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ABSTRACT

Background: Blueberries are arich source of antioxidants and other beneficial compounds that
can protect against disease. Identifying genes involved in synthesis of bioactive compounds could
enable breeding berry varieties with enhanced health benefits. Results: Toward this end, we
annotated a draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit
development and ripening. Genome-guided assembly of RNA-Seq read alignments combined
with output from ab initio gene finders produced around 60,000 gene models, of which more than
half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of
gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes
involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential
disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic.
Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a
candidate CG detoxification enzyme was up regulated during fruit ripening. Candidate genes for
ethylene, anthocyanin, and 400 other biosynthetic pathways were aso identified. RNA-Seq
expression profiling showed that blueberry growth, maturation, and ripening involve dynamic
gene expression changes, including coordinated up and down regulation of metabolic pathway
enzymes, cell growth-related genes, and putative transcriptional regulators. Analysis of RNA-seq
alignments also identified developmentally regulated alternative splicing, promoter use, and 3'
end formation. Conclusions: We report genome sequence, gene models, functional annotations,
and RNA-Seq expression data which provide an important new resource enabling high
throughput studies in blueberry. RNA-Seq data are freely available for visualization in Integrated
Genome Browser, and analysis code is available from the git repository at

http://bitbucket.org/l orainel ab/blueberrygenome.
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INTRODUCTION

A diet rich in blueberries can help protect against diabetes [1], cardiovascular disease, and
age-related cognitive decline [2, 3]. Molecular or biochemical mechanisms underlying all of these
positive health benefits are not known, but most research has thus far focused on the antioxidant
and anti-inflammatory properties of polyphenolic phytochemicals that accumulate as fruit ripen.
Blueberry fruit are an especialy rich source of polyphenolic anthocyanin pigments, which give
blueberries their distinctive color. Of these, malvidin, delphinidin, and peonidin are the most
abundant by weight [4]. The relative abundance of these anthocyanins can differ between
genotypes[5, 6], and in vivo research has shown that different anthocyanins have different effects
on biologica systems[7-9], suggesting that different berry varieties may offer distinct health
benefits.  Blueberries also contain relatively large amounts of quercetin [4], another
polyphenalic that may have beneficial effectsin Alzheimer’s disease [10] and inflammation-
related disorders[11]. Berries may also contain other as-yet undiscovered beneficial
phytochemicals that could interact with anthocyanins or other compounds to potentiate biological
efficacy [6, 12]. Genomic studies that catalog the full genetic repertoire of blueberry could enable
greater understanding of bioactive compounds, a necessary step toward devel oping new varieties
bred for different health effects.

Blueberries are in the Cyanococcus section of family Ericaceae, genus Vaccinium, which
also includes cranberry (V. macrocarpon), lingonberry (V. vitis-idaea), and more than 400 other
species [13]. Commercially harvested blueberry speciesin North Americainclude lowbush (wild)
blueberry Vaccinium angustifolium, alow, spreading shrub grown in managed standsin the
Northern US and Canada, and the highbush blueberry species Vaccinium corymbosum and
Vaccinium ashel, which are larger shrubs grown in orderly rows in orchards and require annual
pruning to maintain productivity. Of the two highbush species, Vaccinium corybosumis the most
widely grown, while Vaccinium ashei is grown solely in the Southern US. V. corymbosum was
first domesticated in the early 20th century by USDA scientist Fredrick Coville working with
New Jersey farmer Elizabeth White, who recruited local pickersto locate wild berry plants with
unusualy large fruit. Coville's breeding these early wild selections produced varieties suitable
for commercial production, some of which are still grown today. Both lowbush and V.
corymbosum highbush blueberries are deciduous and require a period of low temperatures during
the winter season to induce flowering the following spring. To expand the range where highbush
blueberries can be grown commercially, breeding programs have selected varieties with reduced

chilling requirement, leading to development of sub-varieties called “southern highbush” because
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they require fewer days of colder temperatures to trigger flowering. Ploidy levels of berry species
range from diploid to hexaploid, and most varieties of highbush berry contain genetic material
introduced from diverse genotypes and species, including V. darrowii Camp (evergreen
blueberry) and V. arboreum Mar. (sparkleberry), as well as rabbiteye and lowbush blueberry.
Although there is agreat diversity across varieties, highbush blueberry plants within the same
cultivar are highly uniform, as all are clones propagated from a single selection. Thus sequences
collected from individuals from the same cultivar are expected to be highly homogenous with few

differences between individuals.

Estimates based on flow cytometry predict that a haploid blueberry genome is around 600
million bases, five times the size of the Arabidopsis thaliana genome [14]. In arelated study [15],
adraft genome assembly of southern highbush blueberry was generated using HiSeq Illumina
reads; the unassembled sequences are available from the Short Read Archive under accession
SRA053499. This draft assembly consists of 225,479 contigs organized into 13,757 scaffolds
with an N50 scaffold size of 145 kb, meaning that at least half of the sequence datais organized
into scaffolds of 145 kb or larger. Plant genes are typically smaller than 2 kb, and intergenic
regions are often smaller, which means that a 145 kb or larger contig could accommodate 50 or
more genes. Although the genome assembly is still awork in progress, its large N50 make this

draft assembly an important new resource for RNA-Seq analysis and gene discovery in blueberry.

To date, blueberry improvement efforts have focused on agronomic traits, such as ability to
withstand mechanical harvesting, or consumer-focused traits, such as berry size, flavor, and
mouth feel. Due to rising consumer interest in the health-protective effects of blueberries and
other fruits and vegetables, breeding for nutritional and health-protective qualities may become
practical in the near future. Breeding a more healthful berry will require more complete
knowledge of genes encoding enzymes of secondary metabolism aswell astheir putative
regulators. Toward this end, we performed high-throughput transcriptome sequencing (RNA-Seq)
and differential gene expression analysis of five stages of berry development and ripening.
Genome data, RNA-Seq expression profiles, and functional annotations have been made publicly
available and will provide an important new resource for interpretation of high-throughput data

from blueberry species.
DATA DESCRIPTION

Berry collection and RNA extraction
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Blueberry samples were collected from the field from four- or five-year old blueberry plants
growing at the North Carolina Department of Agriculture Piedmont Research Station, near
Salisbury, NC. Plants were labeled by row and position within the row; for example, plant 2-41
occupied position 41 within row 2. All samplesintended for RNA extraction were flash-frozen on
liguid nitrogen in the field immediately after collection and stored at -80° C until use. For RNA
extraction, whole berry samples were ground to powder in amortar and pestle with liquid
nitrogen and total RNA was extracted using the Spectrum Total Plant RNA Kit (Sigma).
Extracted RNAs were treated with DNase | prior to library construction using RNAase-Free
DNase (catalog number 79254) from Qiagen.

© 00 N o o b~ W DN P

10 454library construction and sequencing for May 2009 samples

11 Twolibraries were prepared from samples of green and ripe fruit respectively from plants of the
12 O'Neal variety of southern highbush blueberry. The green fruit library was prepared from a mix
13 of unripe, green fruits of varying sizes harvested on May 18, 2009 from plant 2-41. The ripe fruit
14  library was prepared from ripe fruits harvested on June 15, 2009 from plants 2-40, 2-41, and 2-42,
15 dsoof the O’'Nea variety. Thelibraries for sequencing were constructed using the SMART PCR
16  cDNA synthesiskit from CloneTech. The 3 and 5’ primers used in first strand cDNA synthesis
17  were aagcagtggtatcaacgcagagtact(30)VN and aagcagtggtatcaacgcagagtacgcggg, respectively,

18 whereV wasa, g, or c and N was any nuclectide. The products of first strand cDNA synthesis
19  wereamplified using a polyA disruption PCR primer designed to introduce non-A basesin the
20  polyA tail region of the cDNA, since homopol ymeric sequences are difficult to sequence using
21  the454 technology. The polyA disruption primer sequence was

22  attctagaggccgaggeggecgacatgt(4)gtet(4)gttetgt(3)ct(4)VN, where numbers in parentheses indicate
23  the number of times the preceding base appeared in the sequence and V was a, g, or c. The

24  sequence of the 5" primer used for second strand cDNA synthesis was aagcagtggtatcaacgcagagt.
25  Thetwo libraries were sequenced in two sectors of the same plate on a 454-GS FLX Titanium

26  sequencer (454 Life Sciences, Roche Diagnostics, USA) at the David H. Murdock Research

27  Ingtitute. Sequence data are available from the Short Read Archive under accession SRP039977.

28 454 library construction and sequencing for May 2010 samples

29  Greenand ripe berries were harvested from O’ Neal variety plant 2-42 on April 29, 2010 and May
30 26, 2010, respectively. For sequencing and library construction, samples of total RNA were sent
31  totheNorth Carolina State University Genome Sciences Laboratory (GSL). Each sample was

32  usedto synthesize two libraries, which were sequenced on the same plate of a454-GS FLX
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Titanium sequencer. Libraries were synthesized at the GSL following the protocol reported
previously [16]. Sequence data are available from the Short Read Archive under accession
SRP039977.

Berry callection, library synthesis, and sequencing of berry development samples

Berries from five stages were selected from three plants (3-33, 2-41, and 2-42) of the O’ Neal
variety of southern highbush blueberry Vaccinium corymbosum. We designated the five stages as
pads, cups, green, pink, and ripe. The “pads’ and “cups’ stages corresponded approximately to
stages S1/S2 (pads) and S3/$4 (cups) described in [17]. Green fruit were fully rounded green
berries, pink berries were partially pigmented but still firm, and ripe berries were fully colored
and soft. Samples were collected during the growing season of 2011. Pads were collected on
April 4, cups on April 19, mature green fruit on April 28, pink fruit on May 20, and ripe fruit on
June 2. Following RNA extraction and DNAase | treatment (as described in the previous section)
libraries were synthesized using the TruSeq A kit (catalog number FC-121-1001) from Illumina
(lMumina, USA) following the manufacturer’ s instructions. Libraries were synthesized using
different TruSeq adapters to allow multiplexing, combined and then sequenced in three lanes with
five libraries per lane using a HiSeq sequencer from Illumina. Sequence data are available from
the Short Read Archive under accession SRP039977.

Berry collection, library synthesis, and sequencing of berry cultivars

Fully ripe and green berries from four berry cultivars (Pamlico, Lenoir, O'Neal and Ozark Blue)
were harvested in 2009 from plants growing at the Piedmont Research Station and frozen on
ligquid nitrogen in the field. RNA was extracted as described in the preceding section. Libraries
were synthesized using the mRNA-Seq Sampl e Preparation kit (catalog number RS-930-1001)
from Illumina following manufacturer instructions. Libraries were sequenced using paired-end,
76 cycle sequencing at the UNC Chapel Hill Lineberger Cancer Research Center on a GAIlIx
sequencer from Illumina. Sequence data are available from the Short Read Archive under
accession SRP039971.

Sequence processing and alignment

Prior to alignment, all sequences were trimmed to remove low-quality bases at the 5" and 3’
prime ends of sequences. Single-end Hiseq reads (100 bp) from the berry fruit development series
were trimmed to 85 bases to remove lower quality bases. Five bases were trimmed from the three

prime end and 10 bases were trimmed from the five prime end of each read using the FASTX-
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Toolkit from Galaxy [18]. Similarly, the 76 bases long paired-end GAIllx sequences were
trimmed to 61 bases by removing ten bases on the five prime end and three bases on the three
prime end of each sequence. For 454-generated sequences, ten bases were removed on the five
prime end only. The Illumina sequences were aligned onto blueberry draft genome assembly
using TopHat2 [19] and Bowtie2 [20] using default parameters, except for the maximum intron
size parameter, which was set to 6,000 bases consistent with typical intron size distributions for
plant genes. 454 sequences were aligned onto the reference genome sequence using GMAP [21]

with default parameters except for intron length, which was set to 6,000 bp.
Data Availability

All sequence data are available in the Short Read Archive under accessions listed in the previous
sections. Files contained alignments, RNA-Seq coverage graphs, and output from TopHat2 are
available from a publicly accessible IGBQuickLoad site (http://www.igbquickload.org/blueberry)

configured to serve datafor visualization in Integrated Genome Browser. Data filesincluding
gene models and related annotations are available from a git source code repository at

http://www.bitbucket.org/l orai nel ab/blueberrygenome.

Genemodel generation, filtering, and protein sequence assignment

Cufflinks was used to generate transcript models using paired-end and single-end Illumina
sequences alignments with maximum intron set to 6,000 bases. Three ab initio gene-finding
programs (Augustus [22], GlimmerHMM [23], and GeneMark [24]) were used to generate gene
models from genomic sequence. Arabidopsis trained parameters were used for GlimmerHMM
and default parameters were used for Augustus and GeneMark. Because many of the resulting ab
initio and Cufflinks-based genes models covered the same genomic regions, a step-wise filtering
protocol (Supplemental Figure 1) was applied to reduce redundancy in the final gene set. First, al
genes generated by Cufflinks were selected for inclusion in the final gene set, since these were
predicted from the RNA-Seq expression data and thus the level of evidence supporting them was
high. Any ab initio gene finder-predicted gene that overlapped one of the Cufflinks-predicted
genes was eliminated from the candidate gene list. Next, all remaining candidate genes that were
predicted by Genemark were considered. If a candidate Genemark gene had homology to a
known protein (by BLASTX) or overlapped with an expressed sequence alignment, it was added
to the final gene set and, as before, overlapping gene models were removed from the remaining
candidate gene set. The process was repeated for genes predicted by Glimmer, Augustus, and
GMAP. The selection order of priority for ab initio gene prediction programs was based on visual
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inspection of predicted gene models and consistency with alignments of full-length blueberry
sequences available from GenBank. Protein coding sequences were detected in the gene models
using the TAU program [25]. Gene models were formatted into a BED-detail (BED14) file
(V_corymbosum_scaffold_May 2013.bed) in which field 4 listed the transcript (gene model)
name, field 13 listed the gene name, and field 14 listed the name of the program that generated
the gene model. Note that many genes predicted by Cufflinks were associated with multiple
transcripts, typically products of alternative splicing. Thus, in the case of Cufflinks-predicted
genes, the gene field contained a name such as CUFF.11 while the gene model field contained a
name such as CUFF.11.1, the first reported transcript generated from gene CUFF.11. Gene
modelsin bed format were added to the bitbucket repository

http://bitbucket.com/l orainel ab/blueberrygenome in subdirectory GeneM odel Analysis/results.

Functional annotation of gene models using BLAST X against nr

Sequences of spliced transcripts were searched against the non-redundant protein database from
NCBI using a database that was downloaded in June of 2013. Virtual cDNA sequences obtained
from the gene model annotations were searched against the nr database using blastx. The
resulting matches were used for annotation if the e value was 10™ or better, the alignment length
was at least 30 amino acids, and the percent identity was 30% or higher. For each gene model
with at least one high-quality match meeting these criteria, an annotation string was generated
containing the Genbank identifier and fasta header for the best-matching sequence, information
about the blastx-generated alignment, and the program that was used to generate the gene model.
The annotation string was transferred onto the corresponding blueberry gene model by replacing
field 14 in the BED-detail file described above. Field 14 datafor gene models that did not have
high-quality matches meeting the criteria described above were not maodified. The modified gene
model file was added to the bitbucket repository subdirectory titled BlastxAnalysis/results as
V_corymbosum_scaffold_May 2013 wDescr.bed.gz.

Functional annotation of gene models using Blast2GO

Blast2Go version 2.7.0 (Build 05122013) was obtained via Java Web Start from
http://blast2go.com and used to associate GO terms and EC numbers with individual gene models
from blueberry. BLASTP and InterProScan search results were loaded into Blast2GO and the

Blast2GO function Annotation > Perform Annotation Step menu was used to perform GO

annotation. BLASTP results were obtained by searching predicted blueberry protein sequences

against the “nr” protein database using evalue cutoff of 10° and reporting a maximum of five
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“hit” sequences per query. IPRScan version 4.8 was run using default parameter settings.
Databases current as of July 2013 were searched. MySQL databases (' b2g_sepl13’) from
Blast2Go.com were downloaded and installed on alocal server to enable faster processing.
Blast2GO results were saved in plain text format (Supplemental Data File 2) and in Blast2GO
format and added to the bitbucket repository http://bitbucket.com/lorainel ab/blueberrygenomein
a subdirectory named Blast2GO.

Functional annotation of gene models using BLAST X against PlantCyc enzymes

Fasta-format sequence files containing amino acid sequences for enzymes in Plant Metabolic
Network species-specific databases (e.g., AraCyc, GrapeCyc, etc.) were downloaded in July of
2013 and combined into one database. The blueberry cDNAs were used as queriesin aBLASTX
search of the combined database. Hitsto PlantCyc enzymes were then filtered so that hits with at
least 60% subject coverage, 45% identity or higher, and e-value 0.001 or less were retained.
Details of how this was done are explained in Markdown file MakingAnnotationFilesRmd in the
bitbucket repository for the paper. The best hit for each blueberry gene model was identified by e
value and used to generate annotation text, which wasinserted into field 14 of the gene models
bed file and saved to subdirectory PlantCyc/results as

V_corymosum_scaffold_May2013 wDescrPwy.bed. To enable keyword searching in Integrated
Genome Browser, this annotation text included the best matching PlantCyc enzyme and alist of

PlantCyc pathway identifiers when available.
ANALYSES
Building and filtering blueberry gene models

To characterize gene expression in blueberries, Illumina and 454/Roche sequencing of
green and ripe blueberry cDNA was done, including a developmental time course experiment in
which three biological replicates of five berry fruit stages were sequenced using 100 base, single-
end Illumina HiSeq sequencing. Table | summarizes the sequencing strategies used and amount
of sequence obtained, which totaled around 800 million sequence RNA-Seq “reads’ and more
than 75 billion bases. Most sequence data were from the developmental time course experiment,
which surveyed berry samples collected from three individual s of the O’ Neal cultivar, an early
ripening variety of southern highbush blueberry that is widely grown in North Carolina and other
southern US states. The second largest RNA-Seq data set was from paired-end, 75 base pair

[lumina sequencing of ripe and green berries collected from the O’ Neal, Arlen, Lenoir and
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Pamlico southern highbush cultivars. Analysis of genetic differences between the cultivars will be
described elsewhere, but the data were included here to enable a more compl ete transcriptome
assembly and analysis. In addition, two full plates of 454 sequencing of ripe and unripe berries
from the O’ Neal cultivar were done using berries collected during spring and summer of 2009
and 2010. Because of the abundance of data and availability of easy-to-use software for
generating gene models from Illumina-based RNA-Seq data, we used the Illumina sequence data

to generate a genome-guided transcriptome assembly and reserved the 454 data for gene model

o N oo o A W N P

validation and assessment.

9 To generate berry gene models from the RNA-Seq data, the I1lumina sequence reads were
10 digned onto the May 2013 reference blueberry genome using the spliced alignment program
11  TopHat [19] and then merged into gene models using Cufflinks [26]. This step produced 64,666
12 transcript models representing 57,925 genes. Of the multi-exon genes, 24% were predicted to
13 generate multiple transcript variants due to aternative promoter use or alternative splicing. To
14  assess how redlistic thislevel of transcript variation was, we compared the frequency of
15  dternative transcriptsin blueberry to alternative transcription ratesin Arabidopsis and soybean,
16  usingthe genome annotations and assembly releases that were availablein July 2013 for those
17  species. Thealternative transcription rates among multi-exon genes for soybean and Arabidopsis
18  were 25% and 26% respectively; these rates were similar to blueberry, indicating that the
19  frequency of transcript variation found in the blueberry gene models was reasonable and not

20  likely to be an artifact of incorrect transcript model assembly.

21 Because the Cufflinks gene models were based on berry fruit RNA-Seq data, some genes
22 that were expressed primarily in other sample types (e.g., roots) might be missed. To complement
23  the Cufflinks-generated gene models, ab initio gene prediction programs were used to generate
24  additional gene models from the reference genomic sequence (Supplemental Figure 1A). The ab
25  initio gene finding programs generated more than 185,000 gene models, of which 75%

26  overlapped with genesidentified in the RNA-Seq data by Cufflinks and therefore were likely to
27  beredundant. To eliminate duplicates and create a non-redundant collection of blueberry gene

28  models, a stepwise filtering protocol was applied (Supplemental Figure 1B) that retained gene

29  models based on their relative level of evidence. To start with, all gene models based on the

30 aigned RNA-Seq data were added to the non-redundant set. Next, gene models with homol ogy to
31  known proteins were selected. Following this step, gene models were kept according to which ab
32 initio genefinding program produced them. We found through manual inspection in Integrated

33  Genome Browser that some programs produced more realistic models when visually compared to

10
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the 454 alignments, and so we configured the filtering pipeline based on these observations. Note
that thisfinal filtering step could be further optimized through systematic comparative evaluation
of ab initio models to RNA-Seq based gene models, but due to the limitations of time and data
availability, we did not do this. Ultimately, the final non-redundant set of gene modelsincluded
70,581 gene models and 63,840 genes, of which most were based on the RNA-Seq data (Table

).

Next, an open read frame (ORF)-finding program (TAU, [25]) was used to identify and
annotate a conceptual translation for each gene model. Altogether, there were 57,079 gene models
from 51,515 genes that could be annotated with a protein sequence of at least 30 residues, the
expected lower range of protein sizes based on Arabidopsis annotations. The remaining transcript
models for which no longer protein sequence could be predicted had a broad range of sizes and
exon numbers, ranging from short, single-exon genes to longer models with multiple exons,
suggesting that in many cases, the gene models were simply incomplete or the sequence itself
contained insertions, deletions or other problems that made conceptual trandlation difficult.
Another possibility was that many of these genes were non-coding genes whose primary products
were RNA and not protein. A third possibility was that many of these were actually pseudogenes.
An analysis of Arabidopsis RNA-Seq data[27] found that many non-coding genes, including
both pseudogenes and non-protein coding genes, were detectable in libraries that were prepared
using the same protocol as with the blueberry RNA-Seq libraries, and so these latter two

possibilities may have been correct in many cases.

It isimportant for researchers to have access to the blueberry datain formats that
facilitate exploration, visualization, and analysis of individual sequences, genes, and gene
families. To enable better use of the data, the blueberry genome assembly, annotations, and RNA-
Seq data have been made available in the Integrated Genome Browser (IGB), an open source,
desktop genome visualization platform that is freely available for download from
http://www.bioviz.org. IGB uses acompanion IGB QuickLoad Web site to distribute data setsin

formats that enable both interactive visualization and larger-scale analysis. For example, users
can download data sets in formats that are amenable to bioinformatic analysis, such asthe BAM
and bed formats, or instead can simply view alisting of the data setsin IGB and open them there.
To open the blueberry genome in IGB, usersfirst select the blueberry image shortcut from the
IGB start screen (Figure 1). Clicking the blueberry image triggers loading of the non-redundant
gene data set described above along with alisting of blueberry genome scaffold and their sizes (in
the Current Genome tab) and a catalog of available data sets (in the Data Access tab). As of

11
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this writing, the available data sets included the Illumina and 454 RNA-Seq data described here
aswell asreference data sets from other studies, including a 454-based sequencing data set that
included multiple sample types and berry fruit ripening stages [16]. Thus IGB allows researchers

to view and explore multiple data sets from diverse sources, not just the current study.

Once the genes are loaded, users can search for genes by name or by annotation key word
using the Quick Search (top left) or Advanced Sear ch tab, which a so enables searching for
sequence motifs. Gene models are associated with descriptive text assembled from homol ogy
searches against blast databases from NCBI and PlantCyc (described below), but users can
investigate individual gene modelsin greater detail using the blast features available through
IGB. Right-clicking a gene model displays a menu that displays options to run blastx or blastp
searches against the “nr” protein database at NCBI. Selecting one of these options opens a Web
browser window, which shows results from the search. In addition to the blast search feature, the
right-click menu (also called a*“ context menu”) offers the option to show the sequence of a
genome model in a separate window, which in turn enables selecting and copying the protein
sequence. Using this feature, users can easily copy and paste the protein sequence into other
Web-based search and analysis tools, such as the InterproScan search tool, which can identify

conserved motifsin protein sequences.

Users can aso load the RNA-Seq data sets and use the observed pattern of expression to
gain insightsinto the function of individual genes. To illustrate, the image shown in Figure 1
depicts aregion from scaffold00001 showing gene models and RNA-Seq coverage graphs from
five berry developmental stages. Because the overall read counts for each track were similar, one
can visually estimate and compare expression levels for genes provided the coverage graphs are
put onto the same scale, which is possible using the IGB Graph tab. In this example, comparing
graph heights between stages highlights ripening rel ated expression of gene CUFF.187, which is
homol ogous to genes in many other plant species but has no known function. The stage-specific
expression of CUFF.187 demonstrates the power and usefulness of visualizing gene models
alongside expression data within a visualization environment that also enables rapid exploration

of genes and their functions.
Functional annotation of blueberry gene models and comparison with other plant species

To identify putative functions of newly annotated blueberry genes, we searched for

homol ogous proteins using blastx searches of the non-redundant “nr” database from GenBank.

We found that most blueberry genes (58%) had significant homology (e value < 0.001 and
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percent identify = 30%) with at least one protein in the nr protein database. Typically, the highest

scoring, best match to a blueberry protein was a protein from the wine grape Vitis vinifera (Figure
2A). The abundance of best-scoring hits from grape was probably due to two factors: the
similarity between grape and blueberry [28] and the large number of grape sequences that were
present in the nr database at the time this analysis was done. The nr database contained nearly
80,000 proteins from grape, many of which were conceptual translations from the sequenced
grape genome, which has been available since 2007 [29]. The tea plant Camellia sinensis, also
represented in Figure 2A, is more closely related to blueberry than grape, but had fewer best hits
overal primarily because there were fewer tea sequences in the databases. We found that in
general, if ablueberry gene had a match to atea protein, the tea protein match had a better score

and higher percent identity than the corresponding best match from grape.

Nonethel ess, these results prompted us to explore rel ati onships between blueberry and
other plant genomes. For this, we used plant-specific Ref Seq databases from GenBank, including
databases for grape, tomato, Arabidopsis, and several other plant species where a close-to-
complete, well-annotated proteome was available [30]. To characterize relationships between
blueberry and these other plants, we searched the blueberry transcripts against these close-to-
complete plant Ref Seq databases and identified the best scoring protein from each genome for
each blueberry gene model. Figure 2B shows the distribution of percent identity scores obtained
for the best-matching sequences from each species. Grape proteins had the highest median
percent identity scores, followed by poplar, castor bean, and tomato. Blueberry and other Ericales
species are part of the asterid clade of flowering plants, and are more closely related
phylogenetically to tomato than to rosids Populus trichocarpa (poplar) and Ricinus communis
(castor oil plant) [31]. The blast results do not contradict this relationship but instead highlight
how sequence similarity may reflect similaritiesin physical or biochemical characteristics. Grape
and blueberry are deciduous, berry-producing plants with long generation times. Poplar isalso a
deciduous, woody plant with along generation time. Biochemical or morphological similarities
that could explain the similarity between blueberry and castor bean are less obvious, however.
These results suggest that in-depth comparison between grape, blueberry, and castor bean seed
transcriptomes could lead to new insights into developmental programs at work in berries of the

three species.

Blast2GO annotation
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Blast2GO is a popular annotation platform that uses results from homol ogy searches to
associ ate sequence with Gene Ontology (GO) terms and other functional annotations [32], a
critical step toward enabling analysis of high-throughput gene expression studies. To facilitate
analysis of the blueberry developmental time course data and also provide a resource for other
blueberry researchers, we used Blast2GO to annotate the blueberry proteins with GO terms.
Blueberry sequences were searched against the nr protein database and the InterPro database [33]
and the results were imported into the Blast2GO program’ s graphical user interface, which
assigned GO terms to 18,143 transcripts representing 15,308 genes. Plots summarizing GO terms
and the number of gene products assigned to each term are shown in Figure 3, and afile
containing the GO term mappingsis provided as Supplemental Table I11. Similar to Arabidopsis
[34] and other plants, alarge number of genes were annotated with terms related to transcription
factors. Around 1,300 transcripts received GO annotation “DNA binding,” of which around 400
were also were annotated with the more specific GO term *“ sequence-specific DNA binding
transcription factor activity.” These sequences likely represented expressed transcription factors
involved in regulation of gene expression during fruit development and ripening. More than 500
proteins were associated with terms related to primary and secondary metabolism, lipid metabolic
processes, or carbohydrate metabolic processes, reflecting the dynamic processes underway in
fruit development. Thus the GO annotation identified alarge set of candidate genes likely to be

involved in regulation and synthesis of bioactive secondary metabolites.
M etabolic pathway annotation using PlantCyc enzyme database

The PlantCyc database is a collection of curated and computationally-predicted enzymes,
enzymatic reactions, and metabolic pathways for 18 plant species, including grape, Arabidopsis,
cassava, poplar, and rice[35]. The PlantCyc databases are closely tied with the Pathway Tools
software package [36], avisualization and database system for pathways and biochemical
reactions. At the time of thiswriting, the pathways database for Vitis vinifera (GrapeCyc version
3.0) was one of the most complete, contai ning annotations for 432 pathways. The similarity
between grape and blueberry sequences suggested that comparing the blueberry sequencesto
enzymes in GrapeCyc and other PlantCyc databases would identify candidate genes encoding
enzymes of primary or secondary metabolism. To identify enzymatic functions for blueberry
genes, the BLASTX agorithm was used to search for matching PlantCyc sequences. To eliminate
matches arising from alignments between domains that occur in many different sequences (e.g.,
ATP-binding cassette), only matches that covered at |east 60% of the subject sequence with at

least 45% identity were considered. Under these criteria, transcripts from more than 7,100
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blueberry genes were found to match at least one PlantCyc enzyme sequence, and there were over
450 pathways from PlantCyc that had at |east one enzyme matching a blueberry sequence. As
before, grape proteins were typically the best matches for blueberry sequences.

In-depth analysis of ethylene biosynthetic pathway gene expression

Ethylene is a gaseous plant hormone that controls many aspects of plant development and
physiology, especialy ripening. In climacteric fruits such as tomato and banana, a burst of
ethylene biosynthesis triggers ripening, and post-harvest treatment with exogenous ethylene can
control ripening onset and progression. By contrast, blueberries do not appear to undergo a burst
of ethylene synthesis prior to ripening, and post-harvest application of ethylene has far less effect
on the ripening process. Nonetheless, ethylene can influence aspects of flowering and ripening, as
shown by experiments with ethephon, a horticultural chemical that when applied to foliageis
enzymatically converted to ethylene. When applied to blueberry plants during the harvest,
ethephon accel erates and synchronizes ripening, and when applied in the fall, ethephon delays
flowering the following spring and increases the number of flower buds (reviewed in [37]). This
suggests that ethylene isimportant in flowering and fruit devel opment but itsrole is likely to be

very different than in climacteric fruits.

Ethylene is synthesized from L-methionine via three reactions that are catalyzed by SAM
synthase (methionine adenosyltransferase), ACC synthase (1-aminocycl opropane-1-carboxylate
synthase), and ACC oxidase (1-aminocyclopropane-1-carboxylate oxidase). In most plants, large
multi-gene families encode al three enzymes. The PlantCyc database reports that the grape
genome contains 34 SAM synthase genes, 20 ACC synthase genes, and 12 ACC oxidase genes.
Consistent with this, the PlantCyc-based annotation of blueberry identified similarly large
numbers of genes encoding ethylene biosynthetic genes, including 22 genes encoding SAM
synthase, six genes for ACC synthase, and seven genes encoding ACC oxidase. Interestingly, the
expression patterns for SAM synthases were highly variable and at least one SAM synthase gene
was extremely highly expressed (more than 1,000 RPKM) in each stage of berry fruit
development and ripening. Expression of genes encoding ACC synthase, a key control point for
ethylene and ripening in tomato, was a so highly variable. Some genes encoding ACC synthases
were expressed at very low levels (close to 0 RPKM) while others were expressed at 200 RPKM
or higher, which was around the 95™ percentile of gene expression as measured in RPKM. Two
ACC oxidase genes were expressed at 150 RPKM or higher at each stage, while others were
expressed at much lower levels. Interestingly, one ACC oxidase gene (CUFF.81159) was
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extremely highly expressed during ripening and reached more than 3,000 RPKM in ripe fruit. The
uniformly high expression (>150 RKPM) of ethylene biosynthesis genes at every stage, combined
with the extremely high expression of ACC oxidase gene CUFF.81159, suggested that ethyleneis
produced throughout berry fruit devel opment and that these levels are likely to peak in ripe fruit.

Anthocyanin biosynthetic pathways

Anthocyanins are the 3-O-glycosylated forms of anthocyanidins, which consist of a
polyphenalic ring substituted with —H, -OH, and —-OCHS3 groups at different positions. The
substituted group and its location on the polyphenoalic ring determine the type of anthocyanidin
and may also dictate aspects of biological activity. In blueberry, the anthocyanins containing
malvidin, delphinidin, and peonidin aglycones are especialy abundant by weight [4]. Another
level of diversity arises from the type of sugars attached, and these sugar groups may influence
biocavailability in the mammalian digestive tract [38, 39]. Thusit is of interest to identify enzymes
that catalyze steps in anthocyanin biosynthesis and profile their expression pattern and relative

abundance in ripe fruit.

Comparison with PlantCyc enzymes identified 31 genes with homology to enzymes
involved in anthocyanin synthesis, including two genes (CUFF.20951 and CUFF.43605) that
were extremely highly expressed in pink and ripe fruit in comparison to other genesin the
pathway. CUFF.20951 was the most highly expressed; it reached more than 12,000 RPKM in
pink and ripe fruit, up from around 2,000 RPKM in green fruit. The best matching PlantCyc
enzyme for CUFF.20951 was an enzyme from poplar that was annotated as anthocyanidin-3-O-
glucosyltransferase, which transfers a glucose sugar onto the 3-O-position of the anthocyandin
polyphenolic ring. Searching the “nr” database using blastp identified even better matches,
including predicted flavonoid galactosyl and glucosyltransferases from a variety of plant species.
Based on its homol ogy to other sequences, the CUFF.20951 protein likely isinvolved in
glycosylation of flavonoids, but its preferred aglycone and sugar substrates are impossible to
determined based on sequence data alone. However, judging from the extremely high expression
of this gene in blueberry, the CUFF.20951 protein is likely to be responsible for a high percentage

of anthocyanin (or other flavonoid) production in ripe berry fruit.

The other extremely highly expressed gene was CUFF.43605, which reached a peak of
around 2,000 RPKM in pink and ripe fruit, up from around 900 RPKM in the earlier stages. The
best PlantCyc match for CUFF.43605 was a protein from Brassica rapa (Bra019350, 78%
identity) annotated as a leucocyanidin oxygenase, aso called anthocyanidin synthase (ANS) or
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leucocyanidin dioxygenase (LDOX). Homologous enzymes from Arabidopsis[40, 41] and rice
[42] convert leucoanthocyanidin to anthocyanidins, precursors for anthocyanins, but they can also
catalyze formation of other bioactive flavonoid precursors, notably dihydroquercetin, the
precursor of quercetin. Anthocyanins and quercetin are both abundant in berries, but quercetin
has greater bioavailability and therefore may be a more potent bioactive in berry fruit [43, 44]. If
the preferred end product of the CUFF.43605 reaction isindeed dihydroguercetin, then its
remarkably high expression likely has a positive effect on quercetin concentration in berry fruit.
However, if its magjor end product is cyanidin, then it likely acts to decrease quercetin levels by
consuming leucoanthocyanidin, the dihydroquercetin precursor. As with CUFF.20951, sequence
and expression analysis aloneis likely insufficient to distinguish these possibilities. Nonethel ess,
the high expression of CUFF.43605 makes this gene a fruitful candidate for investigating genetic

control of anthocyanin and quercetin abundance in berries.
Other pathways—bixin, and dhurrin

Bixin is the primary component of annatto, a commonly used food dye collected from the
seeds of Bixa orellano, which growsin the tropics and is also known as the lipstick plant. Annatto
isused in folk medicine and for body decoration and has a so been investigated as a plant-based
treatment for diabetes [45], cancer [46], and microbia infections[47]. We found that four
blueberry genes matched two of three annotated enzymes of the pathway (Supplemental Figure
3). Expression of all four genes peaked in the mature green stage of fruit development, around the
time when seeds were devel oping. Grape seed contains bixin [48], and, as discussed previously,
the grape and blueberry proteomes were remarkably similar. Thusisit seemslikely that bixinis

also present in blueberries and may be concentrated in the blueberry seeds.

Blueberry genes similar to enzymes from a potentially harmful pathway were also
found. Blast analysisidentified putative blueberry homol ogs for each of three biosynthetic
enzymes involved in synthesis of dhurrin in sorghum [49-51]; the blueberry genes shared
between 45 and 60% identity with their putative homologs from sorghum. Dhurrin, which reaches
up to 10% dry weight in sorghum seedlings, is one of alarge class of cyanogenic glycoside (CG)
defense compounds plants synthesize from amino acid precursors as a form of chemical warfare
against insects and other herbivores [52, 53]. Stored as inactive glycosides, mechanical damage to
cells (such as from chewing) activates endogenous glycosidases that remove the sugar group,
triggering production of toxic hydrogen cyanide (HCN) due to instability of the sugar-free
aglycone or to the activity of other catabolic enzymes. Interestingly, the putative blueberry
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homol ogs were most highly expressed in the green fruit stages (Supplemental Figure 3D),
suggesting that green berries synthesize a cyanogenic glycoside that discourages insects and
mammals from eating unripe berries.

Homology searches aso identified putative berry homol ogs of enzymesinvolved in
two CG catabalic pathways, one that removes the glycosyl group from the CG leading to
production of HCN, and another pathway that detoxifies CGs by converting them to harmless
byproducts. Seven genes had significant similarity to enzymes in the cyanogenic catablolic
pathway, including four genes resembling dhurrinase, which deglycosylates dhurrin, and three
genes that were similar to hydroxynitrile lyase, which catabolizes the dhurrin aglycone to HCN.
Similar to the biosynthetic enzymes, these catabolic, cyanogenic enzymes were most highly
expressed in unripe fruit. We a'so identified a blueberry candidate gene encoding nitrilase 4, an
enzyme that detoxifies dhurrin and possibly other cyanogenic glycosides by converting them to
aspartic acid and asparagine [54]. Searching with nitrilase 4 from Arabidopsis thaliana (AtNIT4,
AT5G22300) identified blueberry gene CUFF.32314, which shared 83% identity with the
Arabidopsis protein. Plant nitrilase 4 enzymes are highly conserved [54], typically sharing 60 to
70% identify at the amino acid level, suggesting that CUFF.32314 indeed encodes nitrilase 4. The
putative blueberry nitrilase CUFF.32314 gene was highly expressed in young fruit and ripe fruit,
reaching more than 70 RPKM in ripe berries, but had much lower expression (<40 RPKM) in
mature green berries. Thus the expression profile of the candidate geneinvolved in CG
detoxification was roughly complementary to profiles of candidate genesinvolved in CG
synthesis and cyanide release. This suggests immature green berries produce CG compounds that
discourage herbivory, but then berry NAT4-like genes de-toxify these CGs as part of the ripening

process.

Differential gene expression during blueberry development and ripening

Fruit devel opment and ripening are dynamic processes involving cell division, expansion,
differentiation, synthesis of pigments and other secondary metabolites, as well asimport of sugars
into the fruit. To better understand these processes in blueberry, we used the devel opmental time
course RNA-Seq data to examine global patterns of gene expression throughout fruit
development, maturation, and ripening. Statistical analysis of gene expression identified nearly
19,000 genes that were differentially expressed between at least two stages, even when a
relatively stringent fal se discovery rate cutoff of 0.001, corresponding to roughly 1 in 1,000 false
discoveries, was applied. Table I11 reports the number of genes that were differentially expressed
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between stages, broken down by up- and down-regulation. Except for the pink versus ripe fruit
comparison, there were more up-regulated than down-regulated genesin every comparison
between alater stage and an earlier stage, reflecting the greater diversity of genes that were
expressed in the later stages as tissues continued to develop and differentiate and as the seeds
formed within the fruit. Viewed globally, the gene expression changes that occurred during

progression of fruit growth, maturation, and ripening were extensive and dynamic.

Figure 5 reports the number of genes that were differentially expressed (DE) between
adjacent stages and highlight the physiological transitions as fruits enlarge from small, pad-like
structures on the base of the pedicel to round, mature berries harboring seeds, flesh, and sugars.
The most similar of the adjacent stages were the pink and ripe fruit, collected 14 days apart.
Fewer than 100 genes were DE between pink and ripe fruit. Of these, most (75%) were down
regulated. The up regulated genes included genes of unknown function and genesinvolved in
enzymatic activity, such as UDP-glucosyltransferases, an alcohol dehydrogenase, and hormone
bi osynthetic genes. Down-regulated genes included many enzymes, such as the putative dhurrin
biosynthetic enzymes, as well as other genes of unknown function. By contrast, the pad and cup
stages, which were collected 10 days apart, had more than ten times as many DE genes. Gene
Ontology enrichment analysis of genes differentially expressed between the pad and cup stages
found that a significant number of DE genes were annotated with terms related to transcriptional
regulation, regulation of enzymatic activity, and cell wall biosynthesis. The type and high number
of DE genes in the pad-to-cup versus the pink-to-ripe comparison reflects the extent of

developmental changes underway during early, rapid growth stages of berry devel opment.

However, the transition from fully rounded green fruit to pink fruit involved by far the
largest number of differences. The chief physical difference between the two stages was color;
pink berries had some reddish color indicating the onset of ripening, but other than this, green and
pink berries were similar. Gene Ontology enrichment analysis identified around 40 terms as
significantly enriched among genes differentially expressed between the green and pink fruit.
Many of these were related to photosynthesis and reflected general down-regulation of
photosynthetic functions, despite the fact that when the pink berries were collected, they typically
were only partly pigmented and much of the berry surface was still green. Other significant terms
were related to metabolic pathway functions, including the terms metabolic process, catalytic
activity, catabolic process, hydrolase, carbohydrate metabolic process, lipid metabolic process,
transferase activity, and biosynthetic process. There was also enrichment in functions related to

transcriptional regulation of gene expression, including chromatin binding, nucleic acid binding,
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sequence-specific DNA binding transcription factor activity, and signal transduction.
Interestingly, 103 out of 361 genes that were annotated to the GO term response to stress were
DE between green and pink fruit. A closer look at the stress-annotated genes that were in this
group found that many belonged to pathways related to synthesis of abscisic acid (ABA), a stress
hormone that also establishes seed dormancy and accumulates at the mature green stage of fruit
development [17]. As shown in Figure 5G, a gene encoding putative ABA signaling transcription
factor ABI3 (CUFF.11214) showed a spike in expression in the mature green fruit stage but was
nearly undetectable in the other stages.

Multi-dimensional scaling, similar to principle components analysis, was used to cluster
samples according to their overall similarity of gene expression pattern (Figure 5B). Samples
from similar stages formed clusters. Pink and ripe fruit formed a cluster, cup and pad stages
formed another cluster, and mature green fruit formed another cluster separate from the others.
Interestingly, one ripe fruit sample (plant 2-41, P1) clustered slightly distant from the other ripe
fruit samples. Visualization of RNA-Seq coverage graphsin IGB showed that some genes were
up or down regulated in this sample relative to the other ripe fruit samples. Genes that were down
regulated in P1 relative to the other ripe berry samples had functions related to cell wall
degradation or modification, whereas genes that were up regulated had functions related to stress
responses. This suggests that the P1 ripe berry sample was undergoing a stress relative to the
other samples. Nonetheless, the possible presence of a confounding factor related to stress did not

significantly reduce power to identify differentially expressed genes between samples types.

A time series clustering program (STEM [55]) was used to identify groups of genes that
varied in concert over time. Scaled, averaged expression values for genes found to be DE
between any two fruit stages were provided as inputs to the STEM program, which identified
several gene expression profiles depicted graphically in Figure 5C. Two of the most statistically
significant profiles had complementary patterns (clusters labeled #1 and #6). The “early high”
profile (#1 in Figure 5C) contained genes with high expression in early fruit stages and lower
expression in later stages. Gene Ontology enrichment analysis showed that this early high cluster
contained an unusually large number of genes annotated with GO terms related to photosynthesis,
catalytic activity, kinase activity, cell cycle, and DNA binding. The “late high” profile (#6),
contained genes with expression patterns complementary to the early high profile, with genes
reaching their peak expression in the pink and ripe fruit stages. The genesin this cluster were
enriched with GO terms related to transport, sugar metabolism, and catal ytic activity, but had a
lower than expected proportion of genes annotated to term DNA metabolic process. Only 1% of
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DNA metabolic process genes were in the late high cluster. These two complementary profiles
highlight the diverse biological processes underway in ripe, fully mature fruit versusimmature,
rapidly growing fruit. In the early green fruit, stages, cell growth and cell division are underway,
processes that require regulation by transcription factors that control devel opmental programs. In
the later stages, the sugars and other metabolites are being imported into the fruit and cell growth

happens largely through cell expansion, not cell division.

The next two most significant clusters also had complementary patterns. The “green
high” (#0) cluster included around 1,200 genes that peaked in expression in the mature green
stage. This cluster contained unusually many genes annotated with terms related to metabolic
processes, transport, DNA binding, and secondary metabolism, suggesting that the green fruit
stage represents a developmental transition and also isrich in production of secondary
metabolites. The “green low” cluster (#2) contained around 1,500 genes but was significantly
enriched with only one term: catal ytic activity. Interestingly, genes annotated with thisterm were
unusually prevalent among al genesin all four profiles, suggesting that fruit development isrich
in biosynthetic processes. However, the nature of these biosynthetic processes varies among
stages, beginning with photosynthetic processesin the early stages and transitioning to secondary
metabolism in the later stages. Figures 4D through 4G show RNA-Seq coverage graphs for genes

exemplifying the four profiles.
Transcript variation during fruit development and ripening

As described above, nearly one quarter of multi-exon genes were associated with
multiple gene models corresponding to putative products of alternative promoters, aternative
splicing, or alternative polyadenylation sites. Any or all three of these mechanisms of alternative
transcription can play arolein developmental regulation of gene expression. To test whether
alternative transcription was developmentally regulated during berry fruit devel opment and
ripening, we used the the CuffDiff program, a companion program to Cufflinks, to identify genes
whose patterns of splicing, promoter use, or pol yadenylation changed during the development
time series. Cuffdiff reported more than 700 genes as undergoing some type of differential
transcript variation between pairs of conditions. To assess the results, a subset of the highest
confidence CuffDiff results was selected at random and manually inspected using IGB. RNA-Seq
read alignments were |oaded into the viewer al ongside the gene models and read support for
alternative transcripts was compared between samples. In most cases involving alternative splice

sites, the region that was different between alternative transcripts had small numbers of
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supporting reads, typically fewer than ten reads per splice junction. By contrast, examples of
alternative promoter use (Supplemental Figure 4A) and alternative 3' ends (Supplementa Figure
4B) had much stronger support. In these instances, typically there were dozens of reads
supporting one or both alternatives in each sample. Thus, the CuffDiff analysis was able to
identify differential use of aternative promoters and alternative transcription sites but was not as

good at distinguishing differential splicing.

We therefore used an alternative approach based on the ArabiTag algorithm [56] to test
specifically for differential splicing between stages. For this, a splicing score was calculated that
represented the percentage of spliced reads supporting alternative splice site choices from
differentially spliced regions (for details, see Methods). Hierarchical clustering of the splicing
scores found that ripe and pink berry samples formed a cluster, mature green berriesformed a
cluster, while the cups and pad stages were intermixed (Figure 6A). Interestingly, the P1 ripe fruit
sample was an outlier and formed a distinct cluster apart from the others; this was consistent with
previous results in which P1 clustered apart from P2 and P3 in an MDS plot (Figure 5B).
Nonetheless, pairwise comparisons of average splicing score found for most aternatively spliced
genes, the rel ative abundance of splice forms was consistent between stages, with some outliers
(Figure 6B), and annotated spliced variants were co-expressed. Statistical testing of the splicing
score supported this observation, identifying around 90 genes with devel opmentally regulated
differential splicing, including some with predicted functions related to splicing. These included
CUFF.35730 (Figure 6C), which was similar to splicing-related transformer-SR
ribonucleoproteins from many plant species. The best Arabidopsis match (AT4G35785) is one of
two transformer-like genes in Arabidopsis; both genes (AT4G35785 and SR45a) contain
alternatively spliced “toxic exons’ that introduces a premature stop codon (PTC), and splicing of
the toxic exon in SR45ais sensitive to stress [57]. Differential inclusion of a PTC-containing
toxic exon appears to be conserved in blueberry, as CUFF.35730 also contained a “toxic exon”
that introduced a stop codon. According to the RNA-Seq data, the full-length, exon-skipped form
represented a higher percentage of the splice variants in cup and mature green fruit stages, while
the exon-included form was less abundant in pink fruit. Thus splicing patterns in blueberry during

fruit development and ripening vary by stage, similar to overall gene expression levels.
Comparison to prior sequencing studies of blueberry

Prior to now, several studies have been published which used Sanger [17, 58], 454 [16],

or lllumina sequencing [59] to characterize blueberry genes and profile gene expression changes.
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Two studies used de novo transcriptome assembly procedures to assemble transcript models,
which they then annotated using similar methods to those described here. At the time of writing,
only asubset of the data reported in the lllumina-based study was publicly available [59], but the
others have made their raw sequence “reads’ available as part of dbEST or the Short Read
Archive. To provide aresource to researchers and al so assess the compl eteness of the new
transcriptome assembly reported here, we aligned publicly available EST, 454 and Illumina
sequences onto the blueberry assembly and compared the alignments to the non-redundant set of
gene models generated by Cufflinks and the ab initio gene prediction programs. Of the 22,415
Sanger ESTs from dbEST, 19,967 (89%) were aligned onto the draft genome assembly. A
comparabl e percentage of sequences from the much larger 454 sequencing study [16] were also
aligned. More than 85% of these 454-based ESTs aligned to the genome, and around 75% of the
454 ESTs overlapped over one or more berry gene models. Similar results were obtained for data
from the Illumina-based study [59]. We obtained around 15.5 million read pairs from the Short
Read Archive (SRA) using object number SRR942391. Around 55.4% were mapped as proper
pairs while another 13.28% were mapped as singletons. Of the mapped reads on the genome,
more than 95% overlapped a blueberry gene model. Thus the non-redundant gene models

presented here encompass the vast mgjority of previously generated sequences from blueberry.

The Sanger-EST based study published by Zifkin and co-workers reported in-depth
analysis of severa genesinvolved in anthocyanin and proanthocyanidin biosynthesis, two distinct
branches of flavonoid biosynthesis [17]. Proanthocyanidins (PAS), also called condensed tannins,
are colorless, have a bitter taste, and may play arole in defense against disease and in
discouraging consumption of immature berries. Consistent with this, Zifkin et al. found that PA
genes were highly expressed in early stages of berry development, while genes specific to
anthocyanin biosynthesis were most highly expressed following onset of ripening. Moreover,
genes required for synthesis of precursors common to both pathways exhibited a bi-phasic
expression profile, where expression was highest in early and late stages and lowest in the
intermediate stages. To assess the degree of correspondence between this earlier, EST-based
study and the current RNA-Seq based study, EST accessions were obtained from supplementary
data[17], their sequences were aligned onto the blueberry genome, and the alignments were used
to identify the corresponding blueberry gene models. M appings between ESTs and blueberry

gene models are shownin Table 1V.

In general, the RNA-Seq results were consistent with the EST-based study. As shownin
Supplemental Figure 5, RNA-Seq based expression patterns for genes encoding VcANR

23


https://doi.org/10.1101/010116

bioRxiv preprint doi: https://doi.org/10.1101/010116; this version posted October 8, 2014. The copyright holder for this preprint (which was not

© 00 N o o A W DN PP

e
B O

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(anthocyanidin reductase), VcDFR (dihydroflavonol reductase), and VCUFGT (UDP-
Glc:flavonoid-3-O-glycosyltransferase) were similar to those reported previously. Interestingly,
the gene corresponding to VcUFGT was CUFF.20951, which was also the most highly expressed
gene in the anthocyanin biosynthesis pathway according to the RNA-Seq data (Figure 4A). Zifkin
et a alsoidentified ESTs encoding a Myb family transcription factor with biphasic expression
and showed it was able to activate an ANR promoter from poplar, demonstrating it isalikely
regulator of the PA pathway in blueberry. The EST reported for this gene (JK664730) mapped to
two different genes in the blueberry genome assembly, only one of which (CUFF.51789)
exhibited the previously reported biphasic expression pattern. The other gene (CUFF.14288) had
an expression profile more similar to the “high early, low late” cluster #1 in Figure 5C,

suggesting it may co-regulate PA biosynthetic genesin early fruit stages.
DISCUSSION

In recent years high-throughput sequencing technol ogies have been used to investigate
the transcriptomes of numerous plant species, including many for which no reference genome
segquenceis available (reviewed in [60]). As sequencing accuracy improves and the cost of
seguencing drops, more such projects will become feasible. However, making use of these new
data can be challenging when areference genome is not available to guide the assembly of
sequence reads into contigs that are long enough to support functional annotation. Previously, we
attempted de novo assembly of RNA-Seq reads, but technical difficulties related to the large
amount of repetitive sequencesin the data stymied these attempts (data not shown). Although the
blueberry genome assembly used here is a draft, it was nonethel ess compl ete enough to enable
formation of high-quality gene models that could be annotated with GO terms, pathways, and
protein homologies. Moreover, the gene models obtained were similar in structure and number to
those of many other well-annotated transcriptomes, with one exception, which was that many
apparently single-exon genes with no convincing homology to known protein sequences were
obtained. Determination of the function of these single-exon, apparently non-protein coding
genes is beyond the scope of the current study, but it seems likely that many of these genes may
represent long non-coding RNAS, pseudogenes, miRNAS, or other genes whose primary product
is RNA and not protein. This possibility does not seem unlikely as other non-coding RNAS as
well as pseudogenes have been observed to be expressed in other similarly prepared RNA-Seq
libraries[27, 61].
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1 Interestingly, blueberry sequences had highest overall percent identity to sequences from
2  thegrapevine Vitisvinifera, abasal eudicot with a slow mutation rate. The next most similar
3  speciesin terms of percent identity was the castor bean Ricinis communis, followed by poplar,
4  and then by tomato, the only other asterid speciesin the Ref Seq database at the time this analysis
5 wasdone. The 454-based transcriptome analysis published by Rowland and co-workers observed
6 anamost identical result [16], as did another group that annotated a de novo transcriptome
7  assembly for the tea plant Camilia sinensis, another Ericales species [62]. These results seem to
8  suggest that blueberry and perhaps even other Ericales species are closer to grape than to tomato;
9  however, sequence similarity does not necessarily imply phylogenetic closeness, and a more
10 likely explanation isthat grape has diverged at a slower rate than tomato and so is more similar to
11  thelast common ancestor of grape and the Ericacae. It is also awoody, deciduous plant that
12 makes berry-like fruit and so shares some morphological characteristics with blueberry. The same
13 explanation may also apply to poplar, also a slow-evolving, woody, deciduous plant. However,
14  neither of these explanations serve to explain why castor been, an herbaceous plant with arapid
15  generation time, appears to be more closely related to blueberry at the sequence level. It is beyond
16  the scope of this paper to resolve these issues. However, the data provided here may provide a
17  meansfor expertsin phylogenetic relationships to investigate these and other questions related to
18 theevolution of flowering plants.
19 Another important contribution is that for the first time, we provide necessary resources

20  for performing high-throughput gene expression studies in blueberry. The gene models provided
21  hereareakey resource for processing and analysis of RNA-Seq expression data, and to maximize
22 their usefulness, we made the RNA-Seq data analysis described here available as part of an open
23 source repository of datafiles and source code [63]. To complement the gene structures, we

24 provided Gene Ontology and PlantCyc-based enzyme annotations for more than half the protein-
25  coding gene models. The GO and enzyme annotations will provide critical resources for future

26  studies, especially high throughput studies such as RNA-Seq in which statistical analysis

27  typicaly identifies many hundreds or even thousands of differentially expressed genes. As shown
28  here, being able to identify categories of over- or under-represented in large gene lists enables

29  deeper understanding of biologica differences. Moreover, the pathway annotations may further
30 enableinterpretation aswell as functiona prediction. Prior analysis of the AraCyc database

31  together with acompendium of microarray expression data showed that enzymes belonging to the
32 same metabolic pathway are often highly co-expressed, a property that enables identification of

33  missing playersin metabolic or regulatory pathways through large-scale analysis of expression
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data [64, 65]. This approach has been used in many studies that used co-expression to identify
candidate genes, leading to a deeper understanding of genes involved in metabolic pathways.
Therefore, one important long-term result from the RNA-Seq analysis presented here, along with
the pathway predictions, is that we have laid the groundwork for further studies identifying other
enzymes in high value pathways. This work may be particularly relevant to anthocyaninin
biosynthesis, since different types of anthocyanins have different effects on mammalian biology,
possibly due to differences in bioavailability. This and other studies may become possible thanks
to the databases and data sets presented there, and our future work will focus on improving these

resources to enable better understanding of metabolic pathways that are active in blueberry.
METHODS
Expression analysis

The number of reads per gene was counted using the samtools view —c command. All single-
mapping reads that overlapped a gene region were counted, and gene regions were defined as the
smallest start and largest end position of transcripts annotated to the gene. EdgeR from
Bioconductor was used to identify differentially expressed genes with FDR cutoff 0.001. Gene
Ontology terms and metabolic pathways that were unusually enriched among differentially
expressed genes were identified using GOSeq, also from Bioconductor.

Analysis of alter native splicing with CuffDiff

The non-redundant gene set was used as input to cuffcompare, which produced afile
(cuffcmp.combined.gtf) suitable for use as input to cuffdiff. The cuffdiff was then run using the
full set of alignments (both multi- and single-mapping) obtained for the blueberry development
and ripening time course data set with cuffcomp.combined.gtf file as reference gene models. For
analysis of splicing differences, the file splicing.diff output by cuffdiff was used. It was observed
that the most significant splicing differences reported by cuffdiff al had the same low p-value
(10°) and so these were selected for further analysis. A random subset of the splicing differences
from genes that were annotated by the BLASTX step above was selected for visual inspection in
IGB.

Analysis of alternative splicing with ArabiTag

The non-redundant gene set, BAM files with read alignments, and junction files produced by the
FindJunctions program (https://bitbucket.org/l orainel ab/integrated-genome-browser tools
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package) were provided to the AltSpliceAnalysis software
(https://bitbucket.org/lorainel ab/altspliceanal ysis), which is based on the Arabi Tag algorithm

described in [56]. The software identifies annotated alternative splicing events and then uses the
RNA-Seq data to count reads supporting alternative splicing choices associated with each event.
Dataanalysis code written in R was used to calcul ate the percentage of support (%S) for each
variant, using gapped reads to support alternative donor or acceptor sites and non-gapped reads to
support retention of introns. To identify differential splicing between conditions, at test was
performed on splicing scores. Differential splicing was tabulated and highest confidence

differences were manually inspected using Integrated Genome Browser.
Analysis code availability

R Markdown files, python scripts, and shell scripts used in data analysis and data processing
are version-controlled in git-based repository at

http://www.bitbucket.org/lorainelab/blueberrygenome. The repository contains files

documenting which subsections of the repository were used in the analyses described
above. Note that we will continue to update and modify the code repository to meet the
needs of users; however, readers interested in retrieving older versions of the repository
that existed at the time of publication can do so using the git program, which is well

documented at http: //www.bitbucket.org and many other sites.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. RNA-Seq gene expression datain reads per million kilobase per gene.
Supplemental Table S2. Pathway and enzyme annotations for blueberry genes and transcripts.
Supplemental Table S3. Gene Ontology annotations for blueberry genes and transcripts.
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FIGURE LEGENDS

Figure 1. Blueberry genesin Integrated Genome Browser. (A) IGB start screen showing
shortcut to the blueberry genome. (B) Clicking the image labeled Vaccinium corymbosum triggers
loading of blueberry genome assembly May 2013 and the non-redundant gene set. (C) Blueberry
datasets availablein IGB. (D) Coverage graphs showing read density on a region of
scaffold00001.

Figure 2. Results from sear ching nr and RefSeq protein databases. (A) Number of best-
matching proteins by species. Blueberry transcript sequences were used to search the non-
redundant protein database hosted from NCBI. The number of best-matching proteins by species
isreported. (B) Distribution of percent identity scores by plant RefSeq database. Blueberry
transcript sequences were used to search Ref Seq protein databases for plants with close-to-
complete, annotated genomes. Boxplots show the distribution of percent identity scores matches
by species. Ref Seq databases include grape (Vitis vinifera), castor bean (Ricinis communus),
poplar (Populus trichocarpa), tomato (Solanum lycopersicum, Sl), strawberry (Fragaria vesca),
soybean (Glycine max), cucumber (Cucumus sativus), Arabidopsis (Arabidopsis thaliana),
Medicago (Medicago trunculata), Brachypodium (Brachypodium distachyon), rice (Oryza

sativa), sorghum (Sorghum bicolor), corn (Zea mays), and a moss (Selaginella moel lendorffii).

Figure 3. Gene Ontology annotationsfor the three sub-trees of GO. (A) Biological process
(B) Molecular Function (C) Cellular Component. Numbers indicate the number of protein-
coding blueberry transcripts assigned to each category. Plots were made using Blast2GO. The
number of genes, many of which encode multiple transcripts thanks to aternative splicing, that

were assigned to each category can be abtained from Supplemental data.

Figure 4. Expression pattern of anthocyanin biosynthetic genes. Expression pattern for genes
annotated to enzyme-catal yzed reactions in anthocyanin-related pathways in PlantCyc are shown.
(A) Genes encoding leucoanthocyanidin dioxygenase, catalyzing EC 1.14.11.19,
dihydroquercetin synthesis from leucoanthocyanidin or cyaniding synthesis from
leucoanthocyanidin (B) Genes for enzymes catal yzing 3-O-glucosylation of delphinidin (EC
2.4.1.115). Both are annotated to PlantCyc pathway anthocyaninin biosynthesis (delphinidin 3-O-

glucoside).

Figure 5. RNA-Seq analysis of gene expression changes during berry fruit development and
ripening. (A) Photographs of berries exemplifying five stages of berry fruit devel opment and
ripening and the number of differentially expressed genes between adjacent stages. (B) Multi-
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dimensional scaling plot of expression values from five sample types and three plants. Axes
represent first and second principal components and therefore have no units. Samples that are
near each other in the two-dimensional space are more similar with respect to gene expression.
(C) Gene expression profiles detected by clustering program Short Time-series Expression Minor
(STEM). Clusters 0 through 9 are listed in order of statistical significance, with clusters 1, 6, 2,
and 0 being the most significant. (D-G) Cufflinks-predicted genes from clusters 1, 6, 2, and 0
encoding proteins similar to (D) leucoanthocyanidin reductase (E) MY B-like transcription factor
up-regulated in ripening fruit. (F) hypothetical protein conserved in plants (G) abscisic acid
signaling transcription factor ABI3. In (D — G), graphs represent the number of reads overlapping
genomic positions indicated on the coordinates axis. RNA-Seq coverage graphs from P3 (plant 3-

33) are shown.

Figure 6. Stage specific alter native splicing. (A) Clustering samples by similarity of splicing
patterns. (B) Scatter plots showing the rel ationship between average splicing index across
different stages. (C) Stage-specific alternative splicing in a gene encoding a putative splicing
regulator.

Tables

Tablel. Summary of sequencing strategies and sequences obtained. The number of sequences

obtained from each sequencing strategy is shown.

Sequencing Strategy Samples No. of Bases (billions)
reads
(millions)
Single-end Illumina, 100 | Five fruit stagesfrom 485 48.6
bp reads O'Nedl cultivar
Paired-end lllumina, 76 | Ripe, unripe berries from 377 28.3
bp reads O'Nedl, Lenair, Ozark blue,
and Pamlico cultivars
454 Ripe and unripe berries 2.16 0.73
from 2009, 2010 harvests,
O’'Nedl cultivar
Tota 864.16 77.63
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Tablell. Genes predicted by Cufflinks RNA-Seq analysisor ab initio gene-finding

programs. The number of genes in the non-redundant gene set is shown.

M ethod Genes
Cufflinks (RNA-Seq) 56,087
GeneMark.hmm 4,794
Augustus 1,745
GlimmerHMM 933
454Scaffolds (454 RNA-Seq) | 281

Tablelll. Up- and down-regulated genes between sampletypes. Each cell in the table
represents a comparison between two sample types. Cells above the diagonal report the number
of genesthat were up regulated in the later of the two compared stages. Cells below an empty cell
report the number of genesthat were down regulated in the later of the two compared stages.

Cutoff for differential expression was 0.0001. Stages are reported in order of earlier (Pad) to later
(Ripe).

Pad Cup MG Pink Ripe
Pad - 566 2,390 6,010 6,077
Cup 526 - 1,221 5,270 5,003
MG 1,981 919 - 3,583 3,726
Pink 6,765 6,594 | 3,038 - 18
Ripe 6,821 6,466 | 5,159 56 -

TablelV. Correspondence between blueberry flavonoid biosynthesis ESTs and blueberry
gene models. Previously identified ESTs encoding flavonoid biosynthesis enzymes and
regulators were aigned to the blueberry genome. Alignments were visualized alongside the
blueberry gene modelsin Integrated Genome Browser to identify newly annotated genes for each
EST.

Gene ESTs Geneld
VcANR CV091176, EG026069 CUFF.29797
anthocyanidin
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reductase

VcDFR JK655064, JK655458, JK664855, IK666169 | CUFF.50634
dihydroflavonaol

reductase

VCcUFGT JK664803, JK666412, IK661182, IK663155 | CUFF.20951

UDP-Glc:flavonoid-3-
O-glycosyltransferase

VcMYBPA1 JK664730, JQ085966 CUFF.51789
R2R3MYB JK664730, JQ085966 CUFF.14288
transcription factor

VcF3'H JK654488 CUFF.39752

(JK663426, JK666734, JIK667006, JIK667133,
JK667135, JK655710 not found)

VCcF3'5'H JK666610 Gene.g10884.t1

flavonoid 3',5' - JK666329, JK664585 CUFF.51728

hdroxylase JK665366, JK665058 CUFF.53209
JK664236 CUFF.51711
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