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ABSTRACT 

We present a novel algorithm for the design of crossing experiments. 

The algorithm identifies a set of individuals (a “crossing-set”) from a larger 

pool of potential crossing-sets by maximizing the diversity of traits of interest, 

for example, maximizing the range of genetic and geographic distances 

between individuals included in the crossing-set. To calculate diversity, we use 

the mean nearest neighbor distance of crosses plotted in trait space. We 

implement our algorithm on a real dataset of Neurospora crassa strains, using 

the genetic and geographic distances between potential crosses as a two-

dimensional trait space. In simulated mating experiments, crossing-sets selected 

by our algorithm provide better estimates of underlying parameter values than 

randomly chosen crossing-sets.   
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INTRODUCTION 

 Researchers planning mating experiments are faced with a critical 

design choice – deciding how many pairs and which pairs of individuals to 

mate. The number of crosses in a mating experiment can influence statistical 

estimates of genetic effects and combining abilities (Jui and Lefkovitch, 1992). 

The selection of pairs to use in a mating experiment also affects the outcome of 

the experiment. For example, if the goal of a mating experiment is to 

understand the genetic basis of a trait, as in quantitative trait locus (QTL) 

analysis, then parents should carefully be chosen to maximize genetic diversity 

and increase the likelihood of detecting QTLs (Crepieux et al., 2004). The 

increasing accessibility of population genetic and genomic datasets offer 

genetic data on more individuals than can reasonably be used in most 

experiments (Cushman, 2014). This poses a methodological problem: how to 

choose a subsample of mating pairs that best reflects the range of cross 

characteristics (in two or more dimensions of genetic, geographic, or ecological 

space) of the complete set of all available pairs.  

 One solution is to select a subsample that recapitulates characteristics of 

the larger set and preserves underlying relationships between the variables used 

to define a trait space. The representative subsample might mimic the broad 

distribution of crosses in the larger set, in other words, attempt to maintain the 
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shape, clumps, etc. of the larger set. The best method to generate a truly 

representative subsample is not obvious.  

 Samples chosen by eye or randomly may truncate the trait space, 

perhaps because a subsample omits outliers or is disproportionately drawn from 

the dense center of a distribution. Omissions in sampling may hinder a 

complete understanding of how response variables, for example reproduction, 

vary across the trait space of all possible crosses. Furthermore, predicting 

response variables outside the range of independent variables used in an 

experiment involves extreme value methods, which can increase the error 

associated with predictions, unless limiting assumptions are made (Pauli and 

Coles, 2001). 

 Often, fully crossed experiments are desirable (Griffing, 1956); 

(Verhoeven et al., 2005). But directed subsampling of potential crosses with the 

aim of maximizing e.g. genetic diversity may result in a set of crosses that are 

not fully crossed, i.e., some females included in the mating experiment may not 

be mated to all included males. A method to subsample and achieve a mating 

design that is both broad (in the sense described above) and fully crossed is 

required.  

 Algorithms for maximizing combinatorial diversity have been 

extensively developed in the context of generating diverse molecular libraries 
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for drug screening (Martin and Critchlow, 1999). In these algorithms the metric 

of diversity is based on “redundancy” and “coverage” (Martin and Critchlow, 

1999). Redundancy is the overlapping or clumping of points in space, while 

coverage is the spread of points across the space. An ideal diversity metric 

would minimize redundancy while maximizing coverage. The algorithms used 

in chemical combinatorial analysis focus on maximizing the diversity of a 

subset of molecules from a larger set by step-wise analysis of differences 

between additional compounds added to a set (Holliday et al., 1995). These 

algorithms cannot be directly applied to our problem because they do not 

require selection of fully crossed sets.  However, we use their definitions of 

ideal set diversity to derive our own measure of diversity that can be applied to 

fully crossed sets. 

 Calculating the mean of the nearest neighbor distances (NND) of points 

representing a full factorial set of crosses plotted based on their underlying 

parameters (e.g. genetic, geographic or ecological distance) will give a measure 

of the evenness or “non-redundancy” of the points. The mean NND is often 

used to determine if a particular set of plotted points is randomly distributed or 

not (Clark and Evans, 1954). A set of plotted points that are clumped will result 

in a smaller value of the mean NND than a sample with the same number of 

more evenly and broadly distributed points. The maximum mean NND 
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(MMNND) will occur when points are spread as evenly as possible and the 

“coverage” of space is maximal (Wang and Cumming, 2011). Thus, identifying 

the set of crosses with the MMNND within an array of many potential sets of 

crosses (“crossing-sets”) will return a crossing-set that is both broad and even 

with respect to underlying trait values.  

 In this note, we introduce a simple algorithmic sampling method for 

choosing crossing-sets; we name the algorithm SPREAD (Selection of Pairings 

Reaching Evenly Across the Data). SPREAD is based on finding the single 

crossing-set with the MMNND among many different potential crossing-sets 

plotted on two-dimensional trait space. We use our algorithm to select a 

crossing-set from a genotyped collection of geographically widespread wild 

strains of the filamentous fungus, Neurospora crassa. Strains of this fungus 

have one of two mating types, denoted mat-A or mat-a.  The two parents in a 

cross must have different mating types to mate.  Recently, 24 strains of each 

mating type were genotyped using RNAseq (Ellison et al., 2011). The 

genotyped strains were collected from diverse locations, allowing us to assign 

both genetic (the number of different SNPs) and geographic (the distance 

between collection sites) distance values to each of the 576 potential crosses. 

Using this dataset as our example, we implemented the SPREAD algorithm and 

tested the effectiveness of the SPREAD algorithm when the true MMNND is 
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not easily calculable. We then used a simulated dataset with known underlying 

parameter values that relate genetic and geographic distances to reproductive 

output to compare SPREAD to simple random sampling (SRS). 

METHODS 

 Description of the SPREAD Algorithm: Define  and  as the set 

of available strains or individuals of each mating type or sex ('type') x and y 

respectively, and sx × sy  as the feasible number of crosses that can be 

completed in an experiment. The variables sx  and sy  are the number of strains 

selected for the experiment and are less than  and  respectively. Draw a 

large number, h, of random samples containing sx  and sy  strains of each type 

from all possible sets of strains  and . For each of the h samples, 

plot crosses based on values associated with the crosses (for example number 

of differing SNPs vs. geographic distance), and then calculate the mean of the 

NNDs of all plotted crosses. Generate a list of h mean NNDs. Finally, use the 

maximum value from the list because it corresponds to the set of sx × sy  strains 

that most broadly and evenly represents the parameter of interest. A formal 

mathematical description of this algorithm is available online at 

http://dx.doi.org/10.6084/m9.figshare.1180170. 
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A worked example using SPREAD: We used a previously published 

population genomics dataset consisting of single nucleotide polymorphisms 

(SNPs) from transcriptomes of geographically diverse wild isolates of the 

fungus N. crassa to test our method (Ellison et al., 2011). We started with the 

set of all pairwise combinations of strains and then filtered to include only 

mating type compatible pairs. We calculated genetic distances between 

compatible pairs by counting the number of different SNPs between each pair 

and calculated geographic distances using the great-circle distance between 

strain locales. The genetic and geographic distance values for each pair were 

used to map all the crosses on genetic and geographic distance axes. This is the 

“original distribution” of crosses. We randomly sampled h = 1000 lists of s 

strains of each mating type from the set of all   and 

 

a
sa

⎛

⎝
⎜

⎞

⎠
⎟  strains 

without replacement, where and   a  and  are the sets of strains available for 

each mating type; in this case  =  a  = 24 and sA= sa = 12. We computed all 

possible pairwise mating combinations for each of the random samples of 

sA= sa = 12 strain lists, resulting in 1000 crossing-sets each containing 144 

crosses. We then plotted each crossing-set on geographic vs. genetic distance 

space and computed the mean nearest neighbor distances using Euclidean 
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distance calculations. The crossing-set with the MMNND of all 1000 crossing-

sets was selected. 

We implemented our algorithm and additional analyses in the R 

programming language (R Core Team, 2014). R code for the implementation of 

the SPREAD algorithm on crossing-sets with two traits is available online at 

http://dx.doi.org/10.6084/m9.figshare.1180165. The following R packages were 

used in this analysis: plyr (Wickham, 2011), reshape2 (Wickham, 2007), 

ggplot2 (Wickham, 2009), spatstat (Baddeley and Turner, 2005), Rmpi (Yu, 

2002), doMPI (Weston, 2013), doRNG (Gaujoux, 2014), foreach (Weston and 

Analytics, 2014), and glmmADMB (Fournier et al., 2012; Skaug et al., 2013). 

Evaluating SPREAD’s approximation of the true MMNND: The 

true MMNND can only be determined if all possible crossing-sets for a given 

sA  and sa  are evaluated. Therefore, calculating the true MMNND may not be 

possible, even with high performance computing resources. For example, if  

M = 300 and F = 300 and a crossing set is desired with 20 individuals of each 

type, then the total number of possible crossing sets would be 

300
20

⎛

⎝⎜
⎞

⎠⎟

2

= 5.6 ×1061.  Using a random sample of all available crossing-sets to 

estimate the MMNND would be more practical, especially if the estimated 

MMNND approximates the true MMNND. 
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We implemented the algorithm as described above for the N. crassa 

dataset, except we varied crossing-set size by implementing SPREAD for 

sA = sa = 3, 4, 5, …, 21. To simplify the process, we used crossing-sets where 

sA= sa , but this is not a requirement of the SPREAD algorithm. We used two 

different h values, 100 and 1000, to compare the effects of h size on the 

MMNND values returned from SPREAD.  We repeated this process 1000 times 

to obtain bootstrapped distributions of MMNND values for the different 

crossing-set sizes and h values. 

Comparing model fits of SPREAD and SRS generated crossing-

sets: Using SPREAD to design fully crossed mating experiments may be more 

effective than selecting crossing-sets at random because broad and even 

sampling will provide greater power to understand how dependent variables 

vary based on cross characteristics (e.g. how reproductive success depends on 

the genetic or geographic distances between parents). To evaluate this 

hypothesis empirically, we created a simulated dataset of cross outcomes, i.e. 

reproduction, and modeled relationships between reproduction and the 

characteristics of crosses in crossing-sets generated from SPREAD versus those 

generated by simple random sampling.  Simulated experimental data take the 

form of total ascospore counts. 
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First, we generated simulated data for all possible crosses of the entire 

crossing-set of 24 mat-A ×  24 mat-a strains, using a generalized linear model 

(GLM) fitted to unpublished empirical data. The model is described as follows: 

Yi = β0 + Xiβ1 + Ziβ2 + Xi
2β3 + Zi

2β4 + XiZiβ5 + ε i  

where Y is total ascospore count, X is genetic distance between a cross, and Z is 

geographic distance between a cross. This model was evaluated using the 

glmmADMB package (Fournier et al., 2012; Skaug et al., 2013) as Total 

Ascospore Count = Genetic Distance + Geographic Distance + (Genetic 

Distance)2 + (Geographic Distance)2 + Genetic Distance : Geographic 

Distance. The response variable of Total Ascospore Count was modeled with a 

negative binomial distribution using a log link function.  

Second, we simulated four experimental replicates for each possible 

cross by drawing from a negative binomial distribution with a mean derived 

from the predicted experimental values and the negative binomial dispersion 

parameter derived from the empirical data model. “True” parameter values 

were determined by fitting the complete simulated data set of all crosses to the 

model described above.  

  Using this complete set of simulated experimental data we calculated 

model fits for 1000 different crossing-sets generated with SPREAD and, then, 

SRS. The algorithm parameter values for the SPREAD generated crossing-sets 
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were sA = sa = 12 and h = 1000. We chose sA = sa = 12 to test the edge case of a 

maximally complex sample space (the largest number of possible crossing-set 

permutations occurs when sA = sa = 12). Crossing-sets chosen by SRS were of 

the same size. Model fits were computed for each crossing-set using the model 

described above. Parameter values and standard errors of the parameter values 

were recorded for each of the 1000 SPREAD or SRS generated crossing-sets.  

RESULTS 

The worked example: We used SPREAD on the N. crassa dataset 

described above to select a crossing-set with 12 mat-A and 12 mat-a strains. A 

graphical assessment of the chosen crossing-set plotted on geographic and 

genetic distance axes shows that our method produces a crossing-set that 

broadly and evenly represents all potential crosses (Figure 1).  

Implementing SPREAD without knowing the true MMNND: 

Plotting estimates of MMNND for both h values (the number of randomly 

sampled crossing-sets from which the set with MMNND is chosen) shows that 

the variance of the MMNND values is larger for h = 100 than h = 1000 (Figure 

2). However, the variance in the MMNND values rapidly decreases as the size 

of the crossing-sets increases. The max of the 1000 MMNND values for h = 

100 is often less than for h = 1000 for smaller crossing-set sizes. The difference 
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in the max MMNND becomes negligible for crossing-sets with more than 100 

crosses.  

Comparing SPREAD to SRS: The distributions of model fits for 

crossing-sets generated by SPREAD or SRS and the true parameter values 

derived from the entire simulated dataset are shown in Figure 3. The peaks of 

the distributions of parameter values for both SPREAD and SRS selected 

crossing-sets do not perfectly align with the true parameter values. However, 

the parameter values from models fitted using crossing-sets generated by 

SPREAD are distributed more closely around the true parameter values (Figure 

3a and Table 1). The standard errors of parameters from model fits of SPREAD 

generated crossing-sets are smaller and less variable compared to the standard 

errors of parameter values from model fits of SRS generated crossing-sets 

(Figure 3b and Table 2).  

DISCUSSION 

 SPREAD is an easily implemented algorithm designed to identify 

maximally informative, full factorial crossing-sets for use in mating 

experiments. SPREAD takes information about all of the potential crosses from 

a genotyped or otherwise characterized population and maximizes the diversity 

inherent in a crossing-set, for example, the genetic and geographic distances 

among crosses. SPREAD requires two input parameters chosen by the user: the 
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dimensions,
 sx × sy , of the desired crossing-set and the number of randomly 

generated crossing-sets, h, used to calculate MMNND and find the ideal 

crossing-set. SPREAD was designed for two dimensional trait data. If potential 

crosses are characterized by more than two target traits, and the traits are not 

completely independent, principal components analysis (PCA) can be used 

before implementing SPREAD to determine which two traits explain most of 

the trait variance (King and Jackson, 1999). 

In our worked example, we successfully used SPREAD to select a 

crossing-set of 12 mat-A ×  12 mat-a N. crassa strains from a larger set. When 

these crosses are plotted on genetic vs. geographic distance space, it is evident 

that the selected set fulfills the desired criteria of evenly and completely 

covering the range of the larger set (Figure 1). Using the MMNND as the 

diversity metric favors crosses that are at the extremes of the trait-space. The 

inclusion of crosses with extreme trait distances in an original population 

should be carefully considered because these crosses will often be selected by 

SPREAD.  

 Calculating the true MMNND by computing MNND values for every 

possible subset of a sampled population may not be possible. Instead, our 

algorithm generates h subsets and chooses the set with the MMNND from those 

h subsets. Our results show that the MMNND values returned by SPREAD 
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using an h value of 100 or 1000 are minimally variable at all but the smallest 

crossing-set sizes (Figure 2), and using these h-values should be sufficient for 

most experiments with modest population sizes.   

In experiments where the sampled population is very large, the variance 

in MMNND values may not rapidly decrease with increasing crossing-set size. 

In these cases greater h values should be used. Alternatively, SPREAD could 

be modified to use a simulated annealing approach to search the space of 

potential crossing-sets for a crossing-set that converges on a peak MNND 

value. One example of a simulated annealing algorithm that could be adapted 

for this purpose is SAGE (Simulated Annealing Guided Evaluation), developed 

to design combinatorial drug libraries (Zheng et al., 1999).  

We hypothesized that maximizing the diversity inherent in a crossing-

set would increase the predictive ability of models relating outcomes, for 

example reproduction, to characteristics of crosses, for example the genetic 

distances between crosses. When we compared model fits from crossing-sets 

generated by SPREAD to model fits from crossing-sets generated by SRS, we 

found that the model parameter values from SPREAD generated crossing-sets 

were closer to the true model parameter values with smaller errors (Figure 3). 

Although the parameter values from SPREAD generated crossing-sets were 

closer to the true parameter values they did not precisely match the true 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2015. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/


 16

parameter values. This is probably because the true parameter values are from a 

model calculated using the entire set of 24 mat-A ×  24 mat-a crosses while the 

tested parameter values are from crossing-sets of 12 mat-A ×  12 mat-a strains. 

The smaller sample size used to fit the model decreases both the precision and 

accuracy of estimated parameter values. Generalized linear models have been 

shown to be especially sensitive to sample size, compared to other methods 

(Wisz et al., 2008).   

SPREAD increases the value of fully crossed mating designs by 

enabling exploration and prediction across the full space of cross characteristics 

provided by available breeding stock. Simulations based on crossing-sets 

generated from the SPREAD algorithm versus SRS prove our algorithm 

generates more accurate parameter estimates, enabling better predictions of 

relationships between cross characteristics (e.g. the genetic and geographic 

distances between parents) and the success of a cross. SPREAD is not 

computationally intense and is easy to implement, making it a valuable tool for 

researchers designing crossing experiments.  
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FIGURES 

 

 

Figure 1 Implementation of SPREAD. Panel A shows all possible crosses 

between 24 mat-A and 24 mat-a strains; panel B shows the sA  = sa  = 12 

crossing-set of N. crassa strains returned from SPREAD (with h = 1000), 

where sA  is the number of mat-A strains and sa  is the number of mat-a strains. 

Crosses are plotted as semitransparent dots and darker colors mark overlapping 

crosses.  
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Figure 2 Effect of crossing-set size and h value (black: h = 100, gray: h = 

1000) on distributions of MMNND values. With larger h-values, estimates of 

MMNND values increase. As crossing-set size increases MMNND values 

decrease because with more crosses the average distance between crosses 

decreases. Violin plots show the entire distributions of MMNND values plotted 

on a log scale. Dashes mark the maximum value of the distributions.   
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Figure 3 Comparisons of estimated parameter values and standard errors for 

1000 crossing-sets generated either with SPREAD or SRS. The SPREAD 

parameters used are sA  = sa = 12 and h = 1000. Panel A: Violin plots showing 

the distribution of parameter values for all terms in the model. Horizontal lines 

indicate the “true” parameter values of the entire simulated sA  = sa = 24 

dataset. Panel B: Violin plots showing the distributions of standard errors of all 

terms in the model.  
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Table 1 Proportion of crossing-sets with parameter values within the range 

defined by the true parameter value ± 3 standard errors of true parameter 

values. “Dist.” is the abbreviation for “Distance.” 

 
Proportion of crossing-sets 

Parameter SPREAD SRS 
Intercept 0.1527 0.1195 
Genetic Distance 0.1513 0.1212 
Geographic Distance 0.6422 0.6158 
(Genetic Distance)2 0.1530 0.1253 
(Geographic Distance)2 0.1267 0.0897 
Genetic Dist.:Geographic Dist. 0.1475 0.1182 
 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2015. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/


 22

Table 2 Means and variances of standard errors from 1000 model fits using 

SPREAD or SRS generated crossing-sets. “Dist.” is the abbreviation for 

“Distance.” 

 
Mean of Std. Errors  Variance of Std. Errors 

Parameter SPREAD SRS  SPREAD SRS 
Intercept 3.99E+00 5.33E+00  2.05E-01 1.43E+00 
Genetic Distance 2.68E-04 3.61E-04  8.02E-10 5.84E-09 
Geographic Distance 8.05E-04 1.14E-03  2.33E-09 1.04E-07 
(Genetic Distance)2 4.45E-09 6.09E-09  1.97E-19 1.55E-18 
(Geographic Distance)2 2.34E-08 9.23E-08  1.44E-18 8.71E-15 
Genetic Dist.:Geographic Dist. 2.46E-08 3.92E-08  2.43E-18 2.21E-16 
 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2015. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/


 23

REFERENCES 

Baddeley A, Turner R (2005). Spatstat: An R Package for Analyzing Spatial 
Point Patterns. Journal of Statistical Software 12: 1–42. 

Clark PJ, Evans FC (1954). Distance to Nearest Neighbor as a Measure of 
Spatial Relationships in Populations. Ecology 35: 445–453. 

Crepieux S, Lebreton C, Servin B, Charmet G (2004). Quantitative trait loci 
(QTL) detection in multicross inbred designs: recovering QTL identical-
by-descent status information from marker data. Genetics 168: 1737–1749. 

Cushman SA (2014). Grand challenges in evolutionary and population 
genetics: the importance of integrating epigenetics, genomics, modeling, 
and experimentation. Frontiers in Genetics 5: 1–5. 

Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, et al. (2011). 
Population genomics and local adaptation in wild isolates of a model 
microbial eukaryote. Proc Natl Acad Sci USA 108: 2831–2836. 

Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, et 
al. (2012). AD Model Builder: using automatic differentiation for statistical 
inference of highly parameterized complex nonlinear models. Optimization 
Methods and Software 27: 233–249. 

Gaujoux R (2014). doRNG: Generic Reproducible Parallel Backend for foreach 
Loops. 

Griffing B (1956).  Concept of General and Specific Combining Ability in  
Relation to Diallel Crossing Systems. Australian Journal of Biological 
Sciences 9: 463–493. 

Holliday JD, Ranade SS, Willett P (1995). A fast algorithm for selecting sets of 
dissimilar molecules from large chemical databases. Quantitative 
Structure-Activity Relationships 14: 501–506. 

Jui PY, Lefkovitch LP (1992). Selecting the size of a diallel cross experiment. 
Theor Appl Genet 85: 21–25. 

King JR, Jackson DA (1999). Variable selection in large environmental data 
sets using principal components analysis. Environmetrics 10: 67–77. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2015. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/


 24

Martin EJ, Critchlow RE (1999). Beyond Mere Diversity:  Tailoring 
Combinatorial Libraries for Drug Discovery. J Comb Chem 1: 32–45. 

Pauli F, Coles S (2001). Penalized likelihood inference in extreme value 
analyses. Journal of Applied Statistics 28: 547–560. 

Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2013). Generalized 
Linear Mixed Models using AD Model Builder. 

Verhoeven KJF, Jannink J-L, McIntyre LM (2005). Using mating designs to 
uncover QTL and the genetic architecture of complex traits. Heredity 96: 
139–149. 

Wang X, Cumming SG (2011). Measuring landscape configuration with 
normalized metrics. Landscape Ecol 26: 723–736. 

Weston S (2013). doMPI: Foreach parallel adaptor for the Rmpi package. R 
package version 02. 

Weston S, Analytics R (2014). foreach: Foreach looping construct for R. 

Wickham H (2007). Reshaping data with the reshape package. Journal of 
Statistical Software 21: 1–20. 

Wickham H (2009). ggplot2: elegant graphics for data analysis. Springer: New 
York. 

Wickham H (2011). The Split-Apply-Combine Strategy for Data Analysis. 
Journal of Statistical Software 40: 1–29. 

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, et al. (2008). 
Effects of sample size on the performance of species distribution models. 
Diversity and Distributions 14: 763–773. 

Yu H (2002). Rmpi: Parallel Statistical Computing in R. R News 2: 10–14. 

Zheng W, Cho SJ, Waller CL, Tropsha A (1999). Rational Combinatorial 
Library Design. 3. Simulated Annealing Guided Evaluation (SAGE) of 
Molecular Diversity: A Novel Computational Tool for Universal Library 
Design and Database Mining. J Chem Inf Model 39: 738–746. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2015. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/

