B values (Figures 3A and 3B). This 204 

surprising result is explained by the fact that, in our simulations, the ratio of WS to SW 205 

mutations increases with GC content – this is so because we model the non-equilibrium 206 

situation of GC rich regions in humans (see above). The bias is only suppressed when there is 207 

an equal number of WS and SW mutations, i.e., when the base composition closely reflects 208 

the mutational equilibrium, pGC = 1 / (1 + λ). It is therefore crucial to take this bias into 209 

account for any method based on DAF spectra that distinguish between WS and SW 210 

polymorphisms. 211 
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Correcting for polarization error in estimating the intensity of gBGC: a new 212 

method 213 

Several methods have been developed to cope with polarization errors, especially to 214 

take CpG hyper-mutability into account (Hernandez et al. 2007; Duret and Arndt 2008; De 215 

Maio et al. 2013) However, although these methods suppress the bias in the inference of 216 

ancestral states, symmetrical polarization errors remain, and our simulations clearly showed 217 

that even unbiased mis-polarization is problematic as far as SFS analysis is concerned. Here 218 

we propose an alternative approach that incorporates polarization error rates directly into the 219 

estimation procedure. The rationale of the method is the same as for the generic model 220 

described above, except that, here, the probability of observing ki SNPs having i derived 221 

alleles out of n follows a Poisson distribution, P(μ,ki), with mean: 222 

  μneutral
obs (i) = (1− e

neutral
)μ

neutral
(i) + e

neutral
μ

neutral
(n − i)  for neutral SNPs (2a) 223 

  μW →S
obs (i) = (1− e

WS
)μ

W →S
(i) + e

SW
μ

S→W
(n − i)  for WS SNPs (2b) 224 

  μS →W
obs (i) = (1− e

SW
)μ

S →W
(i) + e

WS
μ

W →S
(n − i)  for WS SNPs (2c) 225 

where the “true” µ are given by equations (1) and eneutral, eWS and eSW are polarization error 226 

probabilities, which are estimated jointly with the other parameters of the model. We thus 227 

have four possible models: B = 0 (M0) and B ≠ 0 (M1), without error correction, and the same 228 

with error correction (M0* and M1*). The four models can be compared by likelihood ratio 229 

test (LRT) with the appropriate degrees freedom (see Table 1). The goodness of fit of these 230 

models can then be assessed by comparison with the likelihood of the saturated model, in 231 

which every class of each SFS has its own parameter. 232 

We evaluated our new method under different conditions (symmetrical vs. 233 

asymmetrical error rates, stable vs. non-equilibrium populations). Simulations show that our 234 

method performs well in all tested conditions and accurately recovers the true simulated value 235 

of B (Figure 3 and Figures S1 and S2). We compared the M1* model applied to datasets with 236 

polarization errors to the M1 model applied to the same datasets without errors. The two 237 

estimates of B were very well correlated with no bias (the regression line was 238 

indistinguishable from the y = x line, Figures 3C and 3D). We also checked the accuracy of 239 

the estimation of error rates. These estimates suffer from a large variance. Because error rates 240 

are low and bounded to zero, large variance tends to increase error rate estimates on average. 241 

As a consequence, the mean estimate of eWS (resp. eSW) tended to slightly increase (resp. 242 

decrease) with GC content. Once again, this is explained by the fact that the number of WS 243 
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(resp. SW) mutations, and hence the power to estimate eWS (resp. eSW), decreases (resp. 244 

increase) with GC-content (see Figure S3). However, this bias did not affect the estimation of 245 

B, as shown above. 246 

A moderate genome-average gBGC intensity in humans  247 

We applied our method on the AFR population of the 1000 genomes dataset (Abecasis 248 

et al. 2012), using all non-coding SNPs (whole dataset), only non-CpG SNPs (non-CpG 249 

dataset) and only CpG SNPs (CpG dataset). Several parameters of the model (mutation rates, 250 

gBGC strength, polarization error rates) are susceptible to variations along chromosomes. We 251 

therefore performed parameter estimations individually on 1 Mb-long windows (non-252 

overlapping) across the genome. Sex chromosomes were excluded from the analysis. For a 253 

few windows, one or more models did not converge and these windows were excluded from 254 

the analyses. The final numbers of windows for the three datasets are 2669, 2665, and 2644, 255 

respectively. Each window was characterized by its average GC-content and recombination 256 

rate. Because local GC-content and recombination rates can be different between CpG and 257 

non-CpG sites within a given window, for each dataset we computed GC-content at 100bp 258 

and recombination rate at 5kb around each SNP and averaged these values over the SNPs of 259 

each window.  260 

Over the whole dataset, estimates of B obtained with model M1* ranged from -0.70 to 261 

2.06 with a median of 0.35 and a mean of 0.38 (Figures 4). A negative B was estimated for 262 

only 232 out of 2669 windows and only 11 (5%) were significantly different from 0. In 263 

contrast, over the 2437 windows with a positive B, 1458 (60%) were significantly different 264 

from 0 (Figure 4). As expected, B was strongly correlated with the recombination rate (R2 = 265 

0.27). We also observed a correlation between B and GC content (R2 = 0.14). Multiple 266 

regression analysis showed that this correlation is essentially due to the known correlation 267 

between recombination rate and GC-content (R2 = 0.18): the variance of B explained by GC-268 

content and recombination together (R2 = 0.30) was only slightly greater than that explained 269 

by recombination alone (R2 = 0.27). Given that the density in CpG sites increases with GC-270 

content, CpG SNPs are enriched in GC-rich genomic regions and, hence, in regions of high 271 

recombination. Consistently, on average B was higher for CpG sites compared to non-CpG 272 

sites (Table 2). However, for a given recombination rate and local GC content there was 273 

virtually no difference in strength of gBGC between CpG and non-CpG sites (Figure 5). 274 

Although the effect of the category of sites was still significant after error correction (because 275 

of the size of the dataset), it only explained 1% of the variance in B when polarization error 276 
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was correctly accounted for (but 38% otherwise, see Figure 5). 277 

Our method estimated an average polarization error rate of about 4% for SW 278 

mutations at CpG sites, and 0.6% to 1% for other categories of mutations and sites (Table 2 279 

and Figures S4 to S6). These rates are consistent with the expected rate of homoplasy along 280 

the chimpanzee branch, given the branch length between human and chimp. This shows that 281 

the method accurately estimates error probabilities, on average, despite the fact that no prior 282 

information was included in the model. As predicted by simulations, there was a slight effect 283 

of GC content on error estimates: the variance and the mean of eWS increased with GC 284 

content, the variance of eSW decreased with GC content, while there was no effect of GC 285 

content on e (Figure S4). Although these error rates are relatively low, they have a strong 286 

impact on the quantification of gBGC: on the whole dataset, when ignoring polarization errors 287 

B is overestimated by 49%, and this overestimate reached 96% for CpG sites (Table 2). 288 

Importantly, the difference in estimates of B between CpG and non-CpG sites disappeared 289 

when polarization errors were accounted for (Figure 4). As predicted by simulations, the 290 

correlation between B and GC content was lower when error correction was applied (R2 = 291 

0.14) than without correction (R2 = 0.21). On the contrary, error correction did not affect the 292 

correlation between B and recombination rate (R2 = 0.27 with correction vs. R2 = 0.29 without 293 

correction). Our method thus appears efficient to correct for biases induced by GC-content 294 

dependent polarization errors at both CpG and non-CPG sites. In what follows, all results are 295 

presented for the whole dataset (CpG + non-CpG) with correction for mis-orientation of 296 

SNPs. 297 

gBGC is underestimated when its strength varies along a chromosome  298 

In agreement with previous studies (Spencer et al. 2006; De Maio et al. 2013), our 299 

genome-wide estimates of B are relatively low, in the nearly-neutral area. At first sight, this 300 

appears to be in contradiction with other analyses reporting episodes of very strong gBGC 301 

(Galtier and Duret 2007; Ratnakumar et al. 2010). However, the model we used above 302 

assumes that all sites in a given window evolve under the same gBGC regime. We thus 303 

performed additional simulations to test the robustness of our approach to spatially 304 

heterogeneous levels of gBGC. We modeled recombination/gBGC hotspots by considering 305 

two categories of SNPs: a fraction, f, of SNPs was affected by recombination hotspots with 306 

mean gBGC B1, whereas the other fraction, 1 – f , was affected by a basal gBGC level B0, 307 

with 0 ≤ B0 < B1. We fixed B0 and we let B1 vary to simulate variation in hotspot intensities. 308 

For simplicity reason, here we did not include polarization errors in the simulation, neither in 309 
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estimations. Under this model, the average B is equal to (1 – f)B0 + f B1 and increases linearly 310 

with B1. Contrary to this expectation, we observed that the estimated B quickly saturated as B1 311 

increased (Figure 6A). gBGC is thus underestimated by model M1 when its strength is highly 312 

heterogeneous along the chromosome.  313 

To check this prediction, we analyzed the human AFR data set in a distinct way: rather 314 

than using genomic windows, we grouped SNPs into centiles of local recombination rate 315 

(measured on 5kb windows centered on SNPs), thus maximizing the range of expected gBGC 316 

intensities among groups of SNPs. As predicted by simulations, the estimated B did not 317 

increase linearly but roughly log-linearly with recombination rate (Figure 6B). We thus did 318 

not estimate very high B values, even for the highest recombination rate centiles: the 319 

maximum was only B = 1.47. This suggests that gBGC is too heterogeneous to be accurately 320 

estimated by the simple constant gBGC model (M1a*), even when SNPs are grouped by 321 

similar recombination rates. 322 

In order to try to capture this heterogeneity, we introduced two additional models. We 323 

first considered a model where gBGC (B1) only affects a fraction, f, of sites, the remaining 324 

fraction of sites evolving neutrally (B0 = 0) (M2a and M2a* with error correction, hereafter). 325 

Then we considered a low but non-null basal intensity of gBGC (B0) for a fraction, 1 – f, of 326 

sites, and higher gBGC intensity (B1 > B0) for the remaining fraction, f  (M2b and M2b* with 327 

error correction, hereafter). Simulations showed that small values of f are estimated with large 328 

variance, especially when B1 is small (Figure S7). Moreover, large B1 are also estimated with 329 

large variance (Figure S8). This is due to the fact that above a given threshold (B > 20), all 330 

values of B are expected to give very similar DAF spectra (Figure S9). It is therefore difficult 331 

to jointly estimate f and B1 accurately. In the M2b model, B0 is well estimated, except when B1 332 

is small (Figure S9). Overall, the M2a model appears more robust than M2b. However, if B0 > 333 

0, f is overestimated and B1 is underestimated under M2a (see Figures S7 and S8). 334 

To circumvent this difficulty, we used external information to constrain the model 335 

(noted M3*). M3* is a version of M2b* in which f is fixed to the fraction of recombination 336 

hotspots detected by HapMap in each window, and B1 is set to ρB0, where ρ is the ratio of 337 

recombination rates measured in and outside hotspots (see Material and Method). M3* 338 

therefore includes a single free gBGC parameter but still allows taking gBGC heterogeneity 339 

into account. Applying this model to the human AFR data set, we estimated the distribution of 340 

B outside (B0) and within hotspots (B1) across 2625 one-megabase windows (Figure 7). 341 

Excluding the 1% most extreme values, gBGC intensities ranged from -0.22 to 0.98 with a 342 

median of 0.16 and a mean of 0.21 outside hotspots, and from -5.66 to 34.23 with a median of 343 
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3.55 and a mean of 4.86 within hotspots. Averaging over hotspots and coldspots, the mean B 344 

equaled 0.52, which is 37% higher than the mean estimated with model M1* (mean B = 0.38, 345 

Table1). The more negative extreme values within than outside hotspots are simply explained 346 

by the constraint that B1 =  ρB0. Overall, 891 of 2625 windows exhibited values of B1 higher 347 

than 5. Given that hotspots cover on average 6.7% of each window, this indicates that about 348 

2.3% of the genome experience a gBGC intensity higher than B = 5.  349 

Mutational bias and global mutational disequilibrium in the human genome 350 

 Finally, our method also allows estimating the mutational bias towards AT bases and 351 

provides insights into the mutational process genome-wide. Using the M1* model on the 352 

whole dataset, we obtained the mean mutational bias (λ) across the genome to be λ = 2.08, 353 

which is very close to the direct estimate obtained by Kong et al. (Kong et al. 2012) (Figure 354 

8A). Assuming mutational equilibrium, the expected GC-content distribution predicted by the 355 

distribution of values of λ over analysis windows should be much narrower than the extant 356 

distribution with a much lower median (0.33 vs 0.40 see Figure 8B). This striking observation 357 

highlights the genome-wide effect of gBGC. However, the two distributions partly overlap, 358 

suggesting that some regions of the genome (at the Mb scale) could be at mutational 359 

equilibrium. To test for this prediction we show in Text S1 that some insights can be gained 360 

by a simple property of folded SFSs, in which SNPs are not polarized. In populations at 361 

equilibrium (all ri = 1) the folded spectrum is symmetrical if and only if GC content is equal 362 

to the mutational equilibrium: pGC = 1 / (1 + λ). This is true whatever the distribution of B and 363 

is quite robust to the departure from the demographic equilibrium (ri ≠ 1). The skewedness of 364 

the folded SFS, noted γ, is thus a measure of the departure of GC content from its mutational 365 

equilibrium: γ  < 0 (resp. γ > 0) indicates that GC content is higher (resp. lower) than its 366 

equilibrium. We computed the skewedness of the folded SFS for each window of the whole 367 

dataset. Most of the genome has negative skewedness, indicating higher GC content than 368 

expected under mutational equilibrium (Figure 8C). Interestingly, skewedness decreases 369 

linearly with GC content and extrapolation of the regression line for zero skewedness leads to 370 

a mutational equilibrium GC-content of 0.32, which is very close to the value directly 371 

estimated from mutation bias (see Figures 8A and 8C).  372 

 373 
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Discussion 374 

 Many lines of evidence show that gBGC is a major determinant of the evolution of GC 375 

content in mammalian genomes. Quantifying its intensity throughout the genome is necessary 376 

to appreciate its evolutionary and functional impact. As gBGC is driven largely by 377 

recombination, which is highly heterogeneous along the genome and episodic in time (Myers 378 

et al. 2005; Ptak et al. 2005; Winckler et al. 2005; Coop and Myers 2007; Auton et al. 2012), 379 

it is especially important to obtain estimates over short genomic scales and short time scales. 380 

So far, such quantifications were still lacking. To achieve this goal we used sequence 381 

polymorphism data and tackled several issues associated with the use of such kinds of data. 382 

We proposed a new efficient method and provided a fine description of the heterogeneity of 383 

the gBGC process along the human genome. 384 

Methodological issues 385 

 DAF spectra potentially contain information about the gBGC process and, more 386 

generally, about selection-like processes. However, to correctly infer the intensity of gBGC, 387 

two issues need to be addressed: the effect of demography and/or sampling on spectra and the 388 

problem of polarization errors. Two alternatives have been proposed to correct for 389 

demographic effects. Demographic parameters can be imposed to the estimation model 390 

(Boyko et al. 2008) or jointly inferred with selection/gBGC parameters (Keightley and Eyre-391 

Walker 2007). Eyre-Walker et al. (2006) proposed to correct for demography by adding 392 

correction parameters for each frequency category. This latter approach is more general 393 

because it is valid for any scenario, including specific sampling schemes, which cannot be 394 

easily modeled by a simple change in population size. However, it assumes that distortions 395 

from the equilibrium expectation are the same for neutral and selected spectra, which should 396 

be accurate for weak selection but not for strong selection. Because gBGC is relatively weak 397 

globally, it is fully justified to use the second approach, which makes our method quite 398 

general and practical for many conditions. 399 

 The most serious issue is the spurious signature of gBGC created by polarization 400 

errors (Hernandez et al. 2007). Contrary to previous approaches that seek to get accurate 401 

reconstruction of ancestral states before applying an inference model, we proposed to include 402 

polarization errors directly in the inference model and to estimate them jointly with the other 403 

parameters of interest. The advantage of this approach is that it is blind to the underlying 404 

process creating polarization errors. It therefore does not require a priori information about 405 
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processes of sequence evolution, such as a context-dependent mutation rates that take CpG 406 

hypermutability into account (Hernandez et al. 2007; Duret and Arndt 2008) Moreover, we 407 

showed by simulations that simply correcting the polarization bias between WS and SW 408 

mutations is not sufficient because even symmetrical error rates can be problematic (Figure 409 

3).  410 

Overall, we showed by simulations that our joint-inference method performed well 411 

under various scenarios. Practically, we also showed that the method corrected well for CpG 412 

effects: we observed a clear difference between CpG and non-CpG sites with the basic model 413 

without polarization errors, whereas this difference disappeared when we used the model with 414 

error correction (Figure 4).  415 

For non-CpG sites, the correction for polarization errors did not affect the estimate of 416 

B (Table 2). One might therefore argue that the simplest option to avoid biases due to 417 

polarization errors consists in excluding CpG sites from the analysis. However, an important 418 

drawback of this option is that CpG sites are not uniformly distributed along the genome: the 419 

exclusion of CpG sites therefore leads to biases in the sampling towards SNPs located in GC-420 

poor regions, where the recombination rate is on average lower, and thus gBGC is weaker. 421 

Hence, to obtain an unbiased estimate of gBGC strength across the entire genome, it is 422 

necessary to analyze all categories of SNPs. Moreover, the quantification of gBGC at CpG 423 

sites is also interesting in itself for understanding the molecular mechanisms causing gBGC 424 

(see below). 425 

Finally, we showed that the strong heterogeneity of the gBGC process made its 426 

accurate quantification difficult. On average, the signature of gBGC is weakened by 427 

heterogeneity. We thus extended the constant gBGC model to take recombination/gBGC 428 

hotspots into account, taking advantage of the detailed knowledge of the recombination 429 

landscape in humans that we used to constrain the model and limit the variance on estimates.  430 

It is important to note that the location of recombination hotspots evolves very rapidly. 431 

Notably we have shown that human recombination hotspots are at most 0.7 to 1.3 Myrs old 432 

(Lesecque et al. 2014). It is therefore likely that DAF spectra at sites that correspond to 433 

previous recombination hotspots that are no longer active still retain the hallmarks of past 434 

gBGC activity. And conversely, DAF spectra at human recombination hotspots are probably 435 

not yet at mutation/drift/gBGC equilibrium. This is why the strength of gBGC cannot be 436 

estimated simply by analyzing DAF spectra at presently-active recombination hotspots. Here 437 

we modeled hotspot dynamics by considering DAF spectra as a mixture of two categories of 438 

sites, supposed to evolve under a stationary regime, which is mathematically convenient. This 439 
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is clearly an over-simplification, and we suspect that signature of gBGC is also weakened 440 

because gBGC is episodic. In the future, a challenging perspective to better quantify the 441 

heterogeneity of the gBGC process would be to develop non-stationary models taking into 442 

account both heterogeneity between sites and short-lived episodes. 443 

Despite the limitations mentioned above, we suggest that our method can be applied to 444 

a broad set of organisms and datasets because a specific knowledge of the demographic 445 

history is not required and the effect of polarization errors can be easily corrected for. 446 

No difference in gBGC strength between CpG and non-CpG sites 447 

The fact that we observed no difference in the strength of gBGC between CpG and 448 

non-CpG sites (Figure 4) provides insights about the molecular mechanisms causing gBGC in 449 

humans. It is known that the methylation of cytosines at CpG sites is responsible for their 450 

hypermutability: the spontaneous deamination of 5-methylcytosine causes the formation of 451 

G/T mismatches in DNA that, if not repaired, lead to G:C�A:T mutations in the next round 452 

of DNA replication. The base excision repair system (BER) plays a major role in the repair of 453 

such mismatches. This pathway is initiated by the activity of DNA glycosylases that 454 

recognize the G/T mismatch and specifically excise thymines. The resulting gap is ultimately 455 

repaired into a G:C base pair (for review, see Sjolund et al. 2013). Mammalian cells possess 456 

four enzymes with thymine glycosylase activity (Sjolund et al. 2013). Two of these thymine 457 

glycosylases act preferentially at CpG dinucleotides, presumably to limit the hypermutability 458 

of these sites: Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase 459 

(TDG) (Sjolund et al. 2013). 460 

Given that the repair of G/T mismatches by BER is systematically directed towards 461 

G:C base pairs, it has been hypothesized that this process might be responsible for gBGC in 462 

mammals (Brown and Jiricny 1987; Birdsell 2002; Duret et al. 2002; Marais 2003). If this 463 

were indeed the case, given the preferential activity of BER at CpG sites, one would then 464 

expect a stronger gBGC on CpG than on non-CpG sites. The fact that we do not observe such 465 

a pattern strongly argues against this hypothesis. This observation is in accordance with recent 466 

results demonstrating that in yeast, gBGC is not caused by BER (Lesecque et al. 2013). The 467 

prominent repair pathway during recombination is the mismatch repair (MMR) system 468 

(Surtees et al. 2004). In yeast, the analysis of gene conversion tracts indicates that gBGC is 469 

most probably caused by MMR (Lesecque et al. 2013). Our observations suggest that this 470 

might also be the case in humans. 471 
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Intensity and dynamics of gBGC across the human genome 472 

In agreement with previous studies (Spencer et al. 2006; Capra et al. 2013; Lartillot 473 

2013b; Lachance and Tishkoff 2014) we found that gBGC is weak on average (B = 0.52 by 474 

averaging M3* estimates over hotspots and coldspots), but widespread along the human 475 

genome, which is sufficient to explain that GC content is higher than the expected mutational 476 

equilibrium in most regions of the genome (Figure 8). However, average values mask the 477 

strong heterogeneity we detected. In highly recombining hotspots, gBGC values can reach 478 

high values (B > 10, Figure 7) and we evaluated that more than 2% of the genome experience 479 

gBGC higher than B = 5. Given that the location of hotspots evolves continually (Myers et al. 480 

2005; Ptak et al. 2005; Winckler et al. 2005; Coop and Myers 2007; Auton et al. 2012), this 481 

implies that over the long term this process affects a large fraction of the genome.  482 

Previous attempts to quantify the impact of gBGC were based on the analysis of 483 

substitution patterns along the phylogeny (Capra et al. 2013; Lartillot 2013b).  Capra and 484 

colleagues (2013) estimated that about 0.3% of the human genome have been subject to 485 

strong gBGC episodes since the divergence from chimpanzee, whereas Lartillot (2013b) did 486 

not detect any signature of strong gBGC episodes in primates. This contrast with our results, 487 

which indicate that 2% of our genome is currently subject to strong gBGC (B>5). The 488 

discrepancy is probably due to the fact that these phylogenetic approaches tend to effectively 489 

average processes over periods of time (divergence between species) that are much longer 490 

than the lifespan of recombination hotspots. Hence, only extremely strong or long-lasting 491 

gBGC episodes can be detected by such methods. For a comparison, the distribution of B 492 

values obtained under the M3* model (Figure 7) indicate that the 0.3% of the human genome 493 

with the strongest gBGC, experience B values higher than 13.9 (with a mean of 21.6).  494 

Our results also allow us to elucidate the dynamics of gBGC hotspots. If the gBGC 495 

tracts detected along the genome by Capra et al. (2013) were still active gBGC hotspots, we 496 

should observe high B values in these tracts. To test this, we retrieved all SNPs belonging to 497 

these tracts on (http://genome-mirror.bscb. cornell.edu) and applied the M1* model. The 498 

value we obtained, B = 0.74, is higher than the mean computed over the one-megabase 499 

windows (B = 0.38 with M1* and 0.52 with M3*), but still rather low. Accordingly, the 500 

current average recombination rate around these tracts (2.32 cM/Mb) is higher than the 501 

genomic mean (1.42 cM/Mb), but does not reach the most extreme values (Figure 6B). These 502 

observations suggest that, on average, gBGC is currently not extremely active in these tracts. 503 

Thus, most of these tracts probably correspond to ancient recombination hotspots that are no 504 
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longer active. This is in agreement with the recent findings that current human hotspots are 505 

less than 0.7 to 1.3 Myrs old (Lesecque et al. 2014), i.e. much younger than the human-506 

chimpanzee divergence time (7 to 13 Myrs, Langergraber et al. 2012). 507 

Consequences of transient strong gBGC episodes 508 

As already suspected, our results show that strong gBGC episodes transiently occur 509 

along the genome. The consequences of a highly heterogeneous vs. a homogeneous gBGC 510 

process are strikingly different even when the mean effect in both scenarios is the same. First, 511 

strong gBGC episodes are required to explain substitution hotspots (Dreszer et al. 2007; 512 

Kostka et al. 2012; Clement and Arndt 2013) and spurious signature of positive selection 513 

(Galtier and Duret 2007; Ratnakumar et al. 2010), but previous studies so far only provided 514 

rather low average estimates with maximum B values slightly higher than one (Spencer et al. 515 

2006; De Maio et al. 2013; Lartillot 2013b). Here, we directly show that the intensity of 516 

gBGC can locally reach values higher than B = 5 and even of the order of B = 20, which is 517 

largely sufficient to explain substitution hotspots. Beyond these technical consequences for 518 

the interpretation of genomic patterns, gBGC can counteract selection (Galtier et al. 2009; 519 

Lartillot 2013a) and have deleterious consequences (Necsulea et al. 2011; Capra et al. 2013; 520 

Lachance and Tishkoff 2014), and it has been shown that strong gBGC episodes in few 521 

hotspots have worse consequences than low gBGC levels that are homogeneous along the a 522 

chromosome (Glémin 2010). gBGC can thus contribute significantly to the genetic load 523 

experienced by human populations. Even though the load a population can tolerate can be 524 

high under soft and/or stabilizing selection (Lesecque et al. 2012; Charlesworth 2013), our 525 

estimates are quantitatively compatible with potential pathological implications of gBGC as 526 

previously proposed (Galtier et al. 2009; Necsulea et al. 2011; Capra et al. 2013; Lachance 527 

and Tishkoff 2014). 528 

 529 

Material and methods 530 

Dataset 531 

We downloaded the 1000 genomes project polymorphism data set (phase 1) (Frazer et 532 

al. 2007) from the EBI web site: 533 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120316_phase1_integrated_rele534 

ase_version2/ 535 
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This file contains 38,248,808 SNPs, called from the genomes sequences of 1092 individuals 536 

from 14 populations including Europe (EUR), East Asia (EAS), sub-Saharan Africa (AFR) 537 

and the Americas (AMR). This file also includes predictions of ancestral allele states, inferred 538 

from 4-way EPO multiple alignments (Homo sapiens, Pan troglodytes, Pongo pygmaeus, 539 

Macaca mulatta) (Paten et al. 2008). Details about the procedure used by the 1000 genomes 540 

project to infer ancestral states is available here: 541 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/ancestral_alignments/542 

README 543 

In brief, the authors first reconstructed ancestral sequences at the two internal nodes of the 4-544 

species phylogeny (using the probabilistic method Ortheus (Paten et al. 2008)). Then they 545 

retained human-chimpanzee ancestral state predictions that involved no more than one change 546 

along the chimpanzee and orangutan lineages. Ancestral state predictions are available for 547 

36,701,805 SNPs (96%). We further excluded 2,606,317 SNPs for which the inference of the 548 

ancestral allele was reported as being less reliable (indicated by a lower case in the original 549 

file). It should be noted that the reconstruction of ancestral states by the Ortheus method does 550 

not take into account the hypermutability of CpG sites. 551 

To measure recombination rates we used genetic maps from the HapMap Phase 2 552 

project (Frazer et al. 2007). As these maps are reported in the version hg18 of the human 553 

genome assembly, we converted the location of SNPs from hg19 to hg18 coordinates using 554 

the liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). A small fraction of SNPs 555 

(N=31,056) could not be mapped onto hg18 and the SNPs were discarded.  556 

Maximum-likelihood framework to estimate the intensity of gBGC from site 557 

frequency spectra (SFS) 558 

 We fitted population genetic models to the derived allele frequency (DAF) spectra to 559 

estimate B using a maximum likelihood framework similar to Muyle et al. (2011). The 560 

generic model is given by equations (1) in the main text. In equations (1), the first term within 561 

the integral corresponds to the binomial sampling of i alleles in a sample of size n given true 562 

population-frequency x. When n is high we can use the continuous approximation that gives 563 

very similar results and speeds up and numerical computations: 564 

  
C

n
i xi (1− x)n− i H (x) dx ≈

1

n
H i n( )

0

1

∫   (3) 565 

For each subpopulation of the 1000 genomes dataset the frequencies are given in 1/100 so that 566 

we set n = 100. 567 
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We used the following nested models: 568 

M0: no gBGC:  569 

  
H (x) =

2

x
 (4) 570 

M1: constant gBGC of intensity B = 4Neb: 571 

  
H

WS
(x) = H (B, x) = 2

1− e− B(1− x )

x(1− x)(1− e− B )
  (5) 572 

and   HSW
(x) = H (−B, x) . B can be either positive or negative. 573 

M2a: gBGC hotspots of intensity B = 4Neb in frequency f: 574 

  
H

WS
(x) = H (B, f ,x) = 2 f

1− e− B(1− x )

x(1− x)(1− e− B )
+

(1− f )

x

⎛

⎝
⎜

⎞

⎠
⎟  (6) 575 

and   HSW
(x) = H (−B, f , x). B can be either positive or negative. 576 

M2b: gBGC hotspots of intensity B1 = 4Neb1 in frequency f and basal gBGC of intensity 577 

B0 = 4Neb0: 578 

  

H
WS

(x) = H (B
0
, B

1
, f ,x) = 2 (1− f )

1− e− B0 (1− x )

x(1− x)(1− e− B0 )
+ f

1− e− B1 (1− x )

x(1− x)(1− e− B1 )

⎛

⎝
⎜

⎞

⎠
⎟  (7) 579 

and   HSW
(x) = H (−B

0
,−B

1
, f ,x) . B0 and B1 can be either positive or negative. 580 

Polarization errors were included in the four models according to equations (2). 581 

M3: constrained model of gBGC hotspots 582 

This model is equivalent to the M2b model, except for that f is fixed according to the fraction 583 

of recombination hotspots detected by HapMap and B1 = ρB0, where ρ is the ratio of 584 

recombination rates measured in and outside hotspots.   585 

Assuming independence between SNPs, the likelihood of the model can thus be 586 

written as: 587 

  
Γ = P(μ

neutral
(i),k

i
WW ,SS )P(μ

WS
(i),k

i
WS )P(μ

SW
(i),k

i
SW )

i=1

n

∏  (8) 588 

Parameters estimates were obtained by maximization of the log-likelihood function 589 

using the FindMaximum function of Mathematica v8 (Wolfram 1996) (R scripts are also 590 

available but are slower). The composite parameters θWS = 4NeuL and θ  = 4NevL, λ, and the 591 

coefficients ri were constrained to be positive. In model M1, B was a free parameter. In model 592 
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M2a and M2b, B0 and B1 were free parameters and f was constrained to lie between 0 and 1. 593 

Error rates were constrained to be positive and lower than ½. The accuracy and the speed of 594 

the maximization are greatly increased by choosing starting values close to the optimum. This 595 

is possible because we can obtain rough estimates of most parameters: (i) θ, θWS are set to the 596 

Watterson’s estimates for the corresponding SFS. Watterson’s estimate is also computed for 597 

θSW to set the mutational bias to λ = θSW pGC / θWS (1 – pGC). (ii) The initial ri coefficients are 598 

based on the neutral spectrum and set to ri = i ki / k1, where ki is the number of neutral SNP in 599 

frequency i/n. (iii) To set the initial B value in model M1 we used the fact that the log-ratio of 600 

the WS and the SW spectra is independent of the ri coefficients and is linear in B: 601 

  

log
μ

WS
(i)

μ
SW

(i)

⎛

⎝
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⎞

⎠
⎟ μ

WS
(i) = log
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⎜

⎞

⎠
⎟ − B log

i

n

⎛

⎝⎜
⎞

⎠⎟   (9) 602 

We thus used the slope of the regression of the log-ratio over the log of the class frequencies 603 

as the starting value for B. (iv) Polarization errors rates are set to 0.01. For models M2a and 604 

M2b, parameters obtained by the maximization of model M1 were used as starting values 605 

except for the additional parameters f set to 0.9. When runs did not converge over long times, 606 

other starting values where tested. 607 

Likelihood-ratio tests (LRT) with one degree of freedom can be performed to compare 608 

the different nested gBGC models (M1 vs M0, M2a vs M1, M2b vs M2a, with or without 609 

polarization errors). Similarly, the equivalent models with and without polarization errors can 610 

be compared. Note that because of possible non-independence between SNPs, LRT are anti-611 

conservative and must be viewed with caution. However, maximum likelihood estimates 612 

should not be affected by such non-independence. 613 

Simulations 614 

We simulated datasets by drawing SNPs from Poisson distributions with expectation 615 

values given by the population genetics models M0 to M2b. These are the “true” correctly 616 

orientated datasets. Then, from these datasets, we built datasets with a given proportion of 617 

polarization errors: eneutral, eWS, and eSW. For these “observed” datasets with polarization 618 

errors, the observed numbers of SNPs in frequency classes i/n are thus: 619 

fobs(i) = (1 – eneutral) ftrue(i) + eneutral ftrue(n – i)  for neutral SNPs 620 

fobs(i) = (1 – eWS) ftrue(i) + eSW ftrue(n – i)  for WS SNPs 621 

fobs(i) = (1 – eSW) ftrue(i) + eWS ftrue(n – i)  for SW SNPs 622 

Note that the observed numbers of WS SNPs are proportional to (1 – pGC) θWS and the 623 
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observed number of SW SNPs to pGC λ θWS. We then applied the different models, without 624 

and with error corrections to the two kinds of datasets. The following parameters are common 625 

to all simulations: θneutral = 1000, θWS = 2000, λ = 2, n = 20.  626 
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Figure legends 634 

 635 

Figure 1: Variations in derived allele frequencies (DAF) according to mutation type (WS 636 

or SW) and local recombination rate: non-CpG sites. 637 

SNP allele frequencies and polarizations were retrieved from the 1000 genomes phase 1 data 638 

set (population panel: AFR). We selected all non-CpG SNPs located in non-coding regions 639 

from autosomes. Recombination rates are measured over 5 kb windows centered on each 640 

SNP, using HapMap data (Myers et al. 2005). A: DAF spectra of all SNPs. B: DAF spectra of 641 

the subset of SNPs located in regions of low recombination (bottom 10%). C: DAF spectra of 642 

the subset of SNPs located in regions of high recombination (top 10%). D: differences in 643 

mean DAF spectra between WS and SW mutations, according to the local recombination rate. 644 

The values in the legends indicate the genome-wide count of SNPs of each category. 645 

 646 

Figure 2: Variations in derived allele frequencies (DAF) according to mutation type (WS 647 

or SW) and local recombination rate: CpG sites. 648 

Information similar to this given in Figure 1, but here for CpG sites only. 649 

 650 

Figure 3: Effect of polarization errors on B estimates and accuracy of the correction 651 

method. 652 

Estimation of B as a function of GC content in simulated datasets: B = 0 for any GC content 653 

(A and C) and B linearly increases with GC content (B and D) (red lines in A and B). For a 654 

given simulated dataset (= correctly orientated data), polarization errors (eneutral = eWS = eSW = 655 

0.03) were secondarily added (= observed data). B values were estimated using the model 656 

without error correction (M1, see main text and Table 1) and with error correction (M1*). 657 

Box-plots correspond to the B estimates of 100 correctly orientated datasets using M1 model 658 

(red), 100 observed datasets using M1 model (dark-blue), 100 observed datasets using M1* 659 

model (light-blue). Figures C and D show the correlation between B values estimated from 660 

correctly orientated data with M1 model and B values estimated from observed data with the 661 

M1* model. The regression line is indistinguishable from the diagonal y = x. 662 

 663 

Figure 4: B estimates for one-megabase windows as a function of recombination rate 664 

and GC content. 665 

Values of B were estimated with the M1* model. Grey (resp. orange) dots correspond to B 666 
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values non-significantly (resp. significantly) different from 0. The regression lines and the 667 

spearman correlation coefficients are given in the plots. ***: p-values < 10-15. To be 668 

congruent with Figure 5, GC-content was measured over 100bp and recombination rate over 669 

5kb around each SNP and then averaged over each window. 670 

 671 

Figure 5: Comparison of the B estimated with and without error correction. 672 

Values of B estimated without error correction (M1 model, A and B) and with error 673 

correction (M1* model, C and D) as a function of GC content (A and C) and recombination 674 

rate (B and D) for the whole dataset (black), the non-CpG dataset (blue), and the CpG dataset 675 

(red). To take into account differences in local GC-content and recombination rates between 676 

CpG and non-CpG sites in the same window, we measured GC-content over 100bp and 677 

recombination rate over 5kb around each SNP and then averaged them over each window. 678 

When the non-CpG and the CpG datasets are analyzed jointly, recombination rate, GC-679 

content, and the category of sites explain, respectively, 11%, 17%, and 38% of the variance in 680 

B without error correction, and 16%, 4% and 1% with error correction. 681 

 682 

Figure 6: Effect of hotspots on B estimates. 683 

A) Simulations were performed under model M2b with B0= 0, f = 0.05 (blue), 0.1 (purple) and 684 

0.2 (red). For each B1 value (x-axis) 100 simulations were performed and the M1 model was 685 

applied to estimate B. The lines correspond to the expectation B = (1 – f)B0 +fB1. Very similar 686 

results were obtained for B0= 0.25, and B0= 0.5 (not shown). 687 

B) The whole dataset was divided into centiles of recombination rates computed over 5kb 688 

around each SNP. The line corresponds to the regression performed on centiles for which 689 

recombination rate was lower than 0.1 cM/Mb. Dots correspond to B estimates under the M1* 690 

model. The blue diamond corresponds to B estimated using the SNPs belonging to the gBGC 691 

tracts detected by Capra et al. (2013).  692 

 693 

Figure 7: Distribution of B in and outside of recombination hotspots for one-megabase 694 

windows 695 

Distribution of the estimate of B0 (= Outside hotpsots, blue) and B1 (= In hotspots, red) for 696 

each one-megabase window. The M2b* model was used and f, the fraction of hotspots, was 697 

fixed to the observed fraction. The ratio ρ = B1/B0 was also constrained to be proportional to 698 

the ratio of recombination rates in and outside hotspots. Over the 2546 windows, 28 windows 699 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2014. ; https://doi.org/10.1101/010173doi: bioRxiv preprint 

https://doi.org/10.1101/010173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

were excluded for which at least one of the two estimates of recombination rates was 700 

negative. In the inset, the distribution of B1 is magnified and extended to the whole range of 701 

values. 702 

 703 

Figure 8: Mutational bias towards AT 704 

A) Distribution of the mutational bias for one-megabase windows. 705 

The distribution of λ was obtained from the M1* model over the 2675 windows.  706 

B) Comparison of the observed GC-content distribution and the expected mutational 707 

equilibrium distribution. The observed distribution was computed over the 2671 windows, 708 

and the expected distribution using the distribution of λ (A) and the relationship: pGC = 1 / (1 709 

+ λ). 710 

C) Skewedness of the folded frequency spectrum for one-megabase windows as a function of 711 

GC content. The red line is the regression line. The point for which the skewedness is zero 712 

indicates the expected mutational equilibrium GC content: 0.32. The blue cross corresponds 713 

to the mutational equilibrium estimated using the mean value of λ (GC = 0.33). 714 

715 
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 716 

Tables 717 

 718 

Table 1: Number of parameters for the different models. The saturated model has 3n 719 

parameters. 720 

Models Without error With error 

M0 3 + n – 2 

θ, θWS, λ, ri 

6 + n – 2 

θ, θWS, λ, eneutral, eWS, eSW, ri 

M1 4 + n – 2 

θ, θWS, λ, B, ri 

7 + n – 2 

θ, θWS, λ, B, eneutral, eWS, eSW, ri 

M2a 5 + n – 2 

θ, θWS, λ, B, f, ri 

8 + n – 2 

θ, θWS, λ, B, f, eneutral, eWS, eSW, ri 

M2b 6 + n – 2 

θ, θWS, λ, B0, B1, f, ri 

9 + n – 2 

θ, θWS, λ, B0, B1, f, eneutral, eWS, 

eSW, ri 

M3 4 + n – 2 

θ, θWS, λ, B0, ri 

7 + n – 2 

θ, θWS, λ, B0, eneutral, eWS, eSW, ri 

 721 

 722 

Table 2: Estimates of average polarization error rates and gBGC strength (B) obtained with 723 

model M1* on 1Mb-long genomic windows, and comparison with estimates of B obtained 724 

without correction for polarization errors (model M1). Polarization error rates: SW mutations 725 

(eSW), WS mutations (eWS), SS+WW mutations (eneutral).  726 

 727 

Sites eSW eWS eneutral B  

        M1* M1 

All 1.8% 1.0% 0.8% 0.38 0.55 

Non-CpG 0.7% 1.0% 0.9% 0.33 0.32 

CpG 4.1% 0.7% 0.6% 0.50 1.00 
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ρSpearman = 0.386 ***
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