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ABSTRACT 

We present a novel algorithm for the design of crossing experiments. A set of 

individuals (a “crossing-set”) is chosen from a larger set of potential crossing-sets by 

maximizing the distribution of a trait of interest. In simulated mating experiments, 

identified crossing-sets provide better estimates of underlying parameter values than 

randomly chosen crossing-sets.   

INTRODUCTION 

 Designing a mating experiment requires deciding how many and which pairs of 

individuals to mate. If the goal of a mating experiment is understanding the genetic basis 

of a trait, as in QTL analysis, then parents should be carefully chosen to maximize 

genetic diversity and increase the likelihood of detecting QTLs (CREPIEUX et al. 2004).  

In addition to the genetic composition of parents, the number of crosses in a mating 

experiment will also influence the degree of confidence in parameter estimates (JUI and 

LEFKOVITCH 1992). The increasing accessibility of population genetic and genomic 

datasets offer genetic data on more individuals than can reasonably be used in most 

experiments (CUSHMAN 2014). The wealth of potential crosses poses a critical 

methodological question: how to choose a subsample of mating pairs that best reflects the 

range of cross characteristics (in two or more dimensions of genetic, geographic, or 

ecological space) of the complete set of all available pairs?  

 One approach to the problem is to select a sample of crosses and attempt to 

recapitulate characteristics of the larger set to preserve underlying relationships between 

the variables used to define trait space. The representative sample might attempt to mimic 
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the broad distribution of points in the larger set, in other words, attempt to maintain the 

shape, clumps, etc. of the larger set. However, it is not clear how one might choose a 

truly representative sample. Samples chosen by eye or randomly may truncate the trait 

space, perhaps because a subsample omits outliers or is limited to the dense center of a 

distribution. Omissions in sampling may hinder a complete understanding of how 

response variables, for example reproductive output, vary across the trait space of all 

possible crosses. Predicting response variables outside the range of independent variables 

used in an experiment involves extreme value methods, which can increase the error 

associated with predictions, unless limiting assumptions are made (PAULI and COLES 

2001). When the aim is to understand how some outcome varies depending on the 

individuals involved in a cross—for example their genotype and the genetic distance 

involved in a particular cross—then choosing a set of crosses spread as widely and as 

evenly across the parameter of interest as possible will be valuable. 

 Often, fully crossed experiments are desirable because a factorially complete set 

is required to analyze general combining ability and parental effects (GRIFFING 1956); 

and specific genetic effects (VERHOEVEN et al. 2005). To illustrate the complexity of 

choosing individuals to maximize representation of e.g. genetic distance among 

individuals, consider the following example: a set of genotyped individuals includes  

F = 40 females and M = 30 males, and the total number of possible crosses in a full-

factorial design is F× M = 1200. Directed subsampling of potential crosses with the aim 

of broad coverage of the genetic distance distribution may result in a set of crosses that 

are not fully crossed, i.e., some females included in the mating experiment may not be 
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mated to all included males. A method to subsample and achieve a mating design that is 

both broad (in the sense described above) and fully crossed is required.  

 Calculating the mean of the nearest neighbor distances (NND) of points 

representing all potential crosses plotted based on their underlying parameters (e.g. 

genetic, geographic or ecological distance) will give a measure of the evenness of the 

points. The mean NND is often used to determine if a particular set of plotted points is 

randomly distributed or not (CLARK and EVANS 1954). A set of plotted points that are 

clumped will result in a smaller value of the mean NND than a sample with the same 

number of more evenly and broadly distributed points, and the maximum mean NND 

(MMNND) will occur when points are spread as evenly as possible (WANG and 

CUMMING 2011). Thus, identifying the set of crosses with the MMNND within an array 

of many potential sets of crosses (“crossing-sets”) will return a crossing-set that is both 

broad and even with respect to underlying trait values.  

 In this note, we introduce a new algorithmic sampling method we name SPREAD 

(Selection of Pairings Reaching Evenly Across the Data). SPREAD is based on finding 

the crossing-set with the MMNND among many different potential crossing-sets plotted 

on n-dimensional trait space. We use our algorithm to select a crossing-set from a 

genotyped collection of geographically widespread wild strains of the filamentous 

fungus, Neurospora crassa. The fungus is an obligate outcrosser with two mating types, 

denoted mat-A and mat-a.  The two parents in a cross must have different mating types to 

mate.  Recently, 24 strains of each mating type were genotyped using RNAseq (ELLISON 

et al. 2011). The genotyped strains were collected from diverse locations, allowing us to 

assign a genetic distance value (number of different SNPs) and a geographic distance 
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value (distance between collection sites) to each of the 576 potential crosses. Using this 

dataset as our example, we implemented the SPREAD algorithm and tested the 

effectiveness of the SPREAD algorithm when the true MMNND is not easily calculable. 

We then used a simulated dataset with known underlying parameter values that relate 

genetic and geographic distances to reproductive output to compare SPREAD to random 

sampling. 

 Description of the SPREAD Algorithm: Define  X  and  Y  as the set of 

available strains or individuals of each mating type or sex ('type') x and y respectively, 

and  sx×sy  as the feasible number of crosses that can be completed in an experiment. The 

variables sx  and sy  are the number of strains selected for the experiment and are less than 

 X  and  Y  respectively. Draw a large number, h, of random samples containing sx  and 

sy  strains of each type from all possible sets of strains 
  

X
sx

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟
 and 

  

Y
sy

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
. For each of the h 

samples, plot crosses based on values associated with the crosses (for example number of 

differing SNPs vs. geographic distance), and then calculate the mean of the NNDs of all 

plotted crosses. Generate a list of h mean NNDs. Finally, use the maximum value from 

the list because it corresponds to the set of  sx×sy  strains that most broadly and evenly 

represents the parameter of interest. A mathematical formalization of this algorithm is 

available at http://dx.doi.org/10.6084/m9.figshare.1180170 (ZIMMERMAN et al.). 

RESULTS 

A worked example: We used SPREAD on the N. crassa dataset described above 

to select a crossing-set with 12 mat-A and 12 mat-a strains. A qualitative assessment of 

the chosen crossing-set plotted on geographic and genetic distance axes suggests our 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2014. ; https://doi.org/10.1101/009720doi: bioRxiv preprint 

https://doi.org/10.1101/009720
http://creativecommons.org/licenses/by/4.0/


method produces a subsample of potential crosses that broadly and evenly represents the 

crossing-set of all potential crosses (Figure 1). 

Implementing SPREAD without knowing the true MMNND: The true 

MMNND can only be determined if all possible crossing-sets for a given sA  and sa  are 

evaluated. Therefore, calculating the true MMNND may require access to high 

performance computing resources. Using a random sample of all available crossing-sets 

to estimate the MMNND would be more practical, especially if the estimated MMNND 

approximates the true MMNND. 

We assessed the effectiveness of different h values for approximating the true 

MMNND using the N. crassa dataset. We determined bootstrapped distributions of 

MMNND values for two different h values of 100 or 1000 by repeating SPREAD 1000 

times. We varied the crossing-set size from sA  = sa  = {3, 4, 5, …, 21} To simplify the 

process, we used crossing-sets where sA  = sa , but this is not a requirement of the 

SPREAD algorithm. 

Plotting estimates of MMNND for both h values shows that the variance of the 

MMNND values is larger for h = 100 than h = 1000 (Figure 2). However, the variance in 

the MMNND values decreases as the size of the crossing-sets increases. Furthermore, the 

max of the 1000 MMNND values for h = 100 is often less than for h = 1000; this 

difference becomes negligible as the number of crossing-sets increases. These results 

show that the MMNND values returned by SPREAD using an h value of 100 or 1000 are 

minimally variable at all but the smallest crossing-set sizes, and using these h-values 

should be sufficient for most experiments. When using small crossing-set sizes, either h 

should be increased or the SPREAD algorithm repeated many times, and the crossing-set 
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with the max MMNND should be chosen from all iterations. With small or large 

crossing-set sizes the number of possible crossing sets is small so it may be possible to 

calculate an MMNND from all possible crossing-sets and determine the true MMNND. 

Comparing SPREAD to SRS: Using SPREAD to design fully crossed mating 

experiments may be more effective than selecting crossing-sets at random because broad 

and even sampling will provide greater power to understand how dependent variables 

vary throughout cross characteristics (e.g. how reproductive success depends on the 

genetic or geographic distances between parents). To evaluate this hypothesis 

empirically, we used a simulated dataset of cross outcomes (reproductive output) and 

modeled relationships between these outcomes and the characteristics of crosses in 

crossing-sets generated from SPREAD or simple random sampling (SRS).  The simulated 

cross outcomes were generated from “true” parameter values in a generalized linear 

model (GLM) relating cross characteristics to reproductive output.  We repeated 

SPREAD or SRS 1000 times and refit the GLM to simulated data for each crossing-set 

for each method at each iteration.  Figure 3 shows the bootstrapped distributions of 

parameter values generated from each sampling method and the “true” parameter values 

used to simulate the cross outcomes, along with the distributions of standard errors of the 

parameters. The parameter values from models fitted using crossing-sets generated by 

SPREAD are distributed more closely around the true parameter values (Figure 3a and 

Table 1). The standard errors are smaller and less variable compared to parameter values 

from crossing-sets generated through SRS (Figure 3b and Table 2). The SPREAD 

algorithm generates crossing-sets that provide greater extrapolative ability than crossing-

sets generated by SRS, and will be very useful when trying to predict underlying 
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relationships between the characteristics of crosses and the reproductive outcomes of 

those crosses. 

CONCLUSION 

SPREAD increases the value of fully crossed mating designs by enabling 

exploration and prediction across the full space of cross characteristics provided by 

available breeding stock. Simulations based on crossing-sets generated from either the 

SPREAD algorithm or SRS prove our algorithm generates more accurate parameter 

estimates, enabling better predictions of relationships between cross characteristics (e.g. 

the genetic and geographic distances between parents) and the success of a cross. R code 

for the implementation of the SPREAD algorithm is available at 

http://dx.doi.org/10.6084/m9.figshare.1180165 (ZIMMERMAN et al.). The SPREAD 

algorithm is not computationally intense; it can be used with populations of varying size 

across n-dimensional cross characteristic space. More broadly, a MMNND approach may 

be useful in any situation where over-dispersed sub-samples taken evenly across 

parameter space are needed. 
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A                                                                     B 

 

Figure 1 Implementation of SPREAD (code available for download at 

http://dx.doi.org/10.6084/m9.figshare.1180165 (ZIMMERMAN et al.)). Panel a shows all 

possible crosses between 24 mat-A and 24 mat-a strains; panel b shows the sA  = sa  = 12 

crossing-set of N. crassa strains returned from SPREAD (with h = 1000), where sA  is the 

number of mat-A strains and sa  is the number of mat-a strains. Crosses are plotted as 

semitransparent dots and darker colors mark overlapping crosses. We used a previously 

published population genomics dataset - single nucleotide polymorphisms (SNPs) from 

transcriptomes of geographically diverse wild isolates of the fungus N. crassa - to test our 

method (ELLISON et al. 2011). We started with the set of all pairwise combinations of 

strains and then filtered to include only mating type compatible pairs. We calculated 

genetic distances between compatible pairs by counting the number of different SNPs 

between each pair and calculated geographic distances using the great-circle distance 

between strain locales. The genetic and geographic distance values for each pair were 

used to map all the crosses on genetic and geographic distance axes. This is the “original 
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distribution” of crosses (panel a). We randomly sampled h = 1000 lists of s strains of 

each mating type from the set of all 
  

A
sA

⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟
 and 

a
sa

⎛
⎝⎜

⎞
⎠⎟

 strains without replacement, where  A  

and a  are the sets of strains available for each mating type; in this case  A  = a  = 24 and 

sA  = sa  = 12. We computed all possible pairwise mating combinations for each of the 

random samples of 12A  and 12a  strain lists, resulting in 1000 crossing-sets each 

containing 144 crosses. We then plotted each crossing-set on geographic vs. genetic 

distance space and computed the mean nearest neighbor distances using Euclidean 

distance calculations. The crossing-set with the MMNND of all 1000 crossing-sets was 

selected for use in an experiment (panel b).  

We implemented our algorithm and additional analyses in the R programming 

language (R Core Team, 2014) using the following packages: plyr (WICKHAM 2011), 

reshape2 (WICKHAM 2007), ggplot2 (WICKHAM 2009), spatstat (BADDELEY and TURNER 

2005), Rmpi (YU 2002), doMPI (WESTON 2013), doRNG (GAUJOUX 2014) , foreach 

(WESTON and ANALYTICS 2014), and glmmADMB (FOURNIER et al. 2012; SKAUG et al. 

2013) 
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Figure 2 Effect of crossing-set size and h value on estimated MMNND values. With 

larger h-values, estimates of MMNND values increase. As crossing-set size increases 

MMNND values decrease because with more crosses the average distance between 

crosses decreases. Violin plots show the entire distributions of MMNND values plotted 

on a log scale. The two colors indicate the number of crossing-sets randomly sampled 

(orange: h = 100, blue: h = 1000). Dashes mark the maximum value of the distributions.  

The algorithm was implemented using the same method described in Figure 1 except we 

varied crossing-set size by implementing SPREAD for sA  and sa , where sA  and sa  are 

integers from the set {3, 4, 5, …, 21} and sA  = sa . We used two different h values, 100 

and 1000, to compare the effects of h size on the MMNND values returned from 

SPREAD.  We repeated this process 1000 times to obtain bootstrapped distributions of 

MMNND values for the different crossing-set sizes and h values. 
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A 

 
B 

 
 
Figure 3 Comparisons of estimated parameter values and standard errors for 1000 

crossing-sets generated either with SPREAD or SRS. Crossing-set size for both methods 

was with sA  = sa = 12 and h = 1000 for SPREAD. Panel a: Violin plots showing the 

distribution of parameter values for all terms in the model. Red lines indicate the “true” 

parameter values of the entire simulated sA  = sa = 24 dataset. Panel b: Violin plots 

showing the distributions of standard errors of all terms in the model. To generate these 
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estimated parameter values and standard errors, and evaluate the effectiveness of 

SPREAD, we compared model fits to “true” values generated from simulated 

experimental data. Simulated experimental data, in the form of total ascospore counts, 

were generated for the entire sA  = sa = 24 crossing-set.  

First, we generated simulated data for all possible crosses using a generalized 

linear model based on unpublished empirical data. The model was Total Ascospore Count 

= Genetic Distance + Geographic Distance + (Genetic Distance)2 + (Geographic 

Distance)2 + Genetic Distance : Geographic Distance. The response variable of Total 

Ascospore Count was modeled with a negative binomial distribution using a log-link 

function.  

Second, we simulated four experimental replicates for each possible cross by 

drawing from a negative binomial distribution with mean derived from the predicted 

experimental values and distribution parameters derived from the real-data model 

described above. “True” parameter values were determined by fitting the complete 

simulated data set of all crosses to the model described above.  

  Using this complete set of simulated experimental data we calculated model fits 

for 1000 different crossing-sets generated with SPREAD and, then, SRS. For SPREAD, 

the parameter values were sA  = sa = 12 and h = 1000. We chose sA  = sa = 12 to test the 

edge case of a maximally complex sample space (the largest number of possible crossing-

set permutations occurs when sA  = sa = 12). Crossing-sets chosen by SRS were of the 

same size. Model fits were computed using the same model described above.  
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Table 1 Proportion of crossing-sets with parameter values within the range defined by 
the true parameter value ± 3 standard errors of true parameter values.  
 

 
Proportion of crossing-sets 

Parameter SPREAD SRS 
Intercept 0.1527 0.1195 
Genetic Distance 0.1513 0.1212 
Geographic Distance 0.6422 0.6158 
(Genetic Distance)2 0.1530 0.1253 
(Geographic Distance)2 0.1267 0.0897 
Genetic Dist:Geographic Dist. 0.1475 0.1182 
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Table 2 Summary statistics of Standard Errors from 1000 model fits using SPREAD or 
SRS generated crossing-sets. 
 

 
Mean of Std. Errors  Variance of Std. Errors 

Parameter SPREAD SRS  SPREAD SRS 
Intercept 3.99E+00 5.33E+00  2.05E-01 1.43E+00 
Genetic Distance 2.68E-04 3.61E-04  8.02E-10 5.84E-09 
Geographic Distance 8.05E-04 1.14E-03  2.33E-09 1.04E-07 
(Genetic Distance)2 4.45E-09 6.09E-09  1.97E-19 1.55E-18 
(Geographic Distance)2 2.34E-08 9.23E-08  1.44E-18 8.71E-15 
Genetic Dist:Geographic Dist. 2.46E-08 3.92E-08  2.43E-18 2.21E-16 
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