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Abstract 

Because natural selection is likely to act on multiple genes underlying a given phenotypic 

trait, we study here the potential effect of ongoing and past selection on the genetic diversity 

of human biological pathways. We first show that genes included in gene sets are generally 

under stronger selective constraints than other genes and that their evolutionary response is 

correlated. We then introduce a new procedure to detect selection at the pathway level based 

on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This 

new test, called 2DNS, detects outlier gene sets and takes into account past demographic 

effects as well as evolutionary constraints specific to gene sets. Selective forces acting on 

gene sets can be easily identified by a mere visual inspection of the position of the gene sets 

relative to their 2D null distribution. We thus find several outlier gene sets that show signals 

of positive, balancing, or purifying selection, but also others showing an ancient relaxation of 

selective constraints. The principle of the 2DNS test can also be applied to other genomic 

contrasts. For instance, the comparison of patterns of polymorphisms private to African and 

non-African populations reveals that most pathways show a higher proportion of non-

synonymous mutations in non-Africans than in Africans, potentially due to different 

demographic histories and selective pressures. 

keywords: human evolution, pathway analysis, polygenic selection, McDonald-Kreitman test. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2014. ; https://doi.org/10.1101/009928doi: bioRxiv preprint 

https://doi.org/10.1101/009928
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 

In the search for genomic signals of natural selection (e.g. reviewed in Nielsen 2005), there 

has been a recent shift from single gene to gene set approaches, where the focus moved to 

gene networks, pathways and interacting genes (Daub et al. 2013; Fraser 2013; Zhang G et al. 

2013; Berg and Coop 2014). Studying groups of functionally related genes makes biological 

sense for several reasons. First, as selection is acting on phenotypic traits usually controlled 

by many genes (Stranger et al. 2011), we would expect it to affect multiple genes or a whole 

pathway rather than a single gene. A biological pathway or a gene network is therefore a more 

natural unit for selection tests. Second, mutations in one gene can induce the modification of 

functionally connected genes in order to adapt to or compensate for the initial change (Pazos 

and Valencia 2008), and such co-evolution can lead to a cascade of evolutionary changes 

within a gene network. Third, many small effect mutations can together have a large effect on 

polygenic traits. It has been suggested that selection on such traits, termed polygenic 

selection, usually acts on standing variation at several loci at the same time. In the long run 

this would lead to an increase in the frequency of a suitable combination of alleles that control 

the favored phenotype (Pritchard et al. 2010). 

For example, using levels of population differentiation between human groups, we have 

recently found several pathways involved in immune response to have been under positive 

selection in recent human history (Daub et al. 2013). In the current paper we investigate if and 

what type of polygenic selection could have acted at different stages of human evolution, by 

comparing patterns of diversity between humans and chimpanzees. The rationale is that since 

selective pressures could have changed over time for some biological pathways, recent or old 

episodes of selection cannot be detected by only looking at current human diversity. Our 

method contrasts patterns of fixed and polymorphic mutations in humans, allowing us to 
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detect various selective pressures having affected our species at different periods of its 

evolution.  

Our approach is based on statistics previously used in the classical McDonald-Kreitman 

(MDK) test for positive selection (McDonald and Kreitman 1991), a test that compares the 

ratio of the number of non-synonymous substitutions to synonymous substitutions between 

species (DN/DS) to the same ratio within species (PN/PS). Assuming that synonymous 

mutations are neutral, a higher DN/DS than PN/PS ratio is expected in case of ancient 

adaptive selection, because positively selected mutations rising to fixation in a population 

would contribute more to divergence than to polymorphism. The related statistic 

1 ( ) / ( )DS PN DN PS      has been used to estimate the proportion (α) of adaptive 

substitutions in a genome (Smith and Eyre-Walker 2002). A limitation is that the same α 

value can be obtained for different combinations of PN/PS and DN/DS ratios. In order to 

account for this problem, we introduce here a testing procedure, based on a two-dimensional 

decomposition of α, which identifies gene sets departing from a genome-wide null 

distribution, and leads to a better interpretation of the results by a visual inspection of 

bivariate distributions.  
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Material and Methods 

Data handling and collection 

Ensembl gene data 

We downloaded the exon coordinates of protein coding human genes from Ensembl (Ensembl 

version 64, September 2011, Flicek et al. 2014). We then only considered those genes (and 

their corresponding coding exons) that have a chimp ortholog with a 'known' status as defined 

in Ensembl version 64, and genes having a chimp ortholog without 'known' status, but with a 

'known' mouse ortholog. The second group represents genes that most probably have a real 

ortholog in chimp, but are not annotated as such (yet) due to the lower quality of the chimp 

sequence. This left us with 18,078 genes and we will refer to this set as GEnsembl. We computed 

the total exon length of each gene by summing the length of all corresponding exons, but only 

counted a site once if it was part of two overlapping exons. 

Human SNPs  

Human single nucleotide polymorphisms (SNPs) were inferred from the comparison of the 

whole genomes of 42 unrelated individuals sequenced by Complete Genomics at a depth of 

51-89X coverage per genome (Drmanac et al. 2010). The 42 individuals were sampled in 3 

African populations (4 Luhya from Webuye, Kenya; 4 Maasai from Kinyawa, Kenya; 9 

Yoruba from Ibadan, Nigeria) and 5 non-African populations (9 Utah residents with Northern 

and Western European ancestry from the CEPH collection; 4 Han Chinese from Beijing; 4 

Gujarati Indians from Houston, Texas, USA; 4 Japanese from Tokyo; 4 Toscans from Italy). 

The SNPs were divided into three categories: sites which are polymorphic in Africans only 

(African SNPs), sites polymorphic in non-Africans only (non-African SNPs) and sites 

polymorphic in both Africans and non-Africans (shared SNPs). The shared SNPs presumably 

arose before the migration of modern humans out of Africa and are therefore depleted from 
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recent deleterious mutations that otherwise could distort selective signals. This group of SNPs 

was used in the 2DNS test (Figure 1 and Figure S1). The African and non-African SNPs were 

used in a further analysis to compare demographic patterns between the two regions (Figure 

2). 

Human Chimp substitutions 

Substitutions between human and chimp were inferred from the comparison between the 

reference genomes of the two species, using the syntenic net alignments between hg19 and 

panTro2 available on the UCSC platform (Karolchik et al. 2012). The inferred mutations were 

then placed on the human-specific or chimp-specific branches of the tree by comparing the 

nucleotides observed in human and chimp to the orthologous base in the orang genome 

(Figure S1), which was obtained using the syntenic net alignments between hg19 and 

ponAbe2 available on the UCSC platform (Karolchik et al. 2012); only mutations which 

could be placed unambiguously on the human or chimp branch were used.  

Annotating synonymous and non-synonymous substitutions 

We mapped the mutations to the coding exons of the human genes in the GEnsembl set. We 

classified the mutations as either synonymous or non-synonymous using ANNOVAR (Wang 

et al. 2010). Our polymorphism and divergence data cover a largely overlapping part of the 

exome: 89.2% of the exome is fully sequenced in all 42 Complete Genomics samples, 

whereas the human-chimp alignment covers 96.3% of the exome, resulting in 86.8% of the 

exome covered by both data sets. 

Ensembl to Entrez Gene ID conversion 

Since genes in Biosystems gene sets are annotated with Entrez gene IDs, we mapped the 

Ensembl gene IDs in GEnsembl to Entrez IDs by constructing a one-to-one Ensembl - Entrez 

conversion table. To do this, we first downloaded from the NCBI Entrez Gene website 

(Maglott et al. 2011) a gene list (GEntrez) with 19,759 'current' protein coding human genes 
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(http://www.ncbi.nlm.nih.gov/gene, accessed on February 7, 2013). Next, we collected 

conversion tables (containing one-to-many or many-many mappings) from three sources: 

Ensembl (version 64, http://sep2011.archive.ensembl.org/biomart), NCBI 

(ftp://ftp.ncbi.nih.gov/gene/DATA, accessed on February 7, 2013), and HGNC 

(http://www.genenames.org/biomart/, accessed on September 3, 2012). From these tables we 

only kept rows with genes in GEnsembl and GEntrez. We then pooled the three tables and counted 

the occurrences of each unique Ensembl ID - Entrez ID combination. For each Ensembl ID 

we kept the Ensembl - Entrez match with the highest count (in case of multiple options we 

took the first one) and repeated this for each Entrez ID. The resulting table contained 17,474 

one-to-one Ensembl to Entrez gene ID conversions and we used the genes from this table 

(gene list G) for our further analyses. 

Gene sets 

We downloaded 2,402 human gene sets from the NCBI Biosystems database (Geer et al. 

2010) (http://www.ncbi.nlm.nih.gov/biosystems, accessed on February 2, 2013). We excluded 

genes that could not be mapped to the gene list G and removed gene sets with less than 10 

genes. Furthermore, we identified 95 groups of (nearly) identical gene sets, namely sets 

sharing at least 95% of their genes, and replaced each group by a union gene set (in the text 

their name is followed by '*') consisting of all genes in that group. The remaining collection 

of 1,366 gene sets (S) was used for our analyses. Note that, for ease of reading, we use both 

the terms pathway and gene set interchangeably throughout the main text; strictly speaking 

only a small proportion (<2%) of the sets in S are labeled as 'complex' rather than 'pathway' in 

the Biosystems database. 
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Data analysis 

Test of evolutionary similarities between genes of a given gene set 

To assess whether genes in sets tend to share the same evolutionary properties, we tested for 

significant differences in gene-level DN/DS (or PN/PS) ratios between gene sets. First, we 

estimated the variance component due to differences among gene sets (  
 ) for all 1,366 sets 

using an analysis of variance (ANOVA) framework (See Supplemental Text S1). We 

constructed the expected null distribution of   
  under the hypothesis that there are no 

differences between groups, by repeatedly (N=10,000) recalculating   
  after permuting 

DN/DS and PN/PS ratios among genes. Next, to assess that the significance was not due to 

one or a few outlier gene sets, we repeatedly (N=10,000) sampled randomly 100 sets from the 

list of 1,366 gene sets and computed   
  on these 100 gene sets only. We built the expected 

null distribution by performing the same sample procedure, but permuting DN/DS and PN/PS 

ratios among genes for each drawing of 100 genes sets. (See also Figure S2). Note that the 

fact that genes can occur in multiple gene sets has no impact on the results, as we keep the 

gene set definitions fixed when creating the null distribution. Therefore the amount of overlap 

between gene sets is the same in both null and observed distributions. 

Note that we excluded 5,314 (3,049) genes that had zero DS (PS), leading to undefined N/S 

ratios, when comparing DN/DS (or PN/PS) ratios between genes (as shown in Figure S3 and 

in the ANOVA test described above). In the other analyses, we could use all 17,474 genes of 

our gene list G to compute DN/DS (or PN/PS) ratios at the gene set level.  

Gene and gene set level DN/DS and PN/PS ratios 

To calculate the DN/DS ratio for a gene set, we summed up separately the non-synonymous 

and synonymous fixed mutations found in all genes belonging to a given gene set (Figure S1) 

and took their ratio as 
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The PN/PS ratio was calculated in a similar way. In a few cases where the same mutation 

occurred in more than one gene of the same gene set (due to gene overlap or exon sharing, 

around 0.1% of the mutations), it was counted only once.  

Null distributions 

Gene set properties taken into account when building empirical null distributions 

We constructed empirical null distributions of N/S ratios by creating a series of random gene 

sets and recomputing new statistics on these gene sets. As genes in gene sets might have 

specific evolutionary properties, randomly sampling genes from the gene list G would not 

create a representative null distribution. Instead, we took into account the negative correlation 

found between the number of gene sets a given gene belongs to, and the gene N/S ratio. We 

also took into account the fact that genes belonging to the same pathway tend to share the 

same evolutionary regime (Figure S2). To preserve the evolutionary properties of gene sets, 

we applied a bootstrap sampling method, where we sampled genes from unions of gene sets 

that share a given proportion of their genes (see next section). 

In addition, we also considered the fact that gene sets with a large 'set length' (defined as the 

total exon length of its genes), accumulate on average more mutations and for this reason 

show a lower variance in N/S rates. We therefore created null distributions for different set 

length categories and tested each pathway against the appropriate null distribution.  
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Construction of empirical bootstrap null distributions 

In short, we first created random gene sets of different sizes (number of genes), where we 

sampled the size according to the real size distribution and next computed the set length of the 

random sets and assigned them to different set length bins.  

We created a random gene set as follows. First, we drew a gene set size k from the geometric 

distribution that approximated the real gene set size distribution, but allowed for sampling 

gene sets smaller than 10 (the minimum gene set size) in order to obtain sufficient sets to fill 

the smallest set length bins : 

 X ~ Geom(p = 1/(mean(set size)-10)) + 5 (2) 

Next, we sampled a gene set from the collection S of all gene sets. For each sampled gene set 

S', we collected all genes that are the union of genes in S' and genes in any set S'' that overlaps 

with S', in the sense that their Jaccard similarity coefficient (defined as [S' ∩ S'']/[S' U S'']) is 

larger than 0.25. If the union contains less than min(250, k) genes, it was discarded, otherwise 

we randomly sampled k genes (without replacement if k<250, otherwise with replacement) 

from this union to form a random gene set. We repeated this 75 × N (N=400,000) times. For 

each observed and random gene set we calculated its set length and distributed the sets 

according to their set length over 75 equally sized bins, explaining the 75 factor in the 

previous sentence.  

In very few occasions the N/S ratio of a (random) gene set was not defined, because S was 

zero. In these cases we removed the gene set from the null distribution or from the group of 

sets that were tested. To still have bins of size N, we therefore actually created 75 × N × 1.1 

gene sets, removed the sets that did not have a defined N/S ratio and took the first N 

remaining gene sets for each bin. 
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Alternative null distributions without gene set properties 

To investigate the effect of not taking into account some or all of the properties of gene sets 

when creating a null distribution, we used several alternative sampling schemes consisting of: 

(1) randomly sampling from the whole gene list G; (2) sampling from all genes that are part of 

at least one gene set; and (3) sampling genes with a probability proportional to the number of 

gene set a gene belongs to. Similar to the empirical bootstrap null distribution described 

above, we corrected in all cases for gene set length, by creating null distributions for specific 

set lengths and testing a pathway against the corresponding null distribution. Results based on 

these alternative null distributions are shown in Supplemental Figure S4. 

Tests of selection 

A new test of polygenic selection (2DNS test) 

We developed a new test for polygenic selection (named 2DNS), which can be regarded as a 

decomposition of the constitutive elements of a MDK test, DN/DS and PN/PS. Our 2DNS test 

aims at detecting gene sets that are outliers in the two dimensional DN/DS - PN/PS plane 

relative to an empirical null distribution of joint DN/DS and PN/PS ratios. The p-value of a 

gene set is estimated from the joint N/S density on a two dimensional grid. We first used the 

R function kde2d (taking bandwidth = 0.15, maximum grid size = 10 × 10 and grid point 

distance = 0.05) to estimate the probability density of each of the grid points. We then 

bilinearly interpolated the N/S coordinates of the observed gene set on the grid of the null 

distribution and the corresponding density with the R function interp.surface. The p-value of 

the gene set is finally calculated by integrating over the densities of grid points that have the 

same or lower density as the density of the observed gene set (Figure S5). Note that because 

we use a kernel density estimation, p-values much smaller than the inverse of number of 

elements in the null distribution can be obtained. 
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Correction for multiple tests 

We FDR corrected the p-values from our tests by calculating the q-value of each gene set 

using the function qvalue from the R package qvalue with default settings. We retained those 

gene sets with a q-value below 0.1, meaning that we expect 10% of our final candidates to be 

false positives. 

Jackknife approach to detect pathways with outlier genes 

We used a jackknife approach to examine the effect of individual genes of a given gene set on 

our results. For each significant pathway, we repeatedly removed one gene and recalculated 

the DN/DS and PN/PS values. These jackknife scores are depicted in Figure 1B-I. Pathways 

where one of the jackknife scores resulted in a much higher p-value were probably scoring 

significant because one gene has extreme values and such pathways were not considered as 

candidate gene sets for polygenic selection 

Classical MDK test at gene set level 

The classical MDK test for positive selection tests at the gene level whether the DN/DS ratio 

is significantly larger than the PN/PS ratio. We extended this procedure to the gene set level 

by creating for each gene set a 2 × 2 contingency table containing its DNset, DSset, PNset and 

PSset counts as defined in eq. (1) and testing whether the odds ratio of the table 

(OR = DS∙PN/DN∙PS) is significantly deviating from (smaller than) one with a two-sided 

(one-sided) Fisher exact test, using the R function fisher.test.  

Comparing gene set level alpha values with an empirical null distribution 

We calculated a gene set analog of α for each set, here defined as  

 

1

g g

g set g set

g g

g set g set

DS PN
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PS DN
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and compared it to the α values of an empirical null distribution with corresponding set 

length.  
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Results 

Genes in biological pathways are conserved and share evolutionary properties 

We first investigated whether genes in pathways have different evolutionary properties than 

genes that are not part of a pathway. We downloaded a collection of 1,366 pathways from the 

Biosystems database (Geer et al. 2010) and contrasted the genetic diversity of genes that 

occur in one or more gene sets with genes that are not part of any gene set. We used single 

nucleotide polymorphisms (SNPs) inferred from the Complete Genomics collection of 42 

human individuals from three African and five non-African populations (Drmanac et al. 

2010), as well as the fixed differences between humans and chimpanzees that were assigned 

to the human branch. Interestingly, we find that the non-synonymous to synonymous ratios 

are lower for genes in gene sets than for genes that are not part of a gene set, both for 

mutations within human populations (PN/PS) and for fixed mutations on the human lineage 

(DN/DS). It suggests that genes belonging to gene sets are globally under more severe 

evolutionary constraints (see Table 1).  

In addition, we find that genes that are part of many pathways (10 or more) are even more 

constrained than genes occurring in a single or a few pathways, as they show significantly 

lower DN/DS and PN/PS ratios (p<1e-6, Mann-Whitney test, Figure S3). Overall, there is a 

small but significant negative correlation between the DN/DS ratio of a gene and the number 

of pathways it belongs to (Pearson's r = -0.13, p<2.2e-16). These results make sense, since 

genes that are part of many pathways often have an essential role or have several functions, 

suggesting a potential pleiotropic effect of mutations in these genes, and thus a higher chance 

for them to be deleterious. These findings are also consistent with earlier reports showing that 

highly connected proteins are usually more essential (Jeong et al. 2001; Wuchty 2004) or 

evolving at a slower rate (Fraser et al. 2002; Saeed and Deane 2006). These results further 
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imply that tests of selection bearing on single genes should be performed separately for genes 

not part of gene sets, or that their lower levels of evolutionary constraints be taken into 

account in future testing procedures to minimize false positives. 

Interestingly, we observe that gene-specific DN/DS and PN/PS ratios are more similar within 

than between gene sets, and that the variance in N/S ratios due to differences between gene 

sets represents around 5% (Figure S2) of the total variance in N/S ratios (non-parametric 

ANOVA test, p-value<1e-4; see Material and Methods and Text S1). This variance 

component also represents the average correlation between N/S ratios of two genes belonging 

to the same gene set relative to two genes from different gene sets. This positive correlation of 

about 5% suggests that genes in a pathway share evolutionary properties and have a correlated 

evolutionary response (i.e. most are rather conserved or most are under weak selection). 

These results are in keeping with the observation of Fraser et al. (2002) that interacting 

proteins have similar evolutionary rates, which the authors explained by the occurrence of 

compensatory changes in interacting proteins. 

Measuring and testing selective constraints at the pathway level 

We are interested here in finding a way to determine the extent and the type of selection 

acting in gene sets. Conventional McDonald-Kreitman tests such as those based on the α 

statistic are usually used to detect only positive selection (but note that a negative α is an 

indicator of purifying selection). Furthermore, α is based on a ratio of ratios, and a given high 

α value, taken to be indicative of positive selection, can be obtained with a high DN/DS or a 

low PN/PS, which can be due to different evolutionary forces. To address these issues, we 

propose here a new test of polygenic selection that is more informative about the respective 

importance of DN/DS and PN/PS ratios, and that detects outlier pathways for different types 

of selection. Our aim with this test, referred to hereafter as 2DNS test, is to find gene sets that 
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have evolved differently than other gene sets, in that they have unusual DN/DS or PN/PS 

combinations compared to other sets. First, we sum up the PN, PS, DN and DS counts over all 

genes in a gene set to obtain gene set level DN/DS and PN/PS ratios (as shown in eq. (1)). 

Second, we create genome-wide empirical null distributions of random gene sets that take into 

account gene set size, as well as potentially shared evolutionary properties of gene sets. Note 

that the use of these null distributions also allows us to control for the past demographic 

history shared among all gene sets, and for the overall selective constraint acting on coding 

regions. Third, the joint probability density distribution of DN/DS vs. PN/PS ratios is 

estimated on a two-dimensional grid directly from the empirical null distribution. The p-value 

for each gene set is finally obtained by integrating the joint density of all grid points that have 

a similar or lower density than the gene set of interest defined by its 'N/S coordinates' (see 

Figure S5).  

We compared the distribution of gene set p-values with a uniform distribution on a QQ plot to 

confirm that our testing procedure was well behaved (Figure S4D). The fact that the observed 

p-values are close to the expected uniform distribution suggests that our null distribution 

correctly represents the properties of the gene sets. Note that naively constructed null 

distributions that ignored some or all of the evolutionary properties of gene sets led to 

strongly underestimated p-values which would have translated in a large number of false 

positive gene sets (see Figure S4A-C). 

We applied the 2DNS test to the comparison between fixed mutations on the human branch 

and polymorphisms that are found both in African and non-African populations. These 

'shared' polymorphisms come from relatively ancient mutations that predated the migration 

out of Africa, and we thus expect that slightly deleterious mutations – which can distort 
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selective signals (Eyre-Walker 2002; Fay et al. 2002; Parsch et al. 2009) – have been purged 

from this group, which is confirmed by Table 1.  

The 2DNS test identifies 7 gene sets with a q-value < 0.1 (Figure 1 and Table 2). These gene 

sets are located well outside the bulk of the 2D null distributions in different directions 

(Figure 1B-1H), suggesting that they are subject to different forms of selection. For each of 

the significant pathways, we repeatedly recalculated the DN/DS and PN/PS values leaving 

one gene out in turn ('jackknifing') to examine to which extent the score depends on single 

genes (Figure 1B-1I). 

Significant pathways have been influenced by different types of selection 

The two highest scoring sets, Olfactory transduction and Olfactory Signaling Pathway, have 

both high DN/DS and high PN/PS ratios (Figure 1B-C), in line with their known relaxed 

constraints in primates, in particular in humans (Gilad et al. 2005; Somel et al. 2013; Hughes 

et al. 2014). This relaxation is often explained by the fact that vision has become more 

important than smell in primates (Gilad et al. 2004). Note that having both DN/DS and PN/PS 

ratios around two suggest that non-synonymous mutations are neutral in these genes, which is 

consistent with the observation that many olfactory genes have become pseudogenes (Go and 

Niimura 2008).  

The third highest scoring pathway is the Beta-catenin phosphorylation cascade pathway. 

Beta-catenin is involved in both cell adhesion and Wnt signaling (signal transduction). It also 

plays an important role during development and it can act as oncogene (Bienz 2005). This 

pathway is a good example of having an unusual combination of N/S coordinates, with PN/PS 

being much lower than DN/DS, while the separate ratios are not extreme outliers by 

themselves. This pattern is compatible with a recent strong purifying selection in humans 

resulting in very low PN/PS values (Figure 1D), possibly after an initial adaptive event. 
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Indeed, this is confirmed by the jackknife scores that show a constantly low PN/PS score 

across all genes. Two genes appear as outliers in opposite directions: the APC gene (a gene 

involved in tumor suppression and in synapse assembly, Rosenberg et al. 2008) plays a large 

role in the high DN/DS ratio of this gene set, while the AXIN gene has the opposite effect. 

When one or the other is removed the DN/DS ratio changes strongly, but when both are 

removed the DN/DS ratio (1.2) is close to the original value (1.25). We therefore posit that the 

signal shown by this pathway is indeed polygenic and not driven by the effect of a single 

gene. 

The next high scoring gene set is Glutathione conjugation. This pathway contains many 

Glutathione S-Transferases (GSTs), which are involved in the protection of cells against 

oxidative stress and toxic foreign compounds (Hayes and Strange 2000). The jackknife scores 

of this pathway show that PN/PS ratios are typically high for all genes in this set, with some 

variation, whereas their DN/DS ratios is very stable and maintained at a moderately high level 

(Figure 1E). The fact that this pathway has an unusually high PN/PS ratio for shared SNPs 

could be due to some form of balancing selection. It suggests that the high diversity in GSTs 

is beneficial, possibly serving as a population wide protection against a large range of toxic 

factors in the environment. Indeed, GST polymorphisms have been related to drug sensitivity 

and are associated with disease susceptibility (Hayes and Strange 2000).  

The mRNA Splicing pathway is a good candidate for being under extremely strong purifying 

selection as it shows particularly low values both for DN/DS and for PN/PS (Figure 1F). This 

pathway is an extreme example of a 'housekeeping' pathway, with genes expressed in all 

tissues. Earlier studies have indeed reported that housekeeping genes evolve more slowly than 

tissue specific genes, and that they are under stronger selective constraints (e.g. Zhang L and 

Li 2004). 
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The last two significant pathways, Autoimmune thyroid disease and Graft-versus-host disease, 

are related to immune response and have many genes in common. Their position relative to 

their expected distribution (Figure 1G-H), suggests that these sets could have been affected by 

positive selection or by a relaxation of selective constraints. However, both pathways contain 

many HLA genes (Table S1) that are normally considered as being under balancing selection 

(Solberg et al. 2008).Therefore long-term balancing selection would also explain this pattern.  

Impact of differential demography in African and non-African populations 

Previous studies have shown that populations outside Africa have a higher proportion of 

deleterious mutations than those in Africa (Lohmueller et al. 2008; Subramanian 2012), 

compatible with the buildup of a mutation load since the expansion of modern humans out-of 

Africa (Peischl et al. 2013). We examined PN/PS ratios for SNPs that were either shared 

between Africans and non-Africans, or that were either private to Africans or private to non-

Africans. In line with previous results (Lohmueller et al. 2008; Peischl et al. 2013), we find 

that the PN/PS ratio is larger for non-African specific SNPs than for SNPs private to Africans. 

In addition, shared SNPs show the lowest PN/PS ratio, and this for genes belonging or not to 

gene sets (Table 1). These results are consistent with the view that bottlenecks and range 

expansions of non-African populations have increased their PN/PS ratio relative to Africans 

(Peischl et al. 2013), and that purifying selection had more time to act on shared SNPs than on 

population specific SNPs, thus contributing to the elimination of a proportionally larger 

number of deleterious non-synonymous mutations. 

In order to study the effect of potentially different demographic histories in Africans and non-

Africans at the gene set level, we used our 2DNS test to compare the PN/PS ratios of private 

non-African SNPs and private African SNPs. As expected, PN/PS ratios are overall clearly 

larger for non-African SNPs than for African SNPs at the gene sets level (Figure 2, sign test: 
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p<2.2e-16). In addition to showing the effect of past demography on the whole genome, our 

procedure reveals four significant outlier pathways (Table S2), which all have unusual N/S 

combinations given the genomic background. Among these, the ALK1 signaling events 

pathway is particularly interesting, since it has a markedly high non-African PN/PS ratio. This 

pathway plays a role in stimulating angiogenesis (Goumans et al. 2009), but also contains 

many genes (13 out of 23) that are involved in BMP signaling (Table S1). Interestingly, the 

Signaling by BMP pathway, which contains six genes in common with ALK1 signaling 

events, was found significant in our previous study contrasting levels of differentiation 

between continental groups at the gene set level (Daub et al. 2013). We then proposed that its 

role in iron metabolism and viral infection (Armitage et al. 2011) could be the key to the 

adaptive signal. Our present results confirm that this pathway might have been involved in 

local adaptation in non-African populations.  

Comparison between 2DNS and classical McDonald-Kreitman (MDK) tests 

To illustrate the difference between our new approach and classical MDK tests, we performed 

an MDK test at the gene set level. In other words, we tested if some gene sets presented a 

DN/DS ratio larger than their PN/PS ratio. We inferred the significance of the results in two 

ways: with a conventional Fisher exact test on the 2×2 contingency table of gene set level 

DN, DS, PN and PS counts; and by comparing the gene set α value computed according to eq. 

(3) (Material and Methods) to an empirical null distribution built along the same principles as 

for the 2DNS test.  

With a two sided Fisher exact test test (testing for deviation from DN/DS=PN/PS) we find 25 

pathways scoring significant (q-value < 10%). All of them have a PN/PS > DN/DS, which 

would point towards purifying or balancing selection rather than to positive selection (Table 

S3). Interestingly, eight out of the ten highest scoring significant sets are directly related to 
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immunity or response to pathogens. The first two pathways with DN/DS > PN/PS, indicative 

of positive selection, are IL2-mediated signaling events and Beta-catenin phosphorylation 

cascade and score (insignificant) q-values of 0.12 and 0.14 respectively. However, applying a 

one-sided Fisher exact test, where we explicitly try to detect cases where DN/DS > PN/PS, 

produces no significant pathways at FDR level 10%. (Table S4). We note however that a QQ 

plot analysis of the p-values of both Fisher exact tests shows clear systematic departures from 

expectations. Indeed, the p-values are under- and overestimated for the two sided and for the 

one sided Fisher exact test, respectively (Figure S6), implying that the two sided test is too 

liberal, and the one-sided test is too conservative.  

The comparison of gene set α values to an empirical null distribution results in several high 

scoring pathways, but none of them are significant after correcting for multiple tests (Table 

S5), suggesting that a test based on α values is less powerful than our 2DNS test. Moreover, 

we notice that most of the top-ranking pathways (shown as dark red points on Figure S7) have 

a high α value associated with a low DN/DS and even lower PN/PS. It suggests that positive 

selection is more easily detected in (or is more likely to act on) slowly evolving genes.  
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Discussion 

Our 2DNS test has several advantages over classical methods such as the McDonald-

Kreitman test. First of all, we focus on the detection of selection in functional groups of genes 

instead of single genes. Not only is a biological pathway or gene network a more natural unit 

to test for selection, but by pooling genes belonging to the same gene set we avoid the 

exclusion of many genes that have undefined N/S ratios. Second, our test allows one to detect 

different selective regimes, whereas classical tests are often designed to evidence only one 

type of selection, usually positive selection. As proposed in Figure 3, we can infer which 

selective regime could have acted on an outlier gene set from its position in the PN/PS-

DN/DS plane. Still, different selective processes can yield similar patterns leading to 

ambivalent interpretations. However, we see this as a problem of the underlying biology 

(different processes generate similar patterns) rather than of the 2DNS test per se. In these 

cases one could inspect the function of the genes of a candidate pathway in more detail to gain 

insight on the type of selection that might have acted on the gene set. 

Our 2DNS test is similar in spirit to the 2D neutrality test proposed by Innan (2006), which 

incorporates two summary statistics to test genes for signals of selection. However, the 

statistics used by Innan are indirect measures of neutrality, and the interpretation of these 

pairs of values is not straightforward. Rather, instead of combining two selection tests, we 

decompose here the MDK test into its two constituent factors, DN/DS and PN/PS, which 

allows us to gain more insight into underlying evolutionary pressures.  

A third important advantage of our method is that it compares gene sets against a genome-

wide empirical null distribution, and thus controls for potential demographic events (similar 

to e.g. Nielsen et al. 2005) and genome-wide selective forces, most notably background 

selection (e.g. background selection, Hernandez et al. 2011). It has indeed been noticed that 
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large genomic data sets contain their own null distribution (Efron 2013), implying they can be 

used to evidence outliers. Note however that our approach does not test against any pre-

specified evolutionary model, and it is therefore not a test of neutrality since gene sets found 

to be non-significant by our approach can be under selection. With our 2DNS test, we are thus 

trying to find extreme outliers, such as gene sets that have atypical patterns of diversity 

compared to other gene sets, which makes it a rather conservative method, as we build a null 

distribution that closely reflects the properties of the gene sets themselves. However, we have 

shown that using a naïve null distribution, for example by simply randomly sampling from all 

genes, would yield many false positives (Figure S4), because this null distribution would not 

reflect the inherent properties of gene sets in general. This is especially true because pathways 

described in current databases are probably a biased subset of existing biological pathways. 

In line with earlier studies (Bustamante et al. 2005; Chimpanzee Sequencing and Analysis 

Consortium 2005; Zhang L and Li 2005; Eyre-Walker and Keightley 2009; Messer and 

Petrov 2013), we find more evidence for purifying rather than positive selection, reflected for 

example in lower DN/DS ratios than PN/PS ratios, both at the gene and gene set level (Table 

1). However, a possible explanation for finding only a few examples of positive selection is 

that it does not affect mostly coding regions, but rather regulatory regions or other functional 

parts of the genome, leading to variation in gene expression or epigenetic differences (Ponting 

and Lunter 2006; Enard et al. 2014). The 2DNS test could be adapted to study such categories 

of genomic data, for example comparing mutations in transcription factor binding sites to 

putative neutral flanking sites, as other metrics than synonymous or non-synonymous state 

can be used to assign the level of functional or selective constraints; e.g., site conservation 

scores (e.g. GERP scores, Cooper et al. 2005). 
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Our 2DNS test is not restricted to finding gene sets with unusual DN/DS-PN/PS pairs in the 

human branch and can easily be extended to other species, or applied to compare evolutionary 

rates between species. The test is also suitable to compare the diversity levels among 

polymorphisms between groups with a different demographic history, as exemplified in 

Figure 3, where we compare SNPs private to African and to non-African populations.  

In the NS plane many small gene sets show very unusual joint N/S ratios (Figure 1A), but 

they are not found significant because their associated null distributions are very wide (e.g. 

Figure 1I). This shows that one should be cautious with groups of genes that have high N/S 

ratios, as such values can arise by chance alone, but it also suggests that our test might lack 

power to detect outlier selection regimes in small gene sets. In addition, it is likely that 

selection has not affected whole pathways but only some sub-sets, and that this limited signal 

might be difficult to detect at the whole pathway level. Alternatively, different evolutionary 

forces might also act on distinct subsets of genes, and their signal could cancel each other’s 

out when examining whole pathways, leading to a reduced power of our approach. Note that 

this problem also occurs when testing single genes, since different exons, introns or 

regulatory regions can be affected by different selective forces. It would thus be useful to 

extend our test to detect selection in pathway sub-modules, which should be the object of 

future work.  

Our previous attempt at detecting selection at the gene set level within human populations 

revealed several pathways involved in immune response to be potentially under positive 

selection (Daub et al. 2013). Interestingly, our present study does not show strong signals of 

positive selection, but rather of overall purifying selection. These differences can be due to 

several reasons. First, our previous study used a statistic (hierarchical FST) detecting 

differences between continental groups that should have emerged recently, whereas our 2DNS 
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statistics are more sensitive to older events. We contrast old mutations that have occurred on 

the human lineage to polymorphisms shared between Africans and non-Africans (Figure 1), 

and which should thus have occurred in the ancestral human populations prior to the exit out 

of Africa. Note however that when we contrast patterns of polymorphism between Africans 

and non-Africans for younger mutations (Figure 2), we indeed find one pathway (ALK1 

signaling events) showing signs of positive selection in non-Africans, and that this pathway 

share several genes with a pathway that we previously identified as being under positive 

selection (signaling by BMP). Second, our current testing procedure is more stringent than 

that used previously. We are indeed looking for outliers in a null distribution that takes into 

account selective constraints acting on pathways as well as past demographic effects, whereas 

we previously based our test on a null model of human evolution only taking into account 

global levels of differentiation between human populations. Third, we focused here strictly on 

coding regions, whereas we also considered neighboring regions in our previous study, thus 

including regulatory and enhancer regions that have been recently shown to bear the strongest 

signals of positive selection in humans (Enard et al. 2014). These differences in methodology 

and in the investigated time scales could thus explain the apparent discrepancies found 

between these two studies. This also indicates that different forces have acted on pathways at 

different periods of human evolution. 
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Figure legends 

 

Figure 1 Results from the 2DNS test. Here, shared SNPs (SNPs that are polymorphic both in 

African and non-African populations) are compared to fixed substitutions in the human 

branch. (A): Distribution of DN/DS and PN/PS ratios of all tested pathways. Each dot 

represents a pathway with color corresponding to its significance. The seven pathways that 

scored significant (q-value < 0.1; Table 2) in the 2D tests are highlighted by a black circle. 

Note that seemingly outlier gene sets may not reach significance due to their small size, which 

increases the variance of their null distribution. For example, the Hormone ligand-binding 

receptors pathway (depicted in grey; panel I), has a high DN/DS ratio, but because of its 

small size (10 genes, 24 kb total exon length) its null distribution is very widespread in the 2D 

space. (B-H): Null distributions for seven significant (q<0.1) pathways; (I): null distribution 

for the Hormone ligand-binding receptors pathway as a typical example of a non-significant 

outlier. The observed positions of gene sets are indicated as red dots in the DN/DS-PN/PS 

plane, whereas the empirical null distribution is shown as grey dots. Orange dots show the 

scores of the jackknifed gene sets. The contour lines mark the proportion (0.5, 0.9, and 0.99) 

of the null distribution that falls within these areas. 

Figure 2 Results of the 2DNS test on PN/PS ratios of all tested pathways. Here, non-African 

SNPs (SNPs that are only polymorphic in non-African populations) are compared to African 

SNPs (SNPs unique to African populations). (A): Distribution of DN/DS and PN/PS ratios of 

all tested pathways. Each dot represents a pathway with color corresponding to its 

significance. The five pathways that scored significant (q-value < 0.1) in the 2DNS tests are 

highlighted by a black circle. (B-D): Null distributions for four significant (q<0.1) pathways. 

The observed positions of gene sets are indicated as red dots in the DN/DS-PN/PS plane, 

whereas the empirical null distribution is shown as grey dots. Orange dots show the scores of 
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the jackknifed gene sets. The contour lines mark the proportion (0.5, 0.9, and 0.99) of the null 

distribution that falls within these areas. 

Figure 3 Potential evolutionary forces having acted on significant outlier gene sets depending 

on their position in the N/S plane.  
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Tables 

Table 1 Counts and ratios of non-synonymous (N) and synonymous (S) fixed mutations and 

polymorphisms in the human lineage. 

 N S N/S 

Divergence (D)    

all genic substitutions 30,554 38,005 0.80 

substitutions in genes belonging to a gene set 12,490 18,713 0.67 

substitutions in genes not belonging to a gene set 18,064 19,292 0.94 

Polymorphism (P)    

all genic SNPs 62,670 55,802 1.12 

private African SNPs 26,968 24,170 1.12 

private non-African SNPs 19,655 13,547 1.45 

shared SNPs 16,047 18,085 0.89 

SNPs in genes belonging to a gene set 28,350 27,733 1.02 

private African SNPs 12,106 11,979 1.01 

private non-African SNPs 9,123 6,674 1.37 

shared SNPs 7,121 9,080 0.78 

SNPs in genes not belonging to a gene set 34,320 28,069 1.22 

private African SNPs 14,862 12,191 1.22 

private non-African SNPs 10,532 6,873 1.53 

shared SNPs 8,926 9,005 0.99 
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Table 2 Pathways scoring a q-value < 0.1 in the 2DNS test comparing fixed mutations in the 

human branch (DN/DS) and polymorphisms shared between African and non-African 

populations (PN/PS).  

Rank Gene set 
size 

(genes) 

length  

(kb) 
DN DS DN/DS PN PS PN/PS p-value q-value 

1 Olfactory transduction 291 424 535 314 1.70 576 310 1.86 2.1e-113 2.2e-110 

2 Olfactory Signaling Pathway 250 290 469 241 1.95 519 262 1.98 1.7e-68 8.8e-66 

3 Beta-catenin phosphorylation cascade 17 109 20 16 1.25 1 12 0.08 1.9e-05 0.0064 

4 Glutathione conjugation 22 78 24 18 1.33 27 8 3.38 3.9e-04 0.0834 

5 mRNA Splicing* 101 437 32 176 0.18 9 72 0.12 6.0e-04 0.0971 

6 Autoimmune thyroid disease 44 109 86 47 2.04 156 92 1.70 6.5e-04 0.0971 

7 Graft-versus-host disease 32 90 44 19 2.32 167 86 1.94 6.6e-04 0.0971 

Gene set length: total exon length of genes in set. Pathways marked with a '*' represent a union of highly similar pathways.  
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Text S1  

Estimation of variance component among gene sets 

To investigate whether gene-level DN/DS (and PN/PS) ratios are more similar within than 

between gene sets, we estimated the variance component attributable to differences among 

gene sets    
 ) under a classical analysis of variance (ANOVA) framework (see e.g. Sokal and 

Rohlf 1981, p. 216) where a given N/S ratio ( ) in gene j of gene set i is modelled as   

  

where is the unknown expectation of , is an effect due to the gene set i, and  is 

the effect due to gene j. The total variance in N/S ratio  is estimated as , 

where   and are the variance components due to differences between gene sets and 

between genes within gene sets, respectively. 

Assuming that we have N genes and S gene sets, we can construct a standard ANOVA table 

Source of variation Degrees of freedom Mean squares (MS) Expected MS 

Among gene sets dfA = S - 1 MSA = SSA/dfA   
      

  

Within gene sets dfW = N - S MSW = SSW/dfW   
  

 

where the sums of squares are obtained as                    and               

  2.  

The average gene set size, n0, is obtained as     
 

   
      

   
 

 

    
  , 

where ni is the size of gene set i . 

The variance components are estimated as  and . 

  

x ij

 x iij ija w  

  x ij ia
ijw

2
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Table S1  

Genes in top scoring gene sets (separate excel file TableS1.xlsx). For each gene in the gene sets the 

DN and DS counts and PN and PS counts for the SNP groups are reported. For the ALK1 Signaling 

pathway the involvement in BMP signaling is indicated (having a GO term or being part of a pathway 

related to BMP signaling), as inferred from the NCBI Entrez Gene database (Maglott, et al. 2011). 
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Table S2 

Pathways scoring a q-value < 0.1 in the 2DNS test, applied on polymorphisms unique to African 

populations (African PN/PS) and those unique to non-African populations (non-African PN/PS). 

rank Gene set Set size 
African 

PN/PS  

non-African  

PN/PS  
p q 

1 Olfactory transduction 291 2.16 2.25 9.91E-29 1.35E-25 

2 Olfactory Signaling Pathway 250 2.24 2.77 2.02E-26 1.38E-23 

3 mRNA Splicing* 101 0.25 0.31 2.31E-08 1.05E-05 

4 ALK1 signaling events 23 0.42 4.67 2.19E-06 7.46E-04 
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Table S3  

Results from classical McDonald-Kreitman test, comparing shared human SNPs with fixed mutations 

in the human branch. Here significance of a gene set is inferred with a two-sided Fisher exact test, 

taking as null-hypothesis that the odds ratio of the contingency table OR=(DS∙PN)/(DN∙PS)=1. Gene 

sets scoring a q-value<0.1 are reported.  

Rank Gene Set size OR p q 

1 Adaptive Immune System 583 1.70 5.54E-12 7.57E-09 

2 Class I MHC mediated antigen processing & presentation 245 2.08 4.77E-09 3.14E-06 

3 HTLV-I infection 248 2.01 6.89E-09 3.14E-06 

4 Immune System 992 1.35 2.60E-07 8.89E-05 

5 Epstein-Barr virus infection 185 1.86 2.96E-06 8.10E-04 

6 Cell adhesion molecules (CAMs) 122 1.84 4.57E-06 1.04E-03 

7 Viral myocarditis 62 1.94 1.93E-05 3.71E-03 

8 Phagosome 137 1.80 2.17E-05 3.71E-03 

9 Gene Expression 940 1.34 3.68E-05 5.59E-03 

10 Antigen processing-Cross presentation 72 2.39 4.40E-05 6.02E-03 

11 Fatty acid, triacylglycerol, and ketone body metabolism 175 1.78 1.46E-04 0.01807 

12 ER-Phagosome pathway 59 2.49 2.49E-04 0.02831 

13 Generic Transcription Pathway 364 1.46 3.13E-04 0.03290 

14 Developmental Biology 405 1.35 4.37E-04 0.04263 

15 Viral carcinogenesis 183 1.69 5.42E-04 0.04937 

16 
Nef-mediates down modulation of cell surface receptors by 

recruiting them to clathrin adapters 
21 4.07 5.96E-04 0.05087 

17 Metabolism of lipids and lipoproteins 502 1.31 7.72E-04 0.05975 

18 The role of Nef in HIV-1 replication and disease pathogenesis 28 3.28 7.87E-04 0.05975 

19 
Immunoregulatory interactions between a Lymphoid and a non-

Lymphoid cell 
60 1.91 9.59E-04 0.06894 

20 Proteasome Degradation 58 2.25 1.09E-03 0.07457 

21 Regulation of beta-cell development 27 4.33 1.26E-03 0.08228 

22 Regulation of pyruvate dehydrogenase (PDH) complex 12 8.00 1.59E-03 0.09573 

23 One carbon pool by folate 19 3.68 1.63E-03 0.09573 

24 Hedgehog signaling events mediated by Gli proteins 42 3.13 1.70E-03 0.09573 

25 Antigen processing: Ubiquitination & Proteasome degradation 208 1.65 1.75E-03 0.09573 
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Table S4  

Results from classical McDonald-Kreitman test, comparing shared human SNPs with fixed mutations 

in the human branch. Here we tested the significance of a gene set with a one-sided Fisher exact test, 

taking as null-hypothesis that the odds ratio of the contingency table OR=(DS∙PN)/(DN∙PS)>=1. The 

10 highest scoring gene sets are shown. 

Rank Gene Set size OR p q 

1 IL2-mediated signaling events 50 0.29 0.0017 1 

2 Beta-catenin phosphorylation cascade 17 0.07 0.0026 1 

3 IL-2 Signaling Pathway 75 0.44 0.0052 1 

4 
Transport of inorganic cations/anions and amino 

acids/oligopeptides 
94 0.62 0.0067 1 

5 Abortive elongation of HIV-1 transcript in the absence of Tat 22 0.10 0.0073 1 

6 Salivary secretion 83 0.66 0.0082 1 

7 
Regulation of Insulin-like Growth Factor (IGF) Activity by 

Insulin-like Growth Factor Binding Proteins (IGFBPs) 
17 0.32 0.0103 1 

8 HIV-1 elongation arrest and recovery* 30 0.26 0.0106 1 

9 Pancreatic secretion 94 0.65 0.0108 1 

10 Regulation of AMPK activity via LKB1 14 0.14 0.0128 1 
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Table S5  

Results from the alpha test, where α-values (1-PN∙DS/PS∙DN) of gene sets were contrasted against a 

null distribution of random sets. Here we used shared human SNPs and fixed mutations in the human 

branch. The 10 highest scoring gene sets are shown.  

Rank Gene Set size α p q 

1 mRNA Splicing - Minor Pathway 39 0.84 0.00074 0.443 

2 IL2-mediated signaling events 50 0.71 0.00078 0.443 

3 Beta-catenin phosphorylation cascade 17 0.93 0.00108 0.443 

4 C-MYC pathway 21 1.00 0.00130 0.443 

5 Processing of Capped Intronless Pre-mRNA 20 1.00 0.00348 0.750 

6 Canonical Wnt signaling pathway 29 0.70 0.00383 0.750 

7 Serotonin Receptor 4/6/7 and NR3C Signaling 19 0.80 0.00458 0.750 

8 IL-2 Signaling Pathway 75 0.56 0.00494 0.750 

9 Platelet calcium homeostasis 19 0.72 0.00559 0.750 

10 Glucagon signaling in metabolic regulation 31 0.68 0.00595 0.750 
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Figure S1 

Overview of the pipeline used to generate gene set level DN/DS and PN/PS ratios. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2014. ; https://doi.org/10.1101/009928doi: bioRxiv preprint 

https://doi.org/10.1101/009928
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Figure S2  

Proportion of the total variance of gene level DN/DS and PN/PS ratios explained by differences 

among gene sets. We repeatedly (N=10,000) sampled randomly 100 sets from the whole list of 1,366 

gene sets and computed the proportion of the total variance due to differences among these 100 gene 

sets. A null distribution was created following the same procedure, but with each repetition the DN/DS 

(or PN/PS) ratios were permuted among genes (grey). We show here that both for DN/DS ratios as for 

PN/PS ratios, the distribution of the variance component due to differences between gene sets is 

significantly larger than zero (null distribution). This means that gene sets differ significantly from 

each other, implying that genes that are part of the same set are significantly more similar than by 

chance alone for their N/S ratios. It suggests that genes that are part of the same set tend to share the 

same evolutionary regime. Note that the second peak at higher values (indicated with a *) is caused by 

the two highest scoring gene sets in the 2DNS test, the Olfactory Signaling Pathway and Olfactory 

Transduction. The variance component computed on all 1,366 sets is indicated with a blue line. Genes 

with undefined N/S ratios, having DS=0 (A) or PS=0 (B), were excluded. 
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Figure S3  

Genes that are part of many pathways are more conserved. Distribution of DN/DS ratios (A) and 

PN/PS ratios (B) of genes that are part of 0, 1-9 or >9 pathways. The number of genes in each category 

are shown in parentheses. Genes with undefined N/S ratios, having DS=0 (A) or PS=0 (B), were 

excluded. Significant differences between the groups as inferred with a Mann-Whitney test are marked 

with a ** (p-value < 1e-6). 
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Figure S4  

QQ plots of the distribution of log transformed p-values from the 2D test against a log transformed 

uniform distribution of values between 0 and 1. Here the 2D test compared DN/DS ratios of fixed 

mutations on the human branch against PN/PS ratios of shared human polymorphisms. The null 

distribution is build according to the following sampling schemes: (A) randomly sampling from the 

whole gene list G; (B) sampling from all genes that are part of at least one gene set; (C) sampling 

genes with a probability proportional to the number of pathways a gene occurs in; and (D) sampling 

from unions of similar gene sets (the empirical null distribution taking into account gene set 

properties). All null distributions were created for specific set length bins and pathways were tested 

against the corresponding null distribution. The red dot marks the 90% quantile of the p-value 

distribution. 
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Figure S5  

After generating an empirical null distribution of random gene sets (A), the joint density of the null 

distribution is estimated (B), and the p-values of the gene sets are estimated (C) for a given set length 

bin (blue dots: non-significant sets, red dots: significant sets). 

A B C 
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Figure S6  

QQ plot of the distribution of log transformed p-values from a gene set level MDK test against a log 

transformed uniform distribution of values between 0 and 1. Here the test compared shared human 

SNPs with fixed mutations in the human branch. Significance of a gene set is inferred with (A) a two-

sided Fisher exact test, taking as null-hypothesis that the odds ratio of the contingency table 

OR=(DS∙PN)/(DN∙PS)=1, or with (B) a one-sided Fisher exact test, taking as null-hypothesis that the 

odds ratio of the contingency table OR=(DS∙PN)/(DN∙PS)≤1. The red dot marks the 90% quantile of 

the p-value distribution. 
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Figure S7  

Results of the McDonald-Kreitman α test for polygenic selection, comparing DN/DS and PN/PS ratios 

for all tested pathways. Here, shared SNPs (SNPs that are polymorphic both in African and non-

African populations) are compared to substitutions in the human branch. Each dot represents a 

pathway with color corresponding to its significance. α-values (computed as 1-PN∙DS/PS∙DN) of gene 

sets were compared to an empirical null distribution of random sets to infer p-values. No pathway 

scored significant at a FDR level of 10% (q-value < 0.1). 
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