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Abstract. The enormous size and complexity of genotypic sequence space
frequently requires consideration of coarse-grained sequences in empirical models.
We develop scaling relations to quantify the effect of this coarse-graining on
properties of fitness landscapes and evolutionary paths. We first consider
evolution on a simple Mount Fuji fitness landscape, focusing on how the length and
predictability of evolutionary paths scale with the coarse-grained sequence length
and number of alleles. We obtain simple scaling relations for both the weak-
and strong-selection limits, with a non-trivial crossover regime at intermediate
selection strengths. We apply these results to evolution on a biophysical fitness
landscape designed to describe how proteins evolve new binding interactions
while maintaining their folding stability. We combine numerical calculations for
coarse-grained protein sequences with the scaling relations to obtain quantitative
properties of the model for realistic binding interfaces and a full amino acid
alphabet.
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1. Introduction

The enormous size and dimensionality of genotypic
sequence space are among the most salient features of
molecular evolution. These features not only present
technical challenges for experiments and computation,
but raise major conceptual questions as well: how
can populations efficiently find high-fitness states in
such a large space? John Maynard Smith famously
tackled this issue [1], arguing that positive selection
acting on individual mutations was key to efficiently
evolving functional protein sequences. However, this
argument depends crucially on the structure of the
fitness landscape and the underlying evolutionary
dynamics. One expects a large population to ascend
a steep and perfectly-smooth landscape quickly, while
substantial landscape ruggedness or genetic drift will
slow down adaptation.

The effect of ruggedness (due to epistatic
interactions among genetic loci) on evolutionary
paths has been a major focus of previous work.
These studies have investigated both simple models
of fitness landscapes, especially the uncorrelated
random landscape [2–5] (also known as the “House of
Cards” [6]) and the rough Mount Fuji model [5, 7, 8],
as well as landscapes empirically measured in specific
organisms [9, 10]. Populations in these studies are
generally assumed to be under strong selection, so that
evolutionary paths proceed strictly upward in fitness;
thus a major goal is to determine the number and
length of the accessible paths for different landscape
topographies. More recent work has begun to
consider the effect of population dynamics (e.g., clonal
interference) on evolutionary predictability [11], a topic
of central importance in evolutionary biology [12,13].

In most cases the computational and experimental
cost of analyzing empirical models has required
simplified sequence spaces, especially binary sequences
(indicating only the presence or absence of a mutation
at each site) [3,5,8,9], genomes or proteins with reduced
lengths [14–17], and reduced sets of amino acids [16,18]
or protein structural components [19]. However, it is
not clear how properties of landscapes and evolutionary
paths change under these implicit coarse-graining
schemes, which is essential for extending these models
to more realistic biological systems. Specifically, we
must determine how properties of a model scale with
both the coarse-grained sequence length L and the
coarse-grained number k of alleles at each site, the
latter being important when multiple mutations at a
single site are likely.

We first carry out this approach in a simple model
of monomorphic populations undergoing substitutions
on a smooth Mount Fuji landscape, showing how the
scaling properties of the model depend crucially on the
strength of selection relative to genetic drift. We then

consider evolution on a fitness landscape based on the
biophysics of protein folding and binding, describing
how proteins evolve new binding interactions while
maintaining folding stability [18]. Using scaling
relations, we extend numerical calculations of the
model for coarse-grained representations of proteins,
obtaining quantitative properties of the model for
realistic binding interface sizes and a full amino acid
alphabet.

2. Evolutionary paths on a smooth Mount Fuji
landscape

We first consider a simple fitness landscape model,
a smooth “Mount Fuji” (i.e., single-peaked) land-
scape [20]. Consider genotypic sequences of length L
with k possible alleles {A1, . . . ,Ak} at each site, re-
sulting in nseq = kL possible genotypes. We assume
the alleles {A1, . . . ,Ak} are in increasing order of fit-
ness rank. The sites could be residues in a protein,
nucleotides in a DNA sequence, or larger genomic loci
such as whole genes. In general we will interpret the
sequences in the model as coarse-grained versions of
actual biological sequences. For example, a 12-residue
binding interface on a protein with 20 possible amino
acids at each site could be coarse-grained into L = 6
pairs of sites with k = 5 alleles at each site, where
each allele represents a class of amino acids grouped
by physico-chemical properties (e.g., negative, positive,
polar, hydrophobic, and other). This is analogous to
block spin renormalization in Ising models [21].

Let the occupation number nj(σ) of a sequence σ
be the number of Aj alleles in the sequence, so that∑k
j=1 nj(σ) = L. We define the fitness of a sequence σ

to be

F(σ) = f
∑k

j=1(j−1)nj(σ), (1)

where f is the multiplicative fitness change from each
mutation: a mutation Ai → Aj changes fitness by a
factor of f j−i. If f = 1, the fitness landscape is flat and
evolution is neutral, while if f > 1, the landscape has a
minimum point at A1A1 · · ·A1 (F = 1) and a maximum
point at AkAk · · ·Ak (F = fL(k−1)). The model
is non-epistatic since the fitness function factorizes
over sites; thus all mutations have the same fitness
effect regardless of the genetic background on which
they occur. A more general Mount Fuji model could
allow mutations at different sites and between different
alleles to have different fitness benefits, although this
will not affect the scaling properties of the model that
are of primary interest here.

We assume that the population is monomorphic:
all organisms have the same genotype at any given
time. This approximation holds when u �
(LN logN)−1, where u is the per-site probability of
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mutation per generation and N is the population
size [22]. In this regime the population evolves through
a series of substitutions, in which single mutants arise
and fix one at a time. A substitution from genotype σ
to σ′ occurs at the rate [23]

W (σ′|σ) = Nu φ(s), (2)

where s = F(σ′)/F(σ) − 1 is the selection coefficient
between σ and σ′, and φ(s) is the fixation probability of
a single mutant with selection coefficient s. We use the
diffusion approximation to the Wright-Fisher model for
the fixation probability [24]:

φ(s) =
1− e−2s

1− e−2Ns
. (3)

Note that when N |s| > 1 this can be approximated by

φ(s) ≈
{

1− e−2s if s > 0,
0 if s < 0.

(4)

That is, when selection is much stronger than genetic
drift, deleterious mutations never fix, while beneficial
mutations fix with a probability commensurate with
their selective advantage. This is often referred
to as the “strong-selection weak-mutation” (SSWM)
limit [25].

2.1. The ensemble of evolutionary paths

For concreteness we consider the following evolutionary
process: the population begins at the least fit genotype,
A1A1 · · ·A1, and evolves according to (2) until it
reaches the most fit genotype, AkAk · · ·Ak, for the first
time. Define an evolutionary path ϕ as the ordered
sequence of states ϕ = (σ0, σ1, . . . , σ`) traversed by the
population during this process, where σ0 = A1A1 · · ·A1

and σ` = AkAk · · ·Ak. The probability of making a
single substitution σ → σ′, given a substitution out of
σ occurs, is

Q(σ′|σ) = W (σ′|σ) θ(σ), (5)

where θ(σ) = (
∑
σ′W (σ′|σ))

−1
is the mean waiting

time in σ before a substitution occurs. Thus the
probability of taking a path ϕ is

Π[ϕ] =
`−1∏
i=0

Q(σi+1|σi). (6)

Since the population is guaranteed to reach the final
state eventually,

∑
ϕ Π[ϕ] = 1, where the sum is over

all first-passage paths ϕ between the initial and final
states.

We are interested in statistical properties of the
evolutionary path ensemble. We can calculate many
such properties using an exact numerical algorithm
described in Appendix A [26, 27]. Here we are
especially interested in the distribution of path lengths

`, i.e., the number of substitutions experienced by the
population before it first reaches the fitness maximum.
The path length distribution ρ(`) is defined as

ρ(`) =
∑
ϕ

δ`,L[ϕ] Π[ϕ], (7)

where L[ϕ] is the length of path ϕ, and δ is the
Kronecker delta. We can similarly express the mean
¯̀ and variance `var of path length. We also consider
the path entropy Spath, defined as

Spath = −
∑
ϕ

Π[ϕ] log Π[ϕ]. (8)

This quantity measures the predictability of evolution
in sequence space: if only a single path is accessible,
then Spath = 0, in which case evolution is perfectly
predictable. Larger values of Spath, on the other
hand, indicate a more diverse ensemble of accessible
pathways, and thus less predictable evolution.

2.2. Neutral limit

We first consider properties of the evolutionary path
ensemble in the case of neutral evolution (f = 1 in (1)).
For simple random walks on finite discrete spaces,
previous work has shown that the mean path length
scales with the total number of states [28, 29], while
the distribution of path lengths will be approximately
exponential [28]. Thus for neutral evolution,

¯̀∼ nseq = kL, `var ∼ ¯̀ 2 ∼ k2L. (9)

Conceptually, this means the population on average
must explore the entire sequence space before reaching
a particular point for the first time, and thus the
average number of substitutions grows exponentially
with the length of the sequence. Moreover, since the
standard deviation is of the same order as the mean,
paths much longer than the mean are likely.

Let γ be the average connectivity, defined as the
average number of single substitutions accessible from
each sequence; in neutral evolution all substitutions are
accessible, so γ = L(k − 1). Since all substitutions are
equally likely, Q(σ′|σ) = γ−1 for σ and σ′ separated
by a single mutation. The entropy of the neutral path
ensemble is therefore [27]

Spath = −
∑
ϕ

Π[ϕ] log γ−L[ϕ],

= ¯̀log γ

∼ kL logL(k − 1). (10)

The path entropy consists of two distinct components:
the average path length and the average connectivity.
We can consider the factor of log γ as the average
entropy contribution from each jump in the path.
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It is worth noting that mean path length (and the
distribution of path lengths in general) does not have
explicit dependence on connectivity: it only depends
on the size of the space. So it is the enormous size,
not the dimensionality, of sequence space that causes
neutral evolution to require so many steps to reach a
particular point. In contrast, path entropy, and thus
evolutionary predictability, depends on both the size
and dimensionality of sequence space.

2.3. Strong-selection limit

We now consider evolutionary paths in the strong-
selection limit. Here all beneficial mutations are
selected so strongly (f � 1 in (1)) that their fixation
probabilities are all approximately 1, while deleterious
mutations never occur. Thus evolutionary paths
proceed strictly upward on the fitness landscape. This
is sometimes called the “adaptive walk” scenario [2],
and it is identical to zero-temperature Monte Carlo
with energy replaced by negative fitness [3]. Since the
fitness landscape is non-epistatic and reverse mutations
are impossible, each site can be considered to evolve
independently. In particular, we can decompose the
total path length into a sum of independent path
lengths for individual sites, so that the path length
cumulants for the whole sequence are simply sums of
the cumulants for individual sites. (Note that the
restriction to first-passage paths effectively couples all
the sites because they must all reach their final states
simultaneously, and so site independence is only valid
when reverse mutations are prohibited.)

In Appendix B we show that ¯̀ = Hk−1 (the
(k − 1)th harmonic number) for a single site in the
strong-selection limit, and hence the mean length for
L sites is LHk−1. Since Hk−1 = log k + b + O(k−1),
the mean length scales as

¯̀∼ L(log k + b). (11)

We explicitly include the O(1) constant b here since it
may be comparable to log k if k is not too large. For the
harmonic numbers, b is exactly the Euler-Mascheroni
constant γEM ≈ 0.57721, but we use generic notation
here as this same scaling form will be fit to an empirical
model in the next section. Equation (11) implies
that ¯̀ scales approximately logarithmically with the
size nseq of sequence space, compared with the linear
scaling seen in the neutral case. Moreover, Appendix
C shows that ρ(`) is approximately Poisson, and thus
the variance `var should obey the same scaling as ¯̀.

The average connectivity of sequence space is
reduced compared to the neutral case, since only
beneficial substitutions are allowed. The connectivity
averaged over all sequences is L(k−1)/2 (Appendix D);
the reduction by a factor of 2 is intuitively explained
by the fact that every allowed beneficial substitution

has a prohibited deleterious substitution. For the path
entropy under strong selection, we take as an ansatz
the same dependence on ¯̀ and γ as in (10), albeit with
different L, k scaling:

Spath ∼ ¯̀log γ ∼ L(log k + b) log
1

2
L(k − 1). (12)

We numerically verify this ansatz in the next section
(figure 1).

2.4. Coarse-graining and landscape-dependence of
scaling relations

The path scaling relations depend qualitatively on
whether the fitness landscape is flat (neutral evolution)
or infinitely-steep (strong selection). How does
the transition between these two limits occur at
intermediate selection strengths, where selection and
stochastic fluctuations (genetic drift) compete more
equally? We now implement a concrete scheme for
coarse-graining sequence space on the fitness landscape
of (1). Let s = fL(k−1) − 1 be the total selection
coefficient between the maximum and minimum fitness
points on the landscape. As we vary the coarse-grained
sequence parameters L and k, we will rescale the per-
mutation fitness benefit f in (1) such that the total
selection coefficient s is held fixed:

f = (1 + s)1/(L(k−1)). (13)

Thus the fitness benefit of each individual mutation
decreases as we increase L and k. For each choice of s,
we numerically calculate path statistics for a range of
L and k using the method of Appendix A.

In figure 1 we show the scaling of ¯̀, `var, and
Spath calculated in this manner for several values of
relative selection strength Ns. For Ns = 0, we not
only confirm the neutral scaling relations (9) but also
observe that any proportionality factors and additive
constants are so negligible that the scaling relations
are actually approximate equalities (figure 1a). The
predicted relation for the path entropy (10) also holds
exactly. Moreover, weak selection appears to preserve
these scaling relations: they still hold even at Ns = 0.1
(figure 1b). When selection becomes comparable to
genetic drift (Ns = 1, figure 1c), the neutral scaling
relations still hold qualitatively, although the slopes
of ¯̀ ∼ kL and `var ∼ k2L are no longer close to 1,
indicating different proportionality factors.

At the other extreme (Ns = ∞, figure 1f), the
predicted scaling relations (11) for path length hold
as expected. We also verify that Spath ∼ ¯̀log γ
even for strong selection, albeit with a proportionality
factor less than 1. This scaling maintains at finite but
large selection strengths of Ns = 100 (figure 1e). At
intermediate selection strengths (Ns = 10, figure 1d),
however, neither set of scaling relations for ¯̀ and `var
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Figure 1. Scaling properties of evolutionary paths on the Mount Fuji landscape (1) for different values of Ns, where N = 1000
and s is the total selection coefficient from the least fit to the most fit sequence on the landscape: (a) Ns = 0 (neutral evolution),
(b) Ns = 0.1, (c) Ns = 1, (d) Ns = 10, (e) Ns = 100, and (f) Ns = ∞. The left column shows mean path length (number of
substitutions) ¯̀, the middle column shows path length variance `var, and the right column shows path entropy Spath. Each panel
plots numerical data against both neutral scaling parameters on the bottom axes (blue circles and the solid blue line of slope 1;
γneutral = L(k − 1)), as well as strong-selection scaling parameters on the top axes (red squares and the dashed red line of slope
1; γss = L(k − 1)/2). Numerical values of the variance `var are fitted to a function of the form aL(log k + b) for each value of Ns
separately. We show all L > 1 and k > 2 such that kL < 4× 104.
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holds, indicating that they are no longer a simple
function of sequence space size kL.

3. Evolutionary paths in a biophysical model
of protein adaptation

Simple model landscapes defined in genotype space,
such as (1), have produced many theoretical results
and guided analysis of some data [2–5,8,10]. However,
their purely phenomenological nature allows for little
interpretation of their parameters and includes no basis
in the underlying molecular processes — interactions
among proteins, DNA, RNA, and other biomolecules
— that govern cells. Thus a promising alternative is
to develop models of fitness that explicitly account for
these molecular properties [14, 16, 17, 30, 31]. We now
consider the scaling properties of evolutionary paths in
such a model based on the biophysics of protein folding
and binding [18,26,27].

3.1. Protein energetics and coarse-graining

Consider a protein with two-state folding kinetics [32].
In the folded state, the protein has an interface that
binds a target molecule. Because the protein can
bind only when it is folded, the protein has three
possible structural states: folded and bound, folded
and unbound, and unfolded and unbound. Let the free
energy of folding be Ef (sometimes known as ∆G), so
that an intrinsically-stable protein has Ef < 0. Let
the free energy of binding, relative to the chemical
potential of the target molecule, be Eb, so that Eb < 0
indicates a favorable binding interaction. Note that
Eb becomes more favorable as the chemical potential
of the target molecule is increased.

The folding and binding energies depend on the
protein’s genotype (amino acid sequence) σ. We
assume that adaptation only affects “hotspot” residues
at the binding interface [33,34]. We focus on L binding
hotspot residues which, to a first approximation, make
additive contributions to the total folding and binding
free energies [35]:

Ef(σ) = Eref
f +

L∑
i=1

εf(i, σ
i),

Eb(σ) = Emin
b +

L∑
i=1

εb(i, σi), (14)

where εf(i, σ
i) and εb(i, σi) are matrix entries captur-

ing the energetic contributions of amino acid σi at po-
sition i. Folding and binding energetics are probed
experimentally and computationally by measuring the
changes (often denoted by ∆∆G) in Ef or Eb result-
ing from single-point mutations. For folding energies,

these mutational effects are universally distributed over
many proteins [36]; in accordance with this observa-
tion, we sample entries of εf from a Gaussian distribu-
tion with mean 1.25 kcal/mol and standard deviation
1.6 kcal/mol. The reference energy Eref

f captures the
fixed contribution to the folding energy from all other
residues in the protein, and is defined as the energy of
a reference sequence σref (so that εf(i, σ

i
ref) = 0 for all

i ∈ {1, . . . , L}).
The parameter Emin

b is defined as the binding
energy of the best-binding genotype σbb with the
minimum Eb: εb(i, σibb) = 0 for all i ∈ {1, . . . , L}.
Since binding hotspot residues typically have a 1–3
kcal/mol penalty for mutations away from the wild-
type amino acid [33, 34], we sample the other entries
of εb from an exponential distribution defined in the
range of (1,∞) kcal/mol, with mean 2 kcal/mol.
This distribution is consistent with alanine-scanning
experiments which probe energetics of amino acids at
the binding interface [37]. The exact shapes of the
distributions for εf and εb are unimportant for large
enough L due to the central limit theorem.

For large L and a full amino acid alphabet (k =
20), numerical calculations over all kL sequences are
not possible. However, we can consider coarse-grained
versions of the model by grouping sites and amino acids
into classes. If we then determine how properties of
the model scale with “effective” L and k under such
a coarse-graining procedure, we can extrapolate these
properties to “physical” values of L and k. As we vary
L and k, we want to hold the global distribution of
sequence energies fixed, similar to our coarse-graining
scheme in the previous section. The additive energy
model in (14) implies that energy scales linearly with
length L and does not depend on k. Thus we can
obtain effective εf and εb matrices for the coarse-
grained model:

εf,eff =
Lphys

Leff
εf,phys, εb,eff =

Lphys

Leff
εb,phys. (15)

For simplicity we will drop the “eff” labels and
hereafter interpret L, k, εf , and εb as these effective,
coarse-grained parameters unless otherwise indicated.

3.2. Evolutionary model

Without loss of generality, we assume the protein
contributes fitness 1 to the organism when it is both
folded and bound. Let fub, fuf ∈ [0, 1] be the
multiplicative fitness penalties for being unbound and
unfolded, respectively: the fitness is fub if the protein
is unbound but folded, and fubfuf if the protein is both
unbound and unfolded. Then the fitness of the protein
averaged over all three possible structural states is
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given by [18]

F(Ef , Eb) =
e−β(Ef+Eb) + fube

−βEf + fubfuf

e−β(Ef+Eb) + e−βEf + 1
, (16)

where β = 1.7 (kcal/mol)−1 is inverse room
temperature and the structural states are assumed to
be in thermodynamic equilibrium.

We assume that the population begins as perfectly
adapted to binding a target molecule characterized by
energy matrix εb1 with minimum binding energy Emin

b1

(defining a fitness landscape F1). The population is
then subjected to a selection pressure which favors
binding a new target, with energy matrix εb2

and
minimum binding energy Emin

b2
(fitness landscape F2).

The population evolves in the monomorphic limit
with the SSWM dynamics in (2) and (4). Thus the
evolutionary paths are first-passage paths leading from
the genotype corresponding to the global maximum on
F1 to a local or global maximum on F2, with fitness
increasing monotonically along each path.

3.3. Case 1: selection for binding strength

There are three qualitatively distinct cases of the
fitness landscape in (16), depending on the values of
the parameters fub and fuf . These cases correspond to
different biological scenarios for the selection pressures
on binding and folding. In the simplest scenario (“case
1”), proteins are selected for their binding function
(fub < 1), but misfolding carries no additional fitness
penalty (e.g. due to toxicity of misfolded proteins)
beyond loss of function (fuf = 1). Thus we say
there is direct selection for binding only [18]. Three
examples of adaptation in this regime are shown in
figure 2; the main determinant of the qualitative nature
of adaptation is the overall folding stability Ef .

Although the model is non-epistatic at the level
of the energy traits (since (14) is additive), there
can be epistasis at the level of fitness (16) due to
its nonlinear dependence on energy. Indeed, there is
widespread magnitude epistasis, which occurs when
the fitness effect of a mutation has different magnitude
on different genetic backgrounds, although it is always
beneficial or always deleterious. Sign epistasis, which
occurs when a mutation can be beneficial on one
background but deleterious on another, manifests itself
as curvature in the fitness contours in energy space, as
shown in figure 2. However, we see that the landscape
is largely free of sign epistasis except near Ef = 0,
where there is a higher probability of multiple local
fitness maxima (figure 2b). Overall, this suggests that
the scaling relations from the non-epistatic Mount Fuji
model may provide a reasonable approximation for
this model of protein adaptation; the approximately
additive nature of protein traits as in (14) has led

to applications of the Mount Fuji model to proteins
previously [7, 38,39].

In figure 3 we show scaling properties of the
fitness landscape for the three stability regimes of
the model for case 1 (corresponding to the examples
in figure 2). The minimum path length `min is
the Hamming distance between the initial and final
states for adaptation; for a randomly-chosen initial
sequence, `min = L(1 − 1/k) on average. Indeed, this
relation accurately describes the stable protein regime
(figure 3a). For stable proteins, there is no selection
pressure to improve stability further, so the global
fitness maximum is almost always the best-binding
sequence. Since the binding energetics for the old and
new targets are uncorrelated, the initial and final states
are uncorrelated as well. For marginally-stable and
unstable proteins, `min still scales with L(1 − 1/k),
but with a reduced slope. This is due to the fact the
initial and final states become correlated in these two
cases. We can think of this effect as a reduction in
the effective length L, since more beneficial mutations
are already present in the initial state. We see similar
behavior in the average connectivity γ and accessible
size nseq of sequence space (figure 3b,c). Note that a
random initial state reduces the average connectivity
of the accessible sequence space by an additional factor
of 2, yielding γ = L(k − 1)/4 (see Appendix D).

Whereas stable and unstable proteins almost
always have a single fitness maximum, marginally-
stable proteins have a sizable probability of multiple
maxima owing to greater sign epistasis (figure 2b). In
a purely random, uncorrelated fitness landscape, the
average number m of local maxima is kL/(L(k − 1) +
1) [2]. This has the form nseq/(γ + 1): the number of
maxima increases with the total size of the space and
decreases with the connectivity. We empirically test
this scaling for the average number of maxima for a
marginally-stable protein, and we find good agreement
(figure 3d). By fitting numerically-calculated values
of m as a power law of nseq/(γ + 1), we obtain an
anomalous scaling exponent of ≈ 0.18; the fact this
is less than 1 reflects the correlated nature of our
fitness landscape. The fitted scaling relation allows
us to accurately determine the average number of local
maxima for binding hotspots and amino acid alphabets
much larger than we can directly calculate. By also
fitting γ as a linear function of L(k − 1)/4 (figure 3b)
and nseq as a power law of ((k+ 1)/2)L (figure 3c), for
a marginally-stable protein with Lphys = 12 hotspot
residues and an amino acid alphabet of size kphys = 20,
we estimate the number of local maxima to be ≈ 84.7.
This is a large number of maxima in absolute terms,
although it is far smaller than the expected number
on a uncorrelated random landscape of the same size
(kL/(L(k − 1) + 1) ≈ 1.8× 1013).
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Figure 2. Example landscapes of protein adaptation with direct selection for binding only (case 1), zoomed into the region of
energy space accessible to evolutionary paths in our model. (a) Stable protein with Eref

f = −20 kcal/mol, (b) marginally-stable

protein with Eref
f = −5 kcal/mol, and (c) intrinsically-unstable protein with Eref

f = 5 kcal/mol. In all panels fub = 0, fuf = 1,

and Emin
b1

= Emin
b2

= −10 kcal/mol. The coarse-grained sequence parameters are L = 6 and k = 5, with energies rescaled according

to (15) with Lphys = 12. The black star indicates the initial state for adaptation (global maximum on F1); red triangles indicate
local fitness maxima on F2, shaded according to their commitment probabilities (probability of reaching that final state starting from
the initial state); black circles indicate intermediate states along paths, sized proportional to their path density (total probability
of paths passing through them); small gray circles are genotypes inaccessible to adaptation. The black contours indicate constant
fitness F2 (the fitness difference between adjacent contours is non-uniform so that they are equidistant in energy space), while
example paths are shown in blue and green.

In figure 4 we show the scaling of path statistics
¯̀, `var, and Spath. We find that the strong-selection
scaling relations describe these cases of the protein
model very well, despite the complexities of the energy
and fitness model relative to the simple Mount Fuji
case. The main discrepancy is in the path length
variance, indicating that the distributions ρ(`) are not
as close to Poisson as in the Mount Fuji model. We
expect this is mainly due to the epistasis present in
the protein model. Nevertheless, the scaling is accurate
enough to extend the model to larger binding interfaces
and a full amino acid alphabet. For example, using
the fitted coefficients a and b (figure 4a,b), we estimate
¯̀≈ 25.5 and `var ≈ 11.3 for a marginally-stable protein
with Lphys = 12 hotspot residues and an amino acid
alphabet of size kphys = 20. Comparing these against
the estimated `min ≈ 9.7 (fitted as a linear function
of L(1 − 1/k); figure 3a), we see that many more
substitutions than the minimum are likely.

3.4. Cases 2 and 3: selection for folding stability

The fitness landscape changes qualitatively when there
are additional selection pressures against misfolding
beyond loss of function, e.g., for proteins that form
toxic aggregates when misfolded [40–42]. The first
possibility is that the protein has a non-functional
binding interaction (fub = 1) but is deleterious when
misfolded (fuf < 1; “case 2”). Here the relative binding
strengths of the old and new targets lead to different
patterns of adaptation. In figure 5a, we show an
example of adaptation when both the old and new
targets have potentially strong (but non-functional)

binding affinity, while figure 5b shows an example when
the old target has weak affinity while the new one has
strong affinity. Figure 5c shows the case when the old
target has strong affinity and the new target has little
to no affinity.

Finally, the most general case is to have distinct
selection pressures on both binding and folding (0 <
fub < 1 and fuf < 1; “case 3”). Adaptation in
this scenario often resembles binding-only selection
(figure 2), except when both binding and folding are
of marginal strength (i.e., Ef ' 0 and Eb ' 0). In
this case, the distribution of genotypes in energy space
straddles a straight diagonal fitness contour, leading to
a distinct pattern of evolutionary paths that gain extra
folding stability first, only to lose it later as binding
improves (figure 5d).

We show the scaling properties of the evolutionary
paths for cases 2 and 3 in figure 6. In general, the
predicted scaling relations are less accurate compared
to binding-only selection (case 1). This is due to
the increased sign epistasis in these regimes (note
significant curvature in the fitness contours in figure 5).
Selection for both binding and folding (case 3) is
particularly epistatic in the Ef ' 0, Eb ' 0 regime,
leading to the largest deviations from the Mount Fuji
scaling (figure 6). On the other hand, the degree of
epistasis here is still far from the maximally-epistatic,
uncorrelated random landscape [2,6]; in that model we
should have ¯̀∼ logL [3], which is clearly not the case
in our biophysical model.
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Figure 3. Scaling of landscape properties for three regimes of
protein adaptation with direct selection for binding only (case 1).
(a) Minimum path length `min, equal to the Hamming distance
between the initial and final states, versus L(1−1/k); (b) average
connectivity γ versus L(k − 1)/4; (c) average number nseq of
accessible sequences versus ((k+ 1)/2)L; (d) average number m
of local fitness maxima versus nseq/(γ + 1). In all panels red
circles are for stable proteins, blue squares are for marginally-
stable proteins, and green triangles are for intrinsically-unstable
proteins, with all energy and fitness parameters the same as in
figure 2. Each point represents an average over 104 realizations
of the folding and binding energy matrices; trivial realizations
where the initial state is already a local maximum are excluded.
We include all L > 1 and k > 2 such that kL < 4× 104, coarse-
grained according to (15) with Lphys = 12. Slope 1 lines from
the origin are shown in gray to guide the eye.

4. Discussion

Developing models of fitness landscapes based on the
physics of proteins and other biomolecules has emerged
as a powerful approach for understanding molecular
evolution [14, 16, 17, 30, 31]. However, the empirical
nature of these models often makes explicit analytic
treatments impossible, while the enormous size of
sequence space often restricts numerical calculations
or simulations to short sequences L or reduced
alphabet sizes k. While analyses with small L
and k may preserve qualitative properties of the
models, quantitatively extending these results to more
realistic parameter values is essential for comparison
with experimental data. Here we have developed a
scaling approach in which we empirically fit small
L and k calculations to scaling relations in order to
obtain precise quantitative properties of the model
for arbitrarily large L and k. The scaling analysis
moreover confirms that small L and k calculations
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Figure 4. Scaling of path properties for three regimes of
protein adaptation with direct selection for binding only (case
1). (a) Mean path length (average number of substitutions) ¯̀

and (b) path length variance `var versus aL(log k+ b), where the
parameters a and b are fitted separately for ¯̀ and `var and for
stable, marginal, and unstable proteins. (c) Path entropy Spath

versus ¯̀log γ. All symbols are the same as in figure 3.

largely preserve qualitative properties of the model
expected for realistic sequence spaces. Although the
scaling relations are derived for a much simpler, purely
non-epistatic model, they are surprisingly robust to
the widespread magnitude epistasis and limited sign
epistasis observed the biophysical fitness model.

We also gain important conceptual insights from
the scaling analysis. In particular, we find that the
neutral evolution scaling (¯̀∼ nseq = kL, `var ∼ ¯̀ 2 ∼
k2L) holds even when selection is present, provided
that it is not too strong (Ns ≤ 1, figure 1a,b,c). This
means that the average number of substitutions to a
global fitness maximum, even in the presence of weak
selection, grows exponentially with L. Strong selection
of course enables populations to find the global
maximum much faster: the mean path length scales
with the logarithm of sequence space size, and the
distribution of path lengths is approximately Poisson
rather than exponential. However, extremely strong
selection (Ns ≈ 100, figure 1e) is required for this
more efficient behavior to take over. Selection of this
magnitude may be produced by sudden environmental
changes, as in our model of protein adaptation [18].
When selection is of more moderate strength (Ns ≈
10), mean path length is not a simple function of
sequence space size (figure 1d). We expect the more
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Figure 5. Example landscapes of protein adaptation with
selection for folding stability (cases 2 and 3). (a) Direct selection
for folding only (fub = 1, fuf = 0) where both the old and new
targets have potentially strong binding (Emin

b1
= Emin

b2
= −12

kcal/mol); (b) same selection as (a) but where the old target
has weak binding (Emin

b1
= 0) and the new target binds strongly

(Emin
b2

= −12 kcal/mol); (c) same selection as (a) but where the

old target has strong binding (Emin
b1

= −12 kcal/mol) and the

new target binds weakly (Emin
b2

= 0); and (d) direct selection

for both binding and folding (fub = 0.9, fuf = 0) with marginal
stability and binding (Eref

f = Emin
b1

= Emin
b2

= −10 kcal/mol).
All symbols are the same as in figure 2. The coarse-grained
sequence parameters are L = 6 and k = 5, with energies rescaled
according to (15) with Lphys = 12.

complex relation in this case to depend on the specific
details of the landscape and evolutionary dynamics.

These insights are valuable for general random
walks on complex landscapes, e.g., for spin models
where L is the number of spins and k is the number of
individual spin states. The scaling properties of first-
passage paths have been well-studied for random walks
in the absence of an energy or fitness landscape [29,43].
However, the effects of a landscape on scaling are less
well known. Although the substitution dynamics of (2)
considered here are different from the typical dynamics
used in spin models and other random walks (e.g.,
Monte Carlo) [21], we expect our qualitative findings
to remain valid. Thus we expect the pure random
walk scaling (T = ∞) to hold even for temperatures
down to the size of the largest energy differences on
the landscape. There is a non-trivial crossover regime
at temperatures around the size of these landscape
features, and at small T the T = 0 scaling takes
over. Investigating the nature of this crossover in both
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Figure 6. Scaling of path properties for protein adaptation
with selection for folding (cases 2 and 3). Panels are the same
as figure 4 but with numerical data calculated using energy and
fitness parameters matching examples in figure 5: red circles are
for case 2 (direct selection for folding only) proteins with strong
binding to both old and new targets (figure 5a); blue squares
are for case 2 proteins with weak binding to the old target but
strong binding to the new one (figure 5b); green triangles are for
case 2 proteins with strong binding to the old target but weak
binding to the new one (figure 5c); and purple crosses are for
case 3 (direct selection for both folding and binding) proteins
(figure 5d).

evolutionary and physical models is an important topic
for future work.
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Appendix A. Numerical algorithm for
statistics of the path ensemble

We calculate statistical properties of the evolutionary
paths using an exact algorithm based on transfer
matrices [26, 27]. Let Q(σ′|σ) be the jump probability
defined by a rate matrix as in (5). For each substitution
` and intermediate genotype σ, we calculate P`(σ),
the total probability of all paths that end at σ in
` substitutions, as well as Γ`(σ), their total entropy.
These quantities obey the following recursion relations:

P`(σ
′) =

∑
nn σ

Q(σ′|σ)P`−1(σ),
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Γ`(σ
′) =

∑
nn σ

Q(σ′|σ) [Γ`−1(σ)

−(logQ(σ′|σ))P`−1(σ)] , (A.1)

where P0(σ) = 1 if σ is the initial state and P0(σ) = 0
otherwise, and Γ0(σ) = 0 for all σ. The sums are
over the L(k−1) nearest mutational neighbors σ of σ′,
and the final states are treated as absorbing to ensure
that only first-passage paths are counted. We use these
transfer-matrix objects to calculate the path ensemble
quantities described in the text:

ρ(`) =
∑
σ∈Sf

P`(σ), Spath =
Λ∑
`=1

∑
σ∈Sfinal

Γ`(σ), (A.2)

where Sfinal is the set of final states. The sums are
calculated up to a path length cutoff Λ, which we
choose such that 1 −

∑Λ
`=1 ρ(`) < 10−6. The time

complexity of the algorithm scales as O(γnΛ) [26],
where γ is the average connectivity and n is the total
size of the state space.

Appendix B. Mean path length in the
strong-selection limit

Since sites can be considered independent in the strong-
selection limit, we need only calculate the mean path
length for a single site with k possible alleles. A path
begins at A1, and initially all k alleles are of equal
or higher fitness and are therefore accessible. The
first substitution can go to any Aj ∈ {A2, . . . ,Ak}
with equal probability (k− 1)−1, after which there are
k− j+1 remaining alleles. Thus the mean path length
¯̀
k for k alleles must satisfy the recursion relation

¯̀
k = 1 +

1

k − 1

k∑
j=2

¯̀
k−j+1, (B.1)

where ¯̀
1 = 0. This is satisfied by

¯̀
k = Hk−1, (B.2)

where Hn is the nth harmonic number defined by

Hn =

n∑
j=1

1

j
. (B.3)

To prove this, we first note that

n∑
j=1

Hn = n+
n− 1

2
+
n− 2

3
+ · · ·+ 1

n

=
n∑
j=1

n+ 1− j
j

= (n+ 1)Hn − n
= (n+ 1)Hn+1 − (n+ 1), (B.4)

where we have used the property Hn+1 = Hn + (n +
1)−1. Now we substitute ¯̀

j = Hj−1 on the right side
of (B.1) and invoke (B.4) to obtain

1 +
1

k − 1

k∑
j=2

Hk−j

= 1 +
1

k − 1

k−2∑
j=1

Hj

= 1 +
1

k − 1
((k − 1)Hk−1 − (k − 1))

= Hk−1. (B.5)

This proves (B.2) is the solution to the recursion
relation.

Appendix C. Distribution of path lengths in
the strong-selection limit

Here we address the whole path length distribution
ρ(`) for a single site in the strong-selection limit. With
alleles ordered by fitness rank, a path of ` substitutions
is of the form A1 → Aj1 → · · · → Aj`−1

→ Ak,
where 1 < j1 < · · · < j`−1 < k. Since all beneficial
substitutions are equally likely in this limit, the jump
probability out of allele Aj is (k − j)−1. Therefore the
probability of taking a path of length ` is

ρ(`) =
1

k − 1

k−(`−1)∑
j1=2

1

k − j1

k−(`−2)∑
j2=j1+1

1

k − j2
· · ·

k−1∑
j`−1=j`−2+1

1

k − j`−1
. (C.1)

The mean of this distribution is exactly ¯̀ = Hk−1 as
shown in Appendix B. Here we obtain an approximate
form for the whole distribution. Define ε = k−1 and
xi = ji/k. For k � 1 (ε � 1) we can take the
continuum limit of the exact expression to obtain

ρ(`) ≈ 1

k − 1

∫ 1−(`−1)ε

2ε

dx1

1− x1

∫ 1−(`−2)ε

x1+ε

dx2

1− x2
· · ·∫ 1−ε

x`−2+ε

dx`−1

1− x`−1
. (C.2)

By changing variables to yi = xi − (i+ 1)ε, we rewrite
this as

ρ(`) ≈ 1

k − 1

∫ 1−(`+1)ε

0

dy1

1− y1 − 2ε∫ 1−(`+1)ε

y1

dy2

1− y2 − 3ε
· · ·
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y`−2

dy`−1

1− y`−1 − `ε
. (C.3)

Each integral is dominated by its integrand’s value
near the upper limit. However, because the domain
of integration requires ordering of the yi variables
(0 < y1 < y2 < . . . < y`−1 < 1−(`+1)ε), the integrand
for y`−1 has the greatest support near its upper limit.
Since the integrands are all similar near their lower
limits, we thus approximate each integrand by the one
for y`−1:

1

1− yi − (i+ 1)ε
≈ 1

1− yi − `ε
. (C.4)

This approximation allows us to use the identity

∫ b

a

dx1 f(x1)

∫ b

x1

dx2 f(x2) · · ·
∫ b

xn−1

dxn f(xn) =

1

n!

(∫ b

a

dx f(x)

)n
. (C.5)

Therefore,

ρ(`) ≈ 1

k − 1

1

(`− 1)!

(∫ 1−(`+1)ε

0

dy

1− y − `ε

)`−1

=
log`−1(k − `)

(`− 1)!(k − 1)
. (C.6)

In the limit of k � 1 and `/k � 1,

ρ(`) ≈ (log k + log(1− `/k))`−1

(`− 1)!(k − 1)
(C.7)

≈ (log k)`−1

(`− 1)!
e− log k.

Thus ρ(`) is approximately a Poisson distribution with
mean and variance log k. This is consistent with the
exact solution since ¯̀= Hk−1 ≈ log k for large k.

Appendix D. Size and connectivity of sequence
space in the strong-selection limit

Starting from the sequence with minimum fitness, all
kL sequences are accessible in the strong-selection
limit. More generally, if the population begins at
sequence σ, there are

∏k
j=1(k − j + 1)nj(σ) accessible

sequences, including σ itself. If the initial sequence
is chosen at random, then the average number of
accessible sequences is

nseq =
∑

n1,...,nk

1

kL

(
L

n1, . . . , nk

) k∏
j=1

(k − j + 1)nj(σ)

=
∑

n1,...,nk

(
L

n1, . . . , nk

) k∏
j=1

(
1− (j − 1)

k

)nj(σ)

=

 k∑
j=1

(
1− (j − 1)

k

)L

=

(
k + 1

2

)L
. (D.1)

Similarly, each sequence σ has
∑k
j=1(k − j)nj(σ)

possible beneficial mutations. Thus the connectivity
averaged over all sequences is

γ =
∑

n1,...,nk

(
L

n1, . . . , nk

) k∑
j=1

(k − j)nj

=
k∑
j=1

(k − j)L
k

=
1

2
L(k − 1). (D.2)

We can also determine the average connectivity of
the accessible sequences starting from a random initial
sequence. We first consider a single site. The initial
allele Aj is chosen with probability 1/k, leaving k−j+1
accessible alleles. Thus the average connectivity of this
accessible space is

γ =
k∑
j=1

1

k

k∑
i=j

1

k − j + 1
(k − i)

=
1

4
(k − 1). (D.3)

Since multiple sites contribute additively to the
connectivity, the total average connectivity of the
accessible space is L(k − 1)/4.
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