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Abstract  

Visual processing in cortex happens through a hierarchy of increasingly sophisticated 

representations. Here we explore a very wide range of model representations (29 models), testing 

their categorization performance (animate/inanimate) and their ability to account for the 

representational geometry of brain regions along the visual hierarchy (V1, V2, V3, V4, and LO). We 

also created new model instantiations (85 model instantiations in total) by reweighting and remixing 

of the model features. Reweighting and remixing was based on brain responses to an independent 

training set of 1750 images. We assessed the models with representational similarity analysis 

(RSA), which characterizes the geometry of a representation by a representational dissimilarity 

matrix (RDM). In this study, the RDM is either computed on the basis of the model features or on 

the basis of predicted voxel responses. Voxel responses are predicted by linear combinations of 

the model features. The model features are linearly remixed so as to best explain the voxel 

responses (as in voxel/population receptive-field modelling). This new approach of combining RSA 

with voxel receptive field modelling may help bridge the gap between the two methods. We found 

that early visual areas are best accounted for by a Gabor wavelet pyramid (GWP) model. The 

GWP implementations we used performed similarly with and without remixing, suggesting that the 

original features already approximate the representational space, obviating the need for remixing 

or reweighting. The lateral occipital region (LO), a higher visual representation, was best explained 

by the higher layers of a deep convolutional network (Krizhevsky et al., 2012). However, this model 

could explain the LO representation only after appropriate remixing of its feature set. Remixed RSA 

takes a step in an important direction, where each computational model representation is explored 

more broadly by considering not only its representational geometry, but the set of all geometries 

within reach of a linear transform. The exploration of many models and many brain areas may lead 

to a better understanding of the processing stages in the visual hierarchy, from low-level image 

representations in V1 to visuo-semantic representations in higher-level visual areas. 
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Introduction  

Primates can easily categorize objects in different variations. This is thought to rely on a high-level 

representation in higher stages of the visual hierarchy (i.e. inferior temporal cortex). This brain 

region has been intensely studied in primates (Bell et al., 2009; Hung et al., 2005; Kriegeskorte et 

al., 2008a). The representation in this higher visual area is the result of computations performed in 

stages across the hierarchy of the visual system. Although none of the stages in this cortical 

hierarchy is yet fully understood, there has been good progress in understanding and modeling 

early visual areas (Eichhorn et al., 2009; Kay et al., 2013; Güçlü and van Gerven, 2014). However, 

intermediate (e.g. V4) and higher visual areas (e.g. LO and IT) have been more difficult to 

understand. 

 

The geometry of a representation can be usefully characterized by a representational dissimilarity 

matrix (RDM) computed by comparing the patterns of brain activity elicited by a set of visual 

stimuli. In this representational similarity analysis (RSA) framework,  representations in two brain 

regions are compared by computing the correlation between their RDMs (Kriegeskorte, 2009; Nili 

et al., 2014). Each RDM contains a representational dissimilarity for each pair of stimulus-related 

response patterns (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008b). We use the RSA 

framework here to compare processing stages in computational models with the stages of 

processing in the hierarchy of ventral visual pathway. We use a previously published dataset (Kay 

et al., 2008) consisting functional magnetic resonance imaging (fMRI) responses to a training set of 

1,750 natural images and an independent test set of 120 natural images (all grayscale). 

 

In previous studies, we have compared the RDMs of a wide range of models (Khaligh-Razavi, 

2014) with human IT (Khaligh-Razavi and Kriegeskorte, in-press; Kriegeskorte et al., 2008; 

Kriegeskorte, 2009).  In this study we build on the results from Henriksson et al. (2014) and 

Khaligh-Razavi and Kriegeskorte (in-press), and compare the representational geometry of a wide 

range of object-vision models with several brain regions, from early to higher visual areas, using a 

dataset that has a larger set of stimuli than the one used in Khaligh-Razavi and Kriegeskorte (in-

press). The focus of the previous study (Khaligh-Razavi and Kriegeskorte, in-press) was mainly on 

understanding and modelling the representation of visual information in IT. Here we investigate 

more brain regions (including early and intermediate visual areas).  

 

In addition, we study the transformation of representational geometry across stages of the visual 

hierarchy by comparing representations between different brain regions. We have recently shown 

(Henriksson et al., 2014) that coherent fluctuations of overall activation between two brain regions 

can make the representational geometries of the two regions appear more similar than their purely 

stimulus-driven similarity. This can confound comparisons among different brain representations. 

To overcome this issue, we use cross-trial RDM comparison, where the stimulus-driven component 

is shared between regions, but not the intrinsic fluctuations of activity.  

 

For model evaluation, in addition to RSA, we also take advantage of voxel/cell-population 

receptive-field (RF) modeling (Huth et al., 2012; Kay et al., 2008; Dumoulin and Wandell, 2008). 

Voxel RF modeling fits a linear transformation of the features of a computational model to predict a 

given voxel’s response. The linear transform is fitted using a training data set of responses to an 
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independent sample of stimuli. We bring these two complementary approaches together by 

constructing RDMs based on voxel response patterns predicted by voxel-RF models. This 

constitutes a new method of model evaluation, remixed RSA, in which model features are first 

mapped to the brain space (as in voxel-RF modelling) and the predicted and measured RDMs are 

then statistically compared (as in RSA). The voxel-RF fitting stage is a way of remixing the model 

features so as to better predict brain responses. By remixing model features we can investigate the 

possibility that all essential nonlinearities are present in a model, and they just need to be 

appropriately linearly recombined to approximate the representational geometry of a given cortical 

area. Remixing provides quite a general transformation (also known as affine recoding), which 

includes feature reweighting as a special case. In practice, stable estimation of the remixing matrix 

requires regularisation. Here we used an L2 penalty (ridge regression) to fit the remixing matrix. 

 

In interpreting results for fitted models, it is important to keep in mind that the prior implicit to any 

regularisation is part of the model. The L2 penalty implies a prior favouring small remixing weights. 

In addition to the general linear remixing, we also tried a heuristic approach for reweighting of 

model features. Remixing and reweighting was always performed on the basis of the independent 

training set of 1750 images and the 120-image test set is used for model comparisons. 

 

Compared to the stimulus set used in Khaligh-Razavi and Kriegeskorte (in press), the Kay et al. 

(2008) dataset contains more stimuli in the training set, enabling the remixing approach, and the 

stimuli are natural grayscale images as opposed to colour images of isolated objects on a gray 

background. We will see to what extent results are consistent across these two different sets of 

images. 

 

 

Results 

In (Henriksson et al., 2014) we showed that the patterns of visual information are affected by non-

stimulus driven effects (e.g. trial-to-trial variability of visually evoked responses and the coherent 

response fluctuations across visual cortex in the absence of stimuli). Therefore it is important to 

take into account the effects of intrinsic cortical dynamics when comparing models with several 

brain representations, otherwise the results may be misleading. For example, RDMs from two 

visual areas are more similar when the response patterns are estimated on the basis of the same 

trials (sharing intrinsic cortical dynamics) than when they are estimated on the basis of separate 

trials (sharing only the stimulus-driven component). In this study we build on the findings from 

(Henriksson et al., 2014), and in the context of representational similarity analysis (RSA) 

framework, we run cross-trial comparisons of brain ROIs with each other and with computational 

models of object-vision. We also extend our assessment of object-vision models (Khaligh-Razavi 

and Kriegeskorte, in-press) by comparing many model instantiations to several brain areas, form 

early to higher visual areas. 
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The transformation of visual information along the stages of visual 
stream: from shape information to category information 

The cross-trial comparison of RDMs for several ROIs across the stages of visual stream is shown 

in Figure 1. We had early visual areas (i.e. V1, V2), intermediate level visual areas (V3, V3A, V3B, 

and V4), and LO as one of the higher visual areas. The RDMs for each ROI were calculated based 

on 120 test stimuli presented to the subject – there were 10 runs consisted of 12 distinct images 

presented 12 times each. For more information about the data set, and images see materials and 

methods or refer to (Kay et al., 2008; Henriksson et al., 2014). The representational dissimilarity 

patterns of all ROIs in the three subjects are compared in a second-order RDM (Figure 1A). One of 

the consistent patterns observed in this RDM is the high correlation between V1, V2, and V3 within 

a subject, and also across subjects. V4 is also correlated with these three ROIs; however the 

correlation is lower and therefore less prominent in the RDM. On the other hand, LO does not 

show a high correlation with other ROIs, particularly the early visual areas, showing the gradual 

transformation of visual information from early visual areas to higher visual areas.  

 

 
Figure 1. Cross-trial comparison of RDMs within and across subjects.  A) A second-order representational 

dissimilarity matrix of RDMs of visual areas (V1, V2, V3, V3A, V3B, V4, LO) in all three subjects (S1, S2, S3) is shown. 
The results are based on 120 stimuli presented to the three subjects – there were 10 runs consisted of 12 distinct images 
presented 12 times each. The effects of coherent trial-to-trial fluctuations and stimulus presentation order were removed 
by comparing RDMs based on different trials, as well as by averaging across trials. Odd trials were averaged and 
compared to the average of even trials. B) A multidimensional-scaling arrangement of the second-order RDM similarities. 
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What are the possible underlying visual features that each ROI represents? To be able to answer 

this question we compared the ROIs with a wide variety of object-vision models (The RDM in figure 

2A). Comparing the transformation of visual information with a wide variety of object-vision models 

can give us cues about the type of computations that happens in different stages of the visual 

hierarchy, and the type of features or visual information that is represented in each stage. The 

Gabor wavelet pyramid (GWP) model seems to be the most correlated model with early visual 

areas, confirming previous observations (Jones and Palmer, 1987) about the Gabor-like features in 

early visual areas. On the other side of the spectrum, LO seems to be best accounted for by the 

animacy model (this is best shown in subject 1). The animacy model is a simple model RDM that 

shows the animate-inanimate distinction. Interestingly, for intermediate visual areas, the 

intermediate layers of the HMAX model (HMAX C2, and C3) seem to have the highest correlation. 

This conforms with the visual information being gradually transformed from Gabor-like features in 

early vision to a high-level semantic representation of categories in higher visual areas.   

 

In Figure 2A we saw that most of the models, apart from the animacy model, were not highly 

correlated with LO representation. One explanation is that all the object-vision models shown in 

this figure are unsupervised, therefore they do not explicitly receive semantic information to 

distinguish animates vs. inanimates. This may explain why the visual features extracted by these 

models are not good at discriminating semantic categories such as animates versus inanimates, 

which is what LO seems to care about. To show this we have evaluated the categorization 

performance of the models in an animate/inanimate categorization task (Figure 3). A linear SVM 

classifier was trained with the model features extracted from 1750 training images, and tested on 

the 120 test images. Only a few of models have performances significantly above chance, and the 

highest performance is below 70%. 
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Figure 2. Cross-trial comparison of RDMs within and across subjects and Models. A) A second-order representational dissimilarity 
matrix of RDMs of visual areas (V1, V2, V3, V4, LO) in all three subjects (S1, S2, S3) and 20 object-vision model representations, and 
one category-model RDM (animate vs. inanimate) is shown. The results are based on 120 stimuli presented to the three subjects – 
there were 10 runs consisted of 12 distinct images presented 12 times each. The effects of coherent trial-to-trial fluctuations and 
stimulus presentation order were removed by comparing RDMs based on different trials, as well as by averaging across trials. Odd trials 
were averaged and compared to the average of even trials. B) A multidimensional-scaling arrangement of the second-order RDM 
similarities. Corr(diss,distance) = 0.68 (Pearson’s correlation). 
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Figure 3. Models’ animate-inanimate categorization performance. Bars show animate vs. inanimate categorization 

performance for each of the models shown on the X-axis. A linear SVM classifier was trained using 1750 training images 
and tested by 120 test images. P values that are shown by asterisks show whether the categorization performances 
significantly differ from chance [ p < 0.05: *, p < 0.01: **, p < 0.001: *** ] . P values were obtained by random permutation 
of the labels (number of permutations = 10,000). 

 

In summary, we may conclude that the physical similarity among objects, as instantiated in the 

unsupervised models that we tested, is more represented in early visual areas, and as we go 

higher in the visual hierarchy, the higher areas represent the perceived similarity (e.g. category 

information) rather than the physical similarity. Therefore the visual information across the 

hierarchy is transformed from shape information to category information. This suggests that the 

representations in higher visual areas may provide a substrate for perceptual and conceptual 

mental spaces. 

 

A 2D arrangement of brain ROIs – using multidimensional scaling – is shown in Figure 1B, and a 

2D arrangement for brain and model RDMs together is shown in Figure 2B.  
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Exploring model space through remixing and reweighting of model 
features 
 

The rich training data, allowed for a more comprehensive assessment of the models. In other 

words, we could better explore the space of possible models (which we refer to as model space) 

by remixing and reweighting model features using the training data. We could use the training data 

(1750 stimuli) to fit the model parameters, and then test them with the testing set (120 stimuli). In 

the previous study (Khaligh-Razavi and Kriegeskorte, in-press) subjects were presented only with 

96 images, and therefore we did not have a separate large enough training set to search the model 

space with.  

 

For each of the model representations, in addition to the original model response (sometimes is 

referred to as an unfitted model), two other instantiations were created: 1) Remixed features: 

remixing is done by voxel receptive field (RF) modelling so it is also called voxel receptive field-

fitted (voxel RF-fitted) model instantiation. For each model the voxel RF-fitted features are made by 

predicting voxel responses from model features. Using the training data (voxel responses for 1750 

stimuli) we learn a mapping from model features to brain voxels (Figure 4). The mapping is then 

used to map the model features to voxel responses (i.e. predicting responses of brain voxels) for 

the test stimuli (120 images). Figure 4 shows the procedure of voxel receptive field modeling (see 

Materials and Methods). We then construct an RDM from the predicted voxel responses and 

compare it to the reference brain RDM. 2) Reweighted features: given a model, extract model 

features for each image, weight the features using a set of weights, and then compute the RDM. 

The weights were the average of the weights that were learned after building a receptive field 

model for each voxel. This is a heuristic weighting; the idea being that after we build a receptive-

field model for each voxel using the set of model features, we find that some of the model features 

are very little used (see Figure S4, or S5).  These are not informative features in predicting voxel 

responses; therefore we want to give these features a lower weight in constructing RDM matrices 

based on the model. In a sense, how different features are weighted can be thought of as just 

another way in which a model can vary, thus extending our model exploration.      
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Figure 4. Mapping from model space to voxel space. The figure shows the process of predicting voxel responses 

using model features extracted from an image. There is one receptive field model for each voxel. In each receptive field 
model the weight vector and the DC offset are learnt in a training phase using 1750 training images for which we had 
model features and voxel responses. The weights are determined by gradient descent with early stopping. In the test 
phase, we used 120 test images (not included in the training images). For each image, model features were extracted 
and voxel responses for each ROI were predicted using the above procedure. The figure shows the process for a sample 
model; we did the same for all models.  

 

 
Early visual areas are best accounted for by the Gabor wavelet pyramid 
(GWP) and the gist model 
 

The Gabor wavelet pyramid model was used in Kay et al. (Kay et al., 2008) to predict responses of 

voxels in early visual areas in humans. Gabor wavelets are directly related to Gabor filters, since 

they can be designed for different scales and rotations. The aim of GWP has been to model early 

stages of visual information processing, and it has been shown that 2D Gabor filters can provide a 
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good fit to the receptive field weight functions found in simple cells of cat's striate cortex (Jones 

and Palmer, 1987). Interestingly, one of the instantiations of the GWP model (reweighted GWP), 

had the highest RDM correlation with both V1, and V2 (Figure 5). The model comes very close to 

the noise ceiling of these two early visual areas (V1, and V2), although it does not reach the noise 

ceiling. Indeed the noise ceiling for these two areas is much higher than for the other areas. The 

highest correlation obtained between a model and a brain ROI is for the GWP model and the early 

visual areas V1 and V2. This suggests that early vision is better modelled or better understood, 

compared to other brain ROIs. Newer Gabor-based models of early visual areas (Kay et al., 2013) 

may explain early visual areas even better. 

 

The next best model in explaining early visual areas was the weighted gist model. For V2, in 

addition to the GWP, and the gist model, the HMAX-C2 features (not fitted) also showed a high 

RDM correlation. All these models that better explained V1 and V2 are built based on Gabor-like 

features.  
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Figure 5. Kendall tau-a RDM correlation of models with early visual areas. Bars show the average of ten 12x12 

RDM correlations (120 test stimuli in total) with V1, and V2 brain RDMs. There are three bars for each model. The first 
bar, ‘model (not fitted)’, shows the RDM correlation of a model with a brain ROI without fitting the model responses to 
brain voxels. The second bar (voxel RF-fitted) shows the RDM correlations of a model that is fitted to the voxels of the 
reference brain ROI, using 1750 training images (refer to Figure 4 to see how the fitting is done). We used gradient 
descent to find the weight vectors (the mapping between a model feature vector and the voxels of a brain ROI). The 
weight vectors were then used to weight the model features, without mapping them to the brain space; the third bar 
(reweighted features) for each model shows the RDM correlation of the weighted model features with the reference brain 
ROI. Stars above each bar show statistical significance obtained by signrank test at 5% significance level. Black 
horizontal bars show that the difference between the bars for a model is statistically significant (signrank test, 5% 
significance level). The results are the average over the first two subjects. The shaded horizontal bar for each ROI 
indicates the lower bound of the noise ceiling. The lower bound is defined as the average Kendall-taua correlation of the 
ten 12x12 RDMs (120 test stimuli) between the two subjects. The animacy model is categorical, consisting of a single 
binary variable, so remixing has no effect on the predicted RDM rank order. We therefore only show the unfitted animacy 
model. 
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Intermediate and higher visual areas are best explained by models that 
are fitted/weighted to predict voxel responses in these areas 
 

Several models show high correlations with V3, and V4, and some of them go within the noise 

ceiling for V4 –however, notice that the noise ceiling is lower in V4 compared to V1, V2, and V3 

(Figure 6).  

 

Similar to early visual areas, the weighted GWP and the weighted gist model, have high RDM 

correlations with V3, and V4, and the voxel RF-fitted instantiation of the two models have high 

correlations with LO (Figure 7), which comes close to the noise ceiling. In V4, the weighted gist 

model goes above the lower bound of the noise ceiling. This suggests that the gist features form 

the basis for explaining intermediate visual areas, and only by an appropriate reweighting of the 

features we could explain the V4 data. Overall from these results we may conclude that the gist 

model and the GWP model make a good basis for predicting voxel responses in the brain from 

early visual areas to intermediate levels, and to some degree in higher visual areas; and they just 

have to be reweighted appropriately.  

 

More generally, intermediate visual areas are best accounted for by the reweighted features of the 

following models: GWP, gist, and bioTransform-1st stage. The unfitted instantiation of the 

intermediate layers of the HMAX model (HMAX C2, and C3) were also good in explaining the 

intermediate visual areas. 
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Figure 6. Kendall tau-a RDM correlation of models with the intermediate-level visual areas. Bars show the average 

of ten 12x12 RDM correlations (120 test stimuli in total) with V3, and V4 brain RDMs. There are three bars for each 
model. The first bar, ‘model (not fitted)’, shows the RDM correlation of a model with a brain ROI without fitting the model 
responses to brain voxels. The second bar (voxel RF-fitted) shows the RDM correlations of a model that is fitted to the 
voxels of the reference brain ROI, using 1750 training images (refer to Figure 4 to see how the fitting is done). The third 
bar (reweighted features) shows the RDM correlation of the weighted model features with a reference brain ROI. The 
shaded horizontal bar in each panel indicates the lower bound of the noise ceiling. The statistical analyses and 
conventions here are analogous to Figure 5. 
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For the higher visual area, LO, the animacy model has the highest correlation, and comes close to 

the noise ceiling. The RF-fitted instantiation of the GWP and the gist model also come close to the 

LO noise ceiling. 

 

 

 

 
Figure 7. Kendall tau-a RDM correlation of models with LO (a higher-level visual area). Bars show the average of 

ten 12x12 RDM correlations (120 test stimuli in total) with the LO RDM. There are three bars for each model. The first 
bar, ‘model (not fitted)’, shows the RDM correlation of a model with a brain ROI without fitting the model responses to 
brain voxels. The second bar (voxel RF-fitted) shows the RDM correlations of a model that is fitted to the voxels of the 
reference brain ROI, using 1750 training images (refer to Figure 4 to see how the fitting is done). The third bar 
(reweighted features) shows the RDM correlation of the weighted model features with a reference brain ROI. The shaded 
horizontal bar indicates the lower bound of the noise ceiling. The statistical analyses and conventions here are 
analogous to Figure 5. 

 

 

From these results (remixing/reweighting of the unsupervised models) and also the results from 

remixing layers of the deep convNet (Figure 8), we can see that the reweighted/remixed models in 

general are doing a better job in explaining intermediate and higher visual areas than the unfitted 

models. This suggests that an appropriate linear recombination of model features (i.e. performing 

general affine transformations) can improve the performance of models in explaining intermediate 

and higher visual areas. Specially in the case of remixing, this can be better seen for the deep 

supervised convolutional network (Figure 8), where the voxel RF-fitted instantiation of the model 

layers (i.e. remixed deep convNet) explains intermediate and higher visual areas significantly 

better than the unfitted model instantiation.  
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Higher visual areas are best explained by the animacy model and higher 
layers of the remixed deep convolutional network 
 

In recent years, a deep supervised convolutional neural network that is trained with 1.2 million 

labelled images from imageNet  (Deng et al., 2009)  (1000 category labels) has been proved to be 

very successful in object recognition tasks, and has achieved top-1 and top-5 error rates on the 

ImageNet data that is significantly better than previous state-of-the art results on this dataset 

(Krizhevsky et al., 2012). The network has 8 layers: 5 convolutional layers, followed by 3 fully 

connected layers. We tested this model, and compared the representation of the different layers of 

the model with the representation of visual areas along the hierarchy (Figure 8). Interestingly, the 

early layers of the model are more correlated with early visual areas and less correlated with 

intermediate or higher visual areas. As for the intermediate visual areas, layer 4 of the model has 

the highest correlation with V4, and reaches the noise ceiling. And the higher layers of the model 

have higher correlations with LO, compared to other regions.  

Overall among all models, the one that best explains LO is the voxel RF-fitted version of layer 6 of 

the deep convolutional network, referred to as ‘fc6’. This layer also has the highest 

animate/inanimate categorization accuracy (Figure 9). Apart from layer 6 of the deep convolutional 

network, the animacy model also gives a good account of the LO. The remixed version of layer 6 

reaches the noise ceiling for LO and the animacy model comes very close to the noise ceiling. The 

remixed version of some other layers of the deep convolutional network also come very close to 

the noise ceiling (i.e. layer 3, layer 4, layer 5, layer 7, and layer 8), however none of the unfitted 

instantiations come close to the noise ceiling.  

 

The voxel RF-fitted instantiations of the layers of the deep convolutional network work much better 

than the unfitted features, in terms of explaining the brain data, particularly for higher visual areas. 

This suggests that the features from the deep convolutional network form a good basis for 

predicting voxel responses, and they just have to be appropriately recombined (by linear remixing). 

This is consistent with our previous study (Khaligh-Razavi and Kriegeskorte, in-press), in which we 

also showed that by remixing and reweighting the features from the deep supervised convolutional 

network we could explain the data that we had from IT for a set of 96 stimuli. Having said that, 

whether the features of the deep convolutional network rely on computational mechanisms similar 

to the human visual system is yet to be determined. 
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Figure 8. Kendall tau-a RDM correlation of the deep convNet layers across the hierarchy of visual areas. Bars 

show the average of ten 12x12 RDM correlations (120 test stimuli in total) between different layers of the deep 
convolutional network with each of the brain ROIs. There are three bars for each layer of the model: model (not fitted), 
voxel RF-fitted, and weighted features. They are defined in a similar way as explained in Figure 5.  The shaded 
horizontal bar in each panel indicates the lower bound of the noise ceiling. The statistical analyses and conventions here 
are analogous to Figure 5. 
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Comparing the animate/inanimate categorization accuracy of the layers of the deep convolutional 

network (Figure 9) with other models (Figure 3) shows that the deep convolutional network is 

generally better at this task, particularly the higher layers of the model. Given that the animacy 

model explains a significant non-noise variance of LO, this may explain why the higher layers of 

this model that are good at animate/inanimate discrimination also better explain LO. The deep 

convolutional network is trained with so many labelled images as opposed to other models in 

Figure 3 that are all unsupervised models. This could explain why the deep convolutional network 

is better in animate/inanimate categorization task. 

 

 
Figure 9. Animate-inanimate categorization performance based on different layers of the deep convNet. Bars 

show animate vs. inanimate categorization performance for each of the layers of the deep convolutional network. A linear 
SVM classifier was trained using 1750 training images and tested by 120 test images. P values that are shown by 
asterisks show whether the categorization performances significantly differ from chance [p < 0.05: *, p < 0.01: **, p < 
0.001: ***] . P values were obtained by random permutation of the labels (number of permutations = 10,000). 

 

Early layers of the deep convolutional network are inferior to GWP and 
gist model in explaining the early visual areas 
 

Although the higher layers of the deep convolutional network successfully work as the best model 

in explaining higher visual areas, the early layers of the model are not very successfully in 

explaining the early visual areas. The early visual areas (V1 and V2) are best explained by GWP 

model, and then the gist model. For example, the RDM correlations of the first two layers of the 

deep convolutional network with V1 are 0.04 (layer 1–not fitted) and 0.18 (layer 2–RF-fitted), 

respectively. However, the V1 correlation with GWP model (weighted features), which is 0.34, is 

significantly higher (p < 0.001, signrank test). Therefore, GWP provides a much better account of 

the early visual system than the early layers of the deep convolutional network. It may well be the 

case that improving the features in early layers of the deep convolutional network, in a way that 

makes it more similar to early visual areas, could improve the model performance in higher layers 

of the model. 
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Materials and methods  

Presented stimuli, and fMRI data 

In this study we used the experimental stimuli and fMRI data from (Kay et al., 2008; Naselaris et 

al., 2009). The data have been previously described and analysed to address different questions. 

The stimuli were gray-scale natural images that were masked with a 20°-diameter circle. There 

were 1750 training stimuli that were presented to subjects in 5 scanning sessions with 5 runs in 

each session (overall 25 experimental runs). Each run consisted of 70 distinct images presented 

two times each. The testing stimuli were 120 gray-scale natural images. The data for testing stimuli 

were collected in 2 scanning sessions with 5 runs in each session (overall 10 experimental runs). 

Each run consisted of 12 distinct images presented 13 times each. 

 

Data from three subjects were analysed (S1–S3). The regions-of-interests (i.e. V1, V2, V3, V4, LO, 

V3A and V3B ) were identified using a retinotopic mapping procedure. The data for retinotopic 

mapping was collected in separate scan sessions. See (Kay et al., 2008; Naselaris et al., 2009) for 

further experimental details. 

 

The data were pre-processed using an updated protocol which included slice-timing correction, 

motion correction, upsampling to (1.5 mm)^3 resolution and improved co-registration between the 

functional data sets.  The data were modelled with a variant of the general linear model including 

discrete cosine basis set for the hemodynamic response function (HRF) estimation. The beta 

weights characterizing the amplitude of the BOLD response to each stimulus were transformed to 

Z scores. Our analysis was restricted to voxels with signal-to-noise ratio greater than 1.5 (median 

value observed across all images).  

 

Representational similarity analysis (RSA) 

RSA enables us to relate representations obtained from different modalities (e.g. computational 

models and fMRI patterns) by comparing the dissimilarity patterns of the representations. In this 

framework representational dissimilarity matrix (RDM) is a square symmetric matrix in which the 

diagonal entries reflect comparisons between identical stimuli and are 0, by definition. Each off-

diagonal value indicates the dissimilarity between the activity patterns associated with two different 

stimuli.  RDM summarizes the information carried by a given representation from an area in the 

brain or a computational model. In this study, the fMRI response patterns evoked by the different 

natural images were compared to each other using representational dissimilarity matrices (RDMs). 

The measure for dissimilarity was correlation distance (1- Pearson linear correlation) between the 

response patterns.  

There were 120 testing stimuli. For each brain ROI, we had ten 12x12 RDMs. That is one RDM for 

each experimental run (10 runs consisted of 12 distinct images each = 120 distinct images overall). 

Each image was presented 13 times.  The trials were divided to two independent data sets (odd 

and even trials, the 13th trial excluded from the analysis). To remove the effects of coherent trial-

to-trial fluctuations and stimulus presentation order, odd trials were averaged and compared to the 

average of even trials (cross-trial comparison). All comparisons among brain ROIs were done in 

this way.  
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To calculate the correlation between model and brain RDMs, within each experimental run, all trials 

were averaged, which gives us one 12x12 RDM for each run. This gives us ten 12x12 RDMs, each 

of which were correlated with the model RDM obtained from the same 12 images. The reported 

correlations  are the average of these ten correlations.  

 

Voxel receptive field modelling  
 

Voxel-receptive-field modelling (Kay et al., 2008, 2013) aims to construct a computational model 

for each fMRI voxel and to predict the voxel responses for new stimuli. Voxel-receptive field 

mapping therefore requires a linear model (predicting the measured responses from the model 

representation) to be fitted with one data set and tested with a separate data set (different stimuli).  

Both RSA framework and voxel receptive field modelling has been used separately to evaluate 

computational models. RSA compares the response-pattern dissimilarities between models and 

brain ROIs; whereas, voxel receptive-field modelling uses computational-model representations to 

predict the measured response patterns of brain voxels.  

 

Combining voxel receptive field modeling with RSA: In this study we have taken advantage of 

both, and we bridge the gap between voxel receptive field modeling and RSA: using voxel 

receptive field modelling, and based on training images we first learn a mapping between model 

representations and each of the brain voxels. Then we predict the response-pattern of brain voxels 

for the test stimuli using the internal representation of the models. Finally, we use RSA to compare 

the pattern-dissimilarities between the predicted voxel responses and the brain voxels. This gives 

us the additional benefit of finding visual features that better predict brain responses, and might 

enable us to further understand the nature of features that brain uses in each level of the hierarchy 

of the ventral visual pathway. Mapping model responses to voxel responses through voxel 

receptive field modeling is a way of remixing of model features. By linear remixing of features 

(affine recoding), we go beyond stretching and squeezing the representational space along its 

original axes (feature reweighting) and attempt to create new features as linear combinations of the 

original features. This provides a more general transformation, affine recoding, which includes 

feature reweighting as a special case. 

 

Figure 4 shows how the internal representation of each of the object-vision models is used to learn 

and then to predict responses of brain voxels to presented stimuli. During the learning process, for 

each of the brain voxels we learn a weight vector and a DC offset value that maps the internal 

representation of an object-vision model to the responses of brain voxels. We only use the 1750 

training images and the voxel responses to these stimuli. The weights are determined by gradient 

descent with early stopping [see (Kay et al., 2008) for further details ]. Early stopping is a form of 

regularization (Skouras et al., 1994) where the magnitude of model parameter estimates is shrunk 

in order to prevent overfitting. A new mapping is learnt for each of the object-vision models. Finally 

in the testing phase, we use the learned mapping to predict voxel responses to the 120 test stimuli. 

For a given model and a presented image, we use the extracted model features and calculate the 

inner product of the feature vector with each of the weight vectors that were learnt in the training 

phase for each voxel. We then add the learnt DC offset value to the results of the inner product for 

each voxel, which gives us the predicted response value for that voxel.  
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Weighting model features 

Heuristic reweighting: For each of the object-vision models we made a weighted set of model 

features for each ROI (dimensionality of the weight vector: number of model features * number of 

voxels in the ROI). The weights for each ROI that were learnt to map model responses to voxel 

responses –using voxel receptive field modeling (Figure 4) – were averaged across all voxels; the 

averaged weight vector was then used to weight the model features. In other words, for an object-

vision model, the weighted model features for an ROI are simply the result of multiplying the model 

features with the mean of the weight vectors learnt for each voxel in the ROI. This approach 

emphasizes on the model features that are more predictive of brain voxels, by giving higher 

weights to these features, and lower weights to less relevant features.  In Figures 5, 6, 7, and 8 the 

weighted models are shown by ‘reweighted features’.  

 

Kendall A (tau-a) correlation and noise ceiling 

To judge the ability of a model RDM in explaining a brain RDM, we used Kendall’s rank correlation 

coefficient A (which is the proportion of pairs of values that are consistently ordered in both 

variables). When comparing models that predict tied ranks (e.g. category model RDMs) to models 

that make more detailed predictions (e.g. brain RDMs, object-vision model RDMs) Kendall’s A  

correlation is recommended. In these occasions A correlation is more likely than the Pearson and 

Spearman correlation coefficients to prefer the true model over a simplified model that predicts tied 

ranks for a subset of pairs of dissimilarities. For more information in this regard please refer to the 

RSA Toolbox paper (Nili et al., 2014). 

 

The noise in the brain activity data has imposed limitations on the amount of dissimilarity variance 

that a model RDM can explain. Therefore an estimation of noise-ceiling was needed to indicate 

how much variance of a brain RDM –given the noise level– was expected to be explained by an 

ideal model RDM (i.e. a model RDM that is able to perfectly capture the true dissimilarity structure 

of the brain RDM).  

 

The lower bound of the noise-ceiling for each ROI is defined as the average Kendall A correlation 

of the ten 12x12 RDMs (120 test stimuli) between the first two subjects (Figures 5, 6, 7, and 8). 

This is consistent with the definition of the noise ceiling in (Nili et al., 2014). We did not estimate 

the upper bound of the noise ceiling as it did not serve any purpose for our analysis in this study. In 

relating different model instantiations with brain ROIs, we left out the third subject, given that the 

data from the third subject was noisier and less consistent with the other two.  To see the results 

for each subject individually see supplementary Figures S1, S2, and S3). 

 

Object-vision models 

We used a wide range of computational models (Khaligh-Razavi, 2014) to explore many different 

ways for extracting visual features. We selected some of the well-known bio-inspired object 

recognition models as well as several models and feature extractors from computer vision. 

Furthermore, to search the model space more comprehensively, in addition to the model 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2014. ; https://doi.org/10.1101/009936doi: bioRxiv preprint 

https://doi.org/10.1101/009936
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

representation itself, we make two other instantiations from each model representation (therefore 

for each model representation we have three model instantiations). The instantiations are, the 

voxel-RF fitted models (i.e. voxel responses that are predicted from model representation), and the 

weighted features (i.e. model features that are weighted using the weights obtained in the voxel 

receptive field modeling step).  

The visual area RDMs were compared to all these models. In a model-RDM, each cell reflects the 

dissimilarity of an image pair predicted by the computational model. The comparison between a 

brain-RDM and a model-RDM was based on Kendall’s tau-a rank correlation distance of the values 

in the upper triangles of the RDMs.  

Below is a description for all models used in this study.  

 

Gabor wavelet pyramid: The Gabor wavelet pyramid model was adopted from Kay et al. (2008). 

Each image was represented by a set of Gabor wavelets of six spatial frequencies, eight 

orientations and two phases (quadrature pair) at a regular grid of positions over the image. To 

control gain differences across wavelets at different spatial scales, the gain of each wavelet was 

scaled such that the response of that wavelet to an optimal full-contrast sinusoidal grating is equal 

to 1. The response of each quadrature pair of wavelets was combined to reflect the contrast 

energy of that wavelet pair. The outputs of all wavelet pairs were concatenated to have a 

representational vector for each image.  

 

Gist: The spatial envelope or gist model aims to characterize the global similarity of natural scenes 

(Oliva and Torralba, 2001). The gist descriptor is obtained by dividing the input image into 16 bins, 

and applying oriented Gabor filters in 8 orientations over different scales in each bin, and finally 

calculating the average filter energy in each bin1.  

 

Animate–inanimate distinction: The natural images were labelled as animate if they contained one 

or several humans or animals, bodies of humans or animals, or human or animal faces. In the 

animate–inanimate model-RDM, the dissimilarities are either 0 (identical responses) if both images 

are of the same category (animate or inanimate) or 1 (different responses) if one image is animate 

and the other is inanimate. Because the animacy model is essentially one-dimensional, remixing it 

will not change the representational space beyond a scaling factor. Therefore we did not include 

the remixed version of the animacy model. 

 

Radon: The Radon transform of an image is a matrix, in which each column corresponds to a set 

of integrals of the image intensities along parallel lines of a given angle. The Matlab function 

Radon was used to compute the Radon transform for each luminance image. 

 

Unsupervised convolutional network: A hierarchical architecture of two stages of feature extraction, 

each of which is formed by random convolutional filters and subsampling layers (Jarrett et al., 

2009). Convolutional layers scan the input image inside their receptive field. Receptive Fields 

(RFs) of convolutional layers get their input from various places on the input image, and RFs with 

identical weights make a unit. The outputs of each unit make a feature map. Convolutional layers 

are then followed by subsampling layers that perform a local averaging and subsampling, which 

                                                
1
 http://people.csail.mit.edu/torralba/code/spatialenvelope/ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2014. ; https://doi.org/10.1101/009936doi: bioRxiv preprint 

http://people.csail.mit.edu/torralba/code/spatialenvelope/
https://doi.org/10.1101/009936
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

make the feature maps invariant to small shifts (Bengio et al., 1995). The convolutional network 

which we used2 had two stages of unsupervised random filters, that is shown by RR in table 1 in 

Jarret et al. (2009) (Jarrett et al., 2009). The obtained result for each image was then vectorized. 

The parameters were exactly the same as used in (Jarrett et al., 2009) .  

 

Deep supervised convolutional neural network: The deep supervised convolutional network by 

Krizhevsky et al. (Donahue et al., 2013; Krizhevsky, A., Sutskever, I. and Hinton, G. E., 2012) is 

trained with 1.2 million labelled images from ImageNet  (1000 category labels), and has 8 layers: 5 

convolutional layers, followed by 3 fully connected layers. The output of the last layer is a 

distribution over the 1000 class labels. This is the result of applying a 1000-way softmax on the 

output of the last fully connected layer. The model has 60 million parameters and 650,000 neurons. 

The parameters are learnt with stochastic gradient descent.3 

 

Biological Transform (BT): BT is a hierarchical transform based on local spatial frequency analysis 

of oriented segments. This transform has two stages, each of which has an edge detector followed 

by an interval detector (Sountsov et al., 2011). The edge detector consists of a bar edge filter and 

a box filter. For a given interval I and angle θ, the interval detector finds edges that have angle θ 

and are separated by an interval I. In the first stage, for any given θ and I, all pixels of the filtered 

image were summed and then normalized by the squared sum of the input. They were then 

rectified by the Heaviside function.  The second stage was the same as the first stage, except that 

in the first stage θ was changing between 0-180 ° and I between 100-700 pixels and the input to 

the first stage had not a periodic boundary condition on the θ axis (repeating the right-hand side of 

the image to the left of the image and vice versa); but in the second stage the input, which is the 

output of the first stage, was given a periodic boundary condition on the θ axis, and I was changing 

between 15-85 pixels.  

 

Geometric Blur (GB): 289 uniformly distributed points were selected on each image, then the 

Geometric Blur descriptors(Belongie et al., 2002; Berg et al., 2005; Zhang et al., 2006) were 

calculated by applying spatially varying blur around the feature points. We used GB features that 

were part of multiple kernels for image classification described in (Vedaldi et al., 2009)4. The blur 

parameters were set to α=0.5 and β=1; the number of descriptors was set to 300. 

 

Dense SIFT: For each grayscale image, SIFT descriptors (Lowe, 2004) of 16x16 pixel patches 

were sampled uniformly on a regular grid.  Then, all the descriptors were concatenated in a vector 

as the SIFT representation of that image. We used the dense SIFT descriptors that were used in 

(Lazebnik et al., 2006) to extract PHOW features, described below. 

 

Pyramid Histogram of Gradients (PHOG): The canny edge detector was applied on grayscale 

images, and then a spatial pyramid was created with four levels (Bosch et al., 2007). The 

histogram of orientation gradients was calculated for all bins in each level. All histograms were 

                                                
2
 http://koray.kavukcuoglu.org/code.html 

3
 http://caffe.berkeleyvision.org/  

4
 http://www.robots.ox.ac.uk/~vgg/software/MKL/#download 
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then concatenated to create PHOG representation of the input image. We used Matlab 

implementation that was freely available online5. Number of quantization bins was set to forty, 

number of pyramid levels to four and the angular range to 360⁰. 

 

Local Self-Similarity descriptor (ssim): This is a descriptor that is not directly based on the image 

appearance; instead, it is based on the correlation surface of local self-similarities. For computing 

local self-similarity features at a specific point on the image, say p, a local internal correlation 

surface can be created around p by correlating the image patch centred at p to its immediate 

neighbours (Chatfield et al., 2009; Shechtman and Irani, 2007). We used the code available for 

ssim features that were part of multiple kernels for image classification described in (Vedaldi et al., 

2009)6. The ssim descriptors were computed uniformly at every five pixels in both X and Y 

directions. 

 

Global Self-Similarity descriptor (gssim): This descriptor is an extension of the local self-similarity 

descriptor mentioned above. Gssim uses self-similarity globally to capture the spatial 

arrangements of self-similarity and long range similarities within the entire image (Deselaers and 

Ferrari, 2010). We used gssim Matlab implementation available online7. Number of clusters for the 

patch prototype codebook was set to 400, with 20000 patches to be clustered. D1 and D2 for the 

self-similarity hypercube were both set to 10. 

 

Local Binary Patterns (LBP): Local binary patterns are usually used in texture categorization. The 

underlying idea of LBP is that a 2-dimensional surface can be described by two complementary 

measures: local spatial patterns and gray scale contrast. For a given pixel, LBP descriptor gives 

binary labels to surrounding pixels by thresholding the difference between the intensity value of the 

pixel in the center and the surrounding pixels (Ojala et al., 2001, 2002; PietikÃ¤inen, 2010). We 

used LBP Matlab implementation freely available online8. Number of sampling points was fixed to 

eight. 

 

V1 model: A population of simple and complex cells were modelled and were fed by the luminance 

images as inputs. Gabor filters of 4 different orientations (0o, 90o, -45o, and 45o) and 12 sizes (7-29 

pixels) were used as simple cell receptive fields. Then, the receptive field of complex cells were 

modelled by performing the MAX operation on the neighboring simple cells with similar 

orientations. The outputs of all simple and complex cells were concatenated in a vector as the V1 

representational pattern of each image.   

 

HMAX:  The HMAX model developed by Serre et al.(Serre et al., 2007) has a hierarchical 

architecture inspired by the well-known simple to complex cells model of Huble & Wiesel (Hubel 

and Wiesel, 1968; HUBEL and WIESEL, 1962). The HMAX model that is used here adds three 

                                                
5
 http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html 

6
 http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/  

7
 http://www.vision.ee.ethz.ch/~calvin/software.html  

8
 http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab 
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more layers –ends at S4- on the top of the complex cell outputs of the V1 model described above. 

The model has alternating S and C layers. S layers perform a Gaussian-like operation on their 

inputs, and C layers perform a max-like operation, which makes the output invariant to small shifts 

in scale and position. We used the freely available version of the HMAX model9. All simple and 

complex layers were included until the S4 layer. We used the pre-trained version of the HMAX 

model (i.e. trained with large number of natural images). 

 

Combi_Unsupervised: This is the concatenation of features extracted by the 19 unsupervised 

model representations. Given an input stimulus, features from all of the above-mentioned models 

were extracted. Because the dimension for extracted features differs across models, we used 

principle component analysis (PCA) to reduce the dimension of all of them to a unique number. We 

used the first 119 PCs from each of the models and concatenated them along a vector (119 was 

the largest possible number of PCs that we were able to use, because we had 120 testing images; 

so the covariance matrix has only 119 non-zero eigenvalues).  

 

 

Discussion 

Higher visual areas present a difficult explanatory challenge and can be better studied by 

considering the transformation of representations across the stages of the visual hierarchy from 

lower- to higher-level visual areas. Here we investigated the progress of visual information through 

the hierarchy of visual cortex by comparing the representational geometry of several brain regions 

with a wide range of object-vision models. The models tended to have higher correlations with 

early visual areas, than with higher visual areas. In comparing models with brain regions, we also 

considered the effect of coherent response-pattern fluctuations between visual areas. To compare 

the stimulus-driven component of the brain representations in two brain regions, we used separate 

set of trials, which have been presented in independent random orders, to estimate the response 

patterns for each area (Henriksson et al., 2014). By doing so we minimize the confounding effect of 

correlated intrinsic fluctuations in dissimilarity patterns. Importantly, we presented a new 

methodological framework for testing models, remixed RSA, which bridges the gap between RSA 

and voxel-RF modeling, both of which have been used separately but not in combination in 

previous studies (Kriegeskorte et al., 2008a; Nili et al., 2014; Khaligh-Razavi and Kriegeskorte, in-

press; Kay et al., 2008, 2013). Using remixed RSA, we evaluated the performance of many models 

and several brain areas.  

 

 

Performance of different models across the visual hierarchy 

The models that we tested here were all feedforward models of vision, from simple feature 

extractors (e.g. SIFT), to a complex convolutional neural network model that has recently been 

shown to be very successful at visual tasks. We first compared the representational geometry of 

this wide range of models with the stages of visual hierarchy. We then employed voxel-receptive-

field modeling to construct new computational models based on the features extracted by each of 

                                                
9
 http://cbcl.mit.edu/software-datasets/pnas07/index.html 
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the object-vision models and to predict voxel responses for the test stimuli (nonoverlapping set of 

natural images). We explored a wide range of models (i.e. three model instantiations for each of 

the 28 model representations + the animacy model = 85 model representations in total) and 

extended previous findings on this model set (Khaligh-Razavi and Kriegeskorte, in-press; Khaligh-

Razavi and Kriegeskorte 2013) by showing which models best explain each brain representation 

across the hierarchy of visual areas. 

 

Unsupervised models partially explain the lower-level representations without remixing 

The unsupervised models explained substantial variance components of the early visual 

representations, although they did not reach the noise ceiling. These model may reflect low-level 

image similarity in a similar way to the representation in lower visual areas. 

 

The remixed versions of the unsupervised models often performed significantly worse than the 

original versions of those models. For lower visual areas, the original models already approximate 

the representational space quite well. The space of remixed models, of course, contains the 

original model as a special case, but the remixing might be hampered to some extent by overfitting. 

In addition, the L2 regularisation implies a prior favouring a remixing matrix with small distributed 

weights. However, to recover the original model, the remixing matrix would have to be a permuted 

version of the identity matrix, which would incur a large L2 penalty. This illustrates the fact that the 

regulariser in voxel-RF modelling implies a prior that is part of the model and can hurt model 

performance when it is inappropriate. 

 

For higher visual areas, the unsupervised models were not successful either with or without 

remixing. None of the unsupervised models came close to the LO noise ceiling. One explanation 

for this is that these models are missing the visuo-semantic nonlinear features needed to explain 

these representations, consistent with findings from a different data set in Khaligh-Razavi and 

Kriegeskorte (in press). In that previous study, the not-strongly-supervised models similarly failed 

to explain the higher ventral-stream representations with or without remixing. (The remixing in that 

study was based on weights set to optimise categorisation performance, because the data did not 

include training set of fMRI data for a rich separate set of stimuli.) 

 

The deep supervised network explains the higher-level representations with remixing  

The deep supervised network performed worse than the unsupervised models at explaining the 

early visual representations. However, it performed better at explaining the higher-level LO 

representation. Interestingly, in LO the remixed layers of the deep supervised network are often 

better than the animacy model.  

 

Whereas the remixed versions of the unsupervised models performed worse than the original 

versions of those models, the remixed versions of the layers of the deep supervised convolutional 

network, tended to perform significantly better than the original versions of these representations. 

This again is broadly consistent with our previous results (Khaligh-Razavi and Kriegeskorte, in 

press) showing that remixing of the deep supervised network’s features (by optimising 

categorisation performance) improves the explanation of the IT representational geometry. 

Remixing appears to be essential for the deep supervised model to account for the semantic 
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categorical clusters observed in higher visual areas (Connolly et al., 2012; Kiani et al., 2007; 

Kriegeskorte et al., 2008a; Mur et al., 2012; Naselaris et al., 2012). 

 

 

Remixed RSA: bridging the gap between RSA and voxel-RF modelling  

Remixing creates new features as linear combinations of the original features (thus performing 

general affine transformations). Remixed RSA combines RSA (Kriegeskorte, 2009; Kriegeskorte et 

al., 2008b; Nili et al., 2014) and voxel-receptive-field modeling (Kay et al., 2008; 2013; Dumoulin 

and Wandell, 2008), two complementary approaches to testing computational models with brain-

activity data. Using training data acquired with a separate set of stimuli enabled us to fit a remixing 

matrix that predicts voxel responses from model features. We could then compare the 

representational geometry of the predicted voxel responses with that of actual voxel responses 

using the RSA framework. 

 

Remixing enables us to investigate whether a linear recombination of model features can provide a 

better explanation of the brain representational geometry. This helps address the question of 

whether the model features (a) provide a good basis for explaining a brain region and just need to 

be appropriately linearly recombined or (b) the model features do not provide a good basis of the 

brain representation. However, remixing requires a combination of (a) substantial additional 

training data for a separate set of stimuli and (b) prior assumptions (e.g. implicit to the regularising 

penalty) about the remixing weights. The former is costly and the latter affects the interpretation of 

the results, because the prior is part of the model. The lower performance of the remixed 

unsupervised models (compared to their original unremixed versions) illustrates that remixing 

should not in general be interpreted as testing the best of all remixed models. 

 

A special case of remixing is reweighting, which stretches and squeezes the representational 

space along its original axes. For the unsupervised models, this approach (although implemented 

in a rather ad-hoc heuristic fashion) often significantly improved model performance over the 

original and also over the remixed versions of a model. Since reweighting is a special case of 

remixing, the only explanation for its superior performance is that the remixing (even with L2-

regularisation) is hampered by overfitting.  

 

The reweighting was heuristic in the present analyses. We did not perform a search to find the 

optimal weights for which the RDM of the weighted model features has the highest correlation with 

the brain RDM. Instead we averaged the weights obtained from the voxel-RF modeling. These 

weights emphasize important model features, features that are more predictive of voxel responses, 

but are not necessarily the optimal weights. In Khaligh-Razavi and Kriegeskorte (in press), we 

used non-negative least-square fitting (which can equivalently be applied to squared Euclidean 

distance matrices rather than the original features) to find optimal weighted combinations of model 

features. Future studies should explore using nonnegative least-squares for weighting model 

representations (as in Khaligh-Razavi and Kriegeskorte, in press) or individual features of a model. 

Reweighting spans a smaller space of model variants that is easier to interpret and can be more 

stably estimated than general remixing. Reweighting of individual features requires estimation of 

only one parameter per model feature, much fewer than remixing, which requires estimation of one 

parameter per model feature for every voxel or recorded neuron. Reweighted RSA therefore 
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provides an interesting stepping stone between traditional and remixed RSA and might usefully 

complement these methods for elucidating the computational mechanisms of the brain.  
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Supporting information 

 

 

 

Supporting Text 1: The weights that are given to two well-performing object vision models (gist, 

GWP) by the voxel receptive field fitting are shown in Figure S4. It shows that for the GWP model 

that has so many features (43,680) only a small number of features are highly weighted and the 

rest are zero. This suggests that a sparse representation of features should be enough for 

predicting voxel responses. Interestingly the same features are highly weighted for other brain 

ROIs (Figure S5). The pattern of weights given to the features of GWP model by voxels from 

different brain ROIs look very similar, suggesting that the weighted features are commonly 

important features for all these ROIs regardless of where they are in the hierarchy of vision. 
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Figure S1. Kendall tau-a RDM correlation of the models with the brain ROIs of subject 1 across the hierarchy of 
visual areas. Bars show the average of ten 12x12 RDM correlations (120 test stimuli in total) with V1, V2, V4, and LO 
brain RDMs for subject 1. There are three bars for each model. The first bar, ‘model (not fitted)’, shows the RDM 
correlation of a model with a brain ROI without fitting the model responses to brain voxels. The second bar (voxel RF-
fitted) shows the RDM correlations of a model that is fitted to the voxels of the reference brain ROI, using 1750 training 
images (refer to Figure 4 to see how the fitting is done). We used gradient descent to find the weight vectors (the 
mapping between a model feature vector and the voxels of a brain ROI). The weight vectors were then used to weight 
the model features, without mapping them to the brain space; the third bar (reweighted features) for each model shows 
the RDM correlation of the weighted model features with the reference brain ROI. Stars above each bar show statistical 
significance obtained by signrank test at 5% significance level. Black horizontal bars show that the difference between 
the bars for a model is statistically significant (signrank test, 5% significance level).  
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Figure S2. Kendall tau-a RDM correlation of the models with the brain ROIs of subject 2 across the hierarchy of 
visual areas. Bars show the average of ten 12x12 RDM correlations (120 test stimuli in total) with V1, V2, V4, and LO 
brain RDMs for subject 2. There are three bars for each model. The first bar, ‘model (not fitted)’, shows the RDM 
correlation of a model with a brain ROI without fitting the model responses to brain voxels. The second bar (voxel RF-
fitted) shows the RDM correlations of a model that is fitted to the voxels of the reference brain ROI, using 1750 training 
images (refer to Figure 4 to see how the fitting is done). We used gradient descent to find the weight vectors (the 
mapping between a model feature vector and the voxels of a brain ROI). The weight vectors were then used to weight 
the model features, without mapping them to the brain space; the third bar (reweighted features) for each model shows 
the RDM correlation of the weighted model features with the reference brain ROI. Stars above each bar show statistical 
significance obtained by signrank test at 5% significance level. Black horizontal bars show that the difference between 
the bars for a model is statistically significant (signrank test, 5% significance level).  
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Figure S3. Kendall tau-a RDM correlation of the models with the brain ROIs of subject 3 across the hierarchy of 
visual areas. Bars show the average of ten 12x12 RDM correlations (120 test stimuli in total) with V1, V2, V4, and LO 
brain RDMs for subject 3. There are three bars for each model. The first bar, ‘model (not fitted)’, shows the RDM 
correlation of a model with a brain ROI without fitting the model responses to brain voxels. The second bar (voxel RF-
fitted) shows the RDM correlations of a model that is fitted to the voxels of the reference brain ROI, using 1750 training 
images (refer to Figure 4 to see how the fitting is done). We used gradient descent to find the weight vectors (the 
mapping between a model feature vector and the voxels of a brain ROI). The weight vectors were then used to weight 
the model features, without mapping them to the brain space; the third bar (reweighted features) for each model shows 
the RDM correlation of the weighted model features with the reference brain ROI. Stars above each bar show statistical 
significance obtained by signrank test at 5% significance level. Black horizontal bars show that the difference between 
the bars for a model is statistically significant (signrank test, 5% significance level).  
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Figure S4. Distribution of the weights given to GWP, and gist model features obtained by fitting the features to 
voxels from brain ROIs.   The weights are obtained by voxel receptive field modelling explained in Figure 4. Each voxel 
assigns a weight vector to GWP features; the weights map the model features to the voxel space. For each ROI, the 
plotted weight distribution is the average of weight vectors assigned to the voxels in that ROI. The GWP model features 
are fitted to LO voxels (A), and the gist features are fitted to V1 voxels (B). Figure 5 shows that only in these two 
occasions the fitted voxel receptive field model significantly outperforms the raw model representation (in terms of their 
RDM correlation with the reference RDM ). (A) GWP model has a very high-dimensional features space (43,680 
features), however the weight distribution for this model is sparse, suggesting that the brain prefers a sparse 
representation and only few number of GWP features are informative. On the hand, (B) the dimensionality for gist model 
is small (512 features), and the weight distribution is almost uniform, meaning that all features are equally important. The 
dotted red lines show the standard deviation of the mean. 
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Figure S5. Distribution of the weights given to GWP model features obtained by fitting the features to voxels 
from the hierarchy of visual areas V1 (A), V2 (B), V3 (C), V4 (D), and LO (E).   The weights are obtained by voxel 
receptive field modelling explained in Figure 4. Each voxel assigns a weight vector to GWP features; the weights map 
the model features to the voxel space. For each ROI, the plotted distribution of weights is the average of weight vectors 
assigned to the voxels in that ROI. The distribution is sparse, suggesting that only a small proportion of GWP features 
are informative. The sparse distribution of weights may also suggest a sparse representation for brain ROIs. The 
consistency of weight distributions across all ROIs, apparently means that all ROIs are emphasizing on the same set of 
features but with slightly different weights. These are the results for one of the subjects (subject 1), but the patterns are 
similar across all three subjects. The dotted red lines show the standard deviation of the mean. 
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