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Abstract

Large forensic databases provide an opportunity to compare observed empir-

ical rates of genotype matching with those expected under forensic genetic

models. A number of researchers have taken advantage of this opportunity

to validate some forensic genetic approaches, particularly to ensure that esti-

mated rates of genotype matching between unrelated individuals are indeed

slight overestimates of those observed. However, these studies have also re-

vealed systematic error trends in genotype probability estimates. In this

analysis, we investigate these error trends and show how the specific imple-

mentation of the Balding-Nichols model must be considered when applied to

database-wide matching. Specifically, we show that in addition to accounting

for increased allelic matching between individuals with recent shared ances-

try, studies must account for relatively decreased allelic matching between

individuals with more ancient shared ancestry.
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1. Introduction1

Forensic databases, rapidly increasing in size, invite powerful analyses of2

rates of coincidental genotype matching [1, 2, 3]. Such analyses have vali-3

dated some basic assumptions in forensic genetics, particularly the reasonable4

over-estimation of genotype frequencies with existing methods. However,5

these studies also illustrate how database population genetic diversity dif-6

fers from what is expected under the basic model of forensic genetics: the7

Balding-Nichols (BN) model.8

The BN model simply and elegantly provides a framework for estimating9

probabilities of observed genotypes, taking into account population structure10

and variance in allele frequency estimates [4, 5]. The BN model can be inter-11

preted as describing an ancestral population which has split into a number of12

internally randomly mating sub-populations which evolve independently over13

some time, resulting in a present-day total population made up of a num-14

ber of cryptic sub-population groups. The sampling probabilities estimated15

under the BN model then incorporate the deviations from Hardy-Weinberg16

equilibrium expected due to population divergence.17

The amount of excess allele-sharing in a sub-population group beyond18

what is expected based on the total population allele frequencies can be19

quantified in the BN model by the parameter θ. θ can be thought of as the20

probability that two alleles in a sub-population are identical by descent (IBD)21

to due to within sub-population shared ancestry. In a coalescent framework22

under simplifying assumptions, it represents the probability that two alle-23

les sampled from within a sub-population coalesce before either mutates or24

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2014. ; https://doi.org/10.1101/009969doi: bioRxiv preprint 

https://doi.org/10.1101/009969
http://creativecommons.org/licenses/by/4.0/


migrates out of the sub-population [4].25

In the BN model used in forensic applications, the probability of observing26

a particular genotype conditioning on having observed the same genotype is27

estimated using the θ correction to account for coincidental allelic sharing be-28

tween two individuals due to excess shared ancestry within a sub-population.29

In most forensic calculations, there is an implicit assumption that the individ-30

uals in question are from the same sub-population [4]. Balding and Nichols31

convincingly argue that this assumption is appropriate, saying “the ‘same32

sub-population’ assumption is conservative, since the suspect’s profile will33

tend to be more common in his/her sub-population than in other groups”34

[4]. A number of studies have shown the importance and appropriateness of35

this assumption and the corresponding θ correction in genetic identification36

calculations [5, 6, 7, 8, 9, 10, 11, 12].37

In database applications, typically all pairs of genotypes in a database38

will be compared to each other and their degree of matching assessed. Previ-39

ous applications of the standard BN model to forensic databases [1, 2] have40

shown that the often-used θ correction of 0.01 usually adequately corrects41

for coincidental allele-sharing, raising estimated probabilities of matching42

genotypes above their observed levels, and therefore reducing false positive43

rates below their expectation (in statistical terms, making the test ‘con-44

servative’). Yet, these analyses show an excess of non-similarity between45

observed pairs of individuals, as compared to the expectation [1, 2]. As we46

will show, this is likely due to the fact that the standard formulation of the47

BN model does not take decreased allele sharing between individuals from48

different sub-populations into account. When applying the BN model to de-49
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scribe the amount of genotypic matching observed in a database, it is not50

clear that the ‘same sub-population’ assumption is appropriate.51

In this manuscript, we investigate how empirical genotype matching ob-52

servations can be explained by reconsidering the implementation of the BN53

model. We show that by accounting for the case of two individuals deriv-54

ing from different population groups, we significantly improve the ability to55

describe empirical matching rates in a database.56

2. Methods57

2.1. Allele sharing matrix58

To quantify the degree of multi-locus genotype matching within a data set,59

consider the matrix M where each entry Mm,p is the number of profile pairs60

withmmarkers matching at both alleles and pmarkers matching at one allele61

[1, 2]. Tvedebrink et al. [2] described a recursive algorithm to compute the62

probability πm,p that two multi-locus genotypes completely match at m loci63

and partially match at p loci, constructing a probability matrix π analagous64

toM . This method uses the single-locus probabilities of individuals matching65

two, one, and zero alleles as P1,0, P0,1, and P0,0, respectively, following in the66

notation of Tvedebrink et al. [2]. Note the parallel notation to counts of67

matching and partially matching markers in Mm,p. Weir [1] described how68

to compute P1,0, P0,1, and P0,0 at a locus by summing over the appropriate69

two-individual single locus genotype probabilities [1].70
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2.2. Single locus allelic sharing probabilities71

2.2.1. Individuals from the same sub-population group72

Under the typical implementation of the BN model, where all individuals73

are assumed to be in the same sub-population group, the two-individual74

genotype probabilities are75

P (A1,1A1,1, A1,1A1,1) = p1(θ + (1− θ)p1)(
2θ + (1− θ)p1

1 + θ
)(
3θ + (1− θ)p1

1 + 2θ
)

P (A1,1A1,1, A1,1A1,2) =
4p1p2(1− θ)(θ + (1− θ)p1)(2θ + (1− θ)p1)

(θ + 1)(2θ + 1)

P (A1,1A1,2, A1,1A1,2) =
4p1p2(1− θ)(θ + (1− θ)p1)(θ + (1− θ)p2)

(θ + 1)(2θ + 1)

P (A1,1A1,2, A1,1A1,3) =
8p1p2p3(1− θ)2(θ + (1− θ)p1)

(θ + 1)(2θ + 1)

P (A1,1A1,1, A1,2A1,2) =
2p1p2(1− θ)(θ + (1− θ)p1)(θ + (1− θ)p2)

(θ + 1)(2θ + 1)

P (A1,1A1,1, A1,2A1,3) =
4p1p2p3(1− θ)2(θ + (1− θ)p1)

(θ + 1)(2θ + 1)

P (A1,1A1,2, A1,3A1,4) =
24p1p2p3p4(1− θ)3

(θ + 1)(2θ + 1)
(1)

where A1,i is an allele i drawn from the single sub-population 1, so, for76

example P (A1,iA1,i, A1,iA1,j) is the probability observing a homozygote and77

heterozygote sharing one allele, and pi is the frequency of allele i.78

2.2.2. Individuals from same or different sub-population groups79

Under the BN model, if two individuals are not in the same population80

group, the probability that their alleles coalesce more recently than a muta-81

tion or migration event is zero. In other words, there is no increased chance82

of allele-sharing due to shared ancestry for individuals in different population83
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groups. In that case, the probability of observing their genotypes is computed84

as a function of the observed allele frequencies without the θ correction.85

We can allow individuals to be from different sub-populations by introduc-86

ing a parameter d, which describes the probability that a pair of individuals87

are from different sub-population groups. This way, we fully describe the88

BN model with some individuals from the same sub-population group and89

some from differing groups. Under a model with population differentiation,90

two-individual genotype probabilities are91

P (A.,.A.,., A.,.A.,.) = (1− d)P (A1,.A1,., A1,.A1,.)

+dP (A1,.A1,., A2,.A2,.)

where subscript dots indicate any option such that A.,. is any allele drawn92

from any sub-population and A1,. is any allele drawn from sub-population 1.93

Genotype probabilities for individuals from the same population are the same94

as under the typical implementation of the BN model and for individuals from95

different sub-populations the genotype probabilities are96

P (A1,1A1,1, A2,1A2,1) = p21(θ + (1− θ)p1)
2

P (A1,1A1,1, A2,1A2,2) = 4p21p2(1− θ)(θ + (1− θ)p1)

P (A1,1A1,2, A2,1A2,2) = 4p21p
2
2(1− θ)(1− θ)

P (A1,1A1,2, A2,1A2,3) = 8p21p2p3(1− θ)(1− θ)

P (A1,1A1,1, A2,2A2,2) = 2p1p2(θ + (1− θ)p1)(θ + (1− θ)p2)

P (A1,1A1,1, A2,2A2,3) = 4p1p2p3(1− θ)(θ + (1− θ)p1)

P (A1,1A1,2, A2,3A2,4) = 24p1p2p3p4(1− θ)(1− θ)
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2.2.3. Chromosomes from same or different sub-populations97

In the previous formulation of joint genotype probabilities for two indi-98

viduals, it is assumed that in each individual, both chromosomes derive from99

the same sub-population. In post-colonial societies, where few individuals100

can trace all their ancestry to their current location, this is not realistic. We101

describe an alternative model allowing alleles within individuals to be drawn102

from different, but correlated, sub-population groups. In this model there are103

k sub-populations of equal size and relation to each other. The correlation104

of sub-population draws within individuals is described by the parameter a.105

We can use this model to compute joint genotype probabilities, as shown in106

Supplemental Materials.107

2.3. Likelihood framework108

With match probabilities specified by the aforementioned models, we can109

calculate the expectation π of the match matrix M under varying assump-110

tions regarding allele frequencies, and parameters of the models: θ for the111

typical implementation of the BN model without population differentiation,112

θ and d for the model with population differentiation, and θ, a, and k for the113

model allowing admixture between sub-populations (Table 1). By taking the114

entries π as categorical probabilities in a multinomial distribution, we can115

compute the sampling probability of an observed instance of M , an approach116

used effectively in other population genetic applications [13].117

Using the sampling probability of M as a likelihood function, we can es-118

timate parameters of the model using maximum likelihood. Since the mod-119

els described here are nested and fulfill standard regularity conditions, the120

asymptotic distributions of likelihood ratio test statistics (LRTs) are known121

7
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to be chi square. Specifically, if we take the null hypothesis to be the typical122

implementation of the BN model with a fixed value of θ (say H0 : θ = 0.01),123

and the alternative to be the typical BN model implementation where θ124

varies (Ha : θ 6= 0.01), the LRT is distributed as a chi square with one degree125

of freedom (LRT χ2
1). Similarly, to compare the typical implementation of126

the BN model with our implementation with population differentiation, we127

specify H0 : θ 6= 0.01, d = 0 and Ha : θ 6= 0.01, d 6= 0, in which case the128

LRT χ2
0+χ2

1. The model allowing chromosomes within individuals from dif-129

ferent sub-populations reduces to the model with population differentiation130

under complete allelic correlation (a = 1). In this case, d is equivalent to131

(k − 1)/k. This enables tests where LRT χ2
0 + χ2

1 between the chromosomal132

model and the model with population differentiation133

Additionally, we can obtain parameter estimates of θ̂, d̂, â, k̂, and ĉ.134

While we do not advocate interpreting these estimates too strongly, as the135

underlying population models are very simple, we can compare them as a136

reference.137

2.4. Database138

We consider genotype data from 99,275 Brazilian individuals undergo-139

ing paternity testing during 2011-2013 in the Hermes Pardini Laboratory,140

Vespasiano, MG, Brazil. The individuals genotyped reside in all 26 Brazil-141

ian States and the Federal District (Brasilia). The genotypes were obtained142

using a combination of two Life Technologies kits and ABI 3730 Genetic an-143

alyzers (Life Technologies, CA, USA) for a total of 20 loci (the original 13144

CODIS core loci and additionally D10S1248, D22S1045, D1S1656, D12S391,145

D2S441, D2S1338, D19S433, PentaD, and PentaE) [14].146
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While there are no known relatives in this dataset, unknown relatives, or147

multiple entries of the same individual are expected. As such, individuals148

with 17-20 loci matching and the same birth dates (when available) were149

removed as likely multiple entries or identical twins with some genotyping or150

clerical errors. When dates were not available or inconsistent apparently due151

to a typo, names were manually checked by the lab personnel and the most152

complete profile was kept, resulting in a data set with 96,400 individuals [14].153

Since our analysis requires genotypes across the same number of loci for154

all individuals, we discarded all individuals with any missing data. In the155

remaining data set, extremely rare alleles observed exactly one time may156

be, in fact, genotyping errors. Profiles with these rare alleles were similarly157

eliminated. The final dataset considered in this analysis contained 90, 852158

individuals.159

3. Results160

3.1. Observed database matching161

We counted the number of zero, one, and two allele matches for each162

locus for each pair of individuals in the dataset to create the observed matrix163

Mobs, as shown in Supplemental Table 1. For example, in our dataset, out164

of
(

90852
2

)

= 4, 126, 997, 526 pairs of genotypes, 295, 948 pairs have exactly165

one loci matching at both alleles, two loci matching at one allele (partially166

matching), and 17 markers matching at neither allele (Supplemental Table167

1).168
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3.2. Comparing data likelihood under different models169

Previous investigators have used the conventional implementation of the170

BNmodel (without population differentiation) with θ fixed at 0.01 to describe171

matching in databases [1, 2]. Under this model, setting θ = 0.01, we calcu-172

lated the log likelihood of the observed match matrix as −47, 246, 554, 388173

(Table 1). We can graphically compare our observed and expected results in174

a dropping ball diagram [11, 15, 2] (Figure 1), or in a heatmap of the resid-175

uals (Figure 2a). The heatmaps in this manuscript show a color gradient176

along the log of the divergence of the observed and expected as log (obs−exp)2

exp
.177

Through these visualizations, we see that as in previous analyses [1, 2], under178

the typical BN model implementation with θ set at 0.01, there is an excess179

of observed pairs of individuals who share few alleles, as compared to the180

expectation.181

Using the maximum likelihood framework and optimizing over θ, we per-182

formed a similar analysis (Table 1, Supplemental Table 2). This model where183

θ may vary fits the observed data significantly better than with θ fixed at 0.01184

(LRT = 94, 490, 590, 210). However, we still observed an excess of individu-185

als sharing few alleles (Figure 2b). Further, under the maximum likelihood186

of this model, θ is estimated near zero as θ̂ = 4.6e− 10, indicating that the187

θ correction as implemented here is insufficient to describe the data. This188

makes sense since the θ correction accounts for excess allelic sharing due to189

common ancestry within a sub-population.190

We allow individuals in different sub-populations to share comparatively191

fewer alleles through common ancestry using the population differentiation192

model, where two random individuals derive from different sub-population193
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groups with probability d. Again, we find the maximum likelihood value un-194

der this model (Table 1, Supplemental Table 3). The model fits the observed195

data significantly better (LRT = 2, 444, 098) and corrects for the previous196

excess of individuals sharing few alleles (Figure 2c). However, we still see197

consistent differences between the observed and expected allelic matching.198

Compared to the observed data, the population differentiation model pre-199

dicts a more narrow range of allelic matching than what is observed.200

In the population differentiation model, it is assumed that both alleles201

within an individual derive from the same sub-population. This assumption202

may not be valid in realistic cases of admixture, and can be relaxed using203

the a model where chromosomes are considered separately with some corre-204

lation. We fit such a model with k equally represented sub-populations and205

intra-individual allelic correlation to the observed data. This model, allowing206

chromosomes of different population origins within individuals, fits the data207

significantly better than the model without admixture (LRT = 148835) (Fig-208

ure 2d). Still, we observe a wider range of allelic matching than is expected209

under these models.210

4. Discussion and Conclusions211

We have shown how a multinomial distribution on the expected match212

matrix can be used to calculate the sampling probability of an observed match213

matrix. Further, we have shown how this probability can be maximized with214

respect to some parameters to provide maximum likelihood estimates of these215

parameters.216

Using this procedure, we found that estimating the value of θ, unsurpris-217
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ingly, fits the data significantly better than a uniform value of 0.01. Further,218

we found that estimate to be near zero. This initially surprising estimate is219

explained by considering that the common implementation of the BN model220

in forensic genetics accounts for excess allele sharing due to recent ancestry,221

but not relatively less allele sharing for individuals with more distant an-222

cestry. Under this implementation, every pair of individuals has increased223

allelic sharing due to recent ancestry. Since many pairs of individuals do not224

share recent ancestry, the maximum likelihood estimate of θ is driven to zero225

to explain the lack of consistent excess allele sharing.226

We show and implement several parameterizations of the full BN model227

where individuals may or may not have excess allele sharing (equivalently,228

may or may not derive from the same population group). This full BN model229

fit the observed match matrix significantly better than the typical BN model230

implementation. Under the full BN model, θ̂ = 0.008, which is closer to the231

typical value used in practice of θ = 0.01.232

Even under the full BN model implementation, we predict a more narrow233

range of locus-matching than observed. In the BN model, all sub-populations234

have equal excess allele sharing internally and are equally unrelated to each235

other. While this model provides a simple and reasonable over-estimation236

of coincidental genotype match rates, essential to forensic case work, it is237

clearly a simplification of complex human population structures, where some238

individuals are vastly more related than others. A more sophisticated model239

allowing varying degrees of allele sharing between individuals would likely240

better fit our observation of a broad range of allelic-matching. However,241

such a model would begin to accumulate parameters, making use in forensic242
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case work impractical compared to the adequate typical BN model imple-243

mentation.244

Additionally, the full BN model does not explain a small observed excess245

of people matching at many loci. For example, there are three pairs of246

individuals who match both alleles at 13 loci and one allele at six loci, whereas247

under the full BN model, 5.0e− 13 are expected. There are several possible248

explanations for these individuals. They may be genetic relatives who share a249

large number of alleles IBD. They could share even more alleles than expected250

if allele frequencies are mis-specified because they derive from a population251

group divergent from the whole sample [16]. It is also possible that the same252

individual was entered a number of times, with genotyping or clerical errors253

resulting in differing alleles.254

Other authors have considered the presence of genetic relatives within255

a database when calculating genotype match probabilities with additional256

parameters for the probabilities that a pair of individuals hold particular257

genetic relationships [1, 17, 2]. This way, the total probability of genotype258

matching takes into account the possibility of genetic relationships. However,259

since the loci are still treated independently, the small probability of a genetic260

relationship is factored in at each locus separately, rather than considering261

how genetic relatives share alleles across loci. As a result, unless there are262

extensive genetic relatives in a dataset, this does not dramatically affect the263

expected allelic matching.264

We have shown how the correct full implementation of the BN model265

is crucial to understanding database-wide allelic matching. While this is266

essential for database applications, it does not affect forensic case work where267
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the typical BN model implementation is adequate to reasonably overestimate268

the probability of coincidental genotype matching.269
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model log likelihood θ̂ d̂ â k̂

typical implementation with θ = 0.01 -47246554388 NA NA NA NA

typical implementation with θ varying -1259283 4.6e− 10 NA NA NA

population differentiation implementation -37234 7.6e− 03 0.966 NA NA

sub-population groups by chromosome -37182 7.9e− 03 NA 0.939 3538.5

Table 1: The maximum log likelihoods and parameter estimates are listed for each model

considered. For models which do not incorporate particular parameters, those estimates

are listed as NA.

Figure 1: This dropping ball plot shows the observed (dot) and expected (x) numbers of

pairs of individuals sharing m matching loci and p partially matching loci where m/p is

indicated on the x-axis.

Figure 2: These heatmaps show the difference between the observed match matrix and

that expected under, (a) the typical implementation of the BN model with θ = 0.01, (b)

the typical implementation of the BN model where θ varies, (c) the full implementation of

the BN model, and (d) the full implementation of the BN model allowing for admixture.

Purple indicates a lack of observed pairs of individuals and green indicates an excess of

observed pairs of individuals.
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