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Abstract

Extracting biologically meaningful information from the continuing flood of genomic data is a major

challenge in the life sciences. Codon usage bias (CUB) is a general feature of most genomes and is thought

to reflect the effects of both natural selection for efficient translation and mutation bias. Here we present

a mechanistically interpretable, Bayesian model (ROC SEMPPR) to extract biologically meaningful in-

formation from patterns of CUB within a genome. ROC SEMPPR, is grounded in population genetics

and allows us to separate the contributions of mutational biases and natural selection against transla-

tional inefficiency on a gene by gene and codon by codon basis. Until now, the primary disadvantage of

similar approaches was the need for genome scale measurements of gene expression. Here we demonstrate

that it is possible to both extract accurate estimates of codon specific mutation biases and translational

efficiencies while simultaneously generating accurate estimates of gene expression, rather than requiring

such information. We demonstrate the utility of ROC SEMPPR using the S. cerevisiae S288c genome.

When we compare our model fits with previous approaches we observe an exceptionally high agreement

between estimates of both codon specific parameters and gene expression levels (ρ > 0.99 in all cases).

We also observe strong agreement between our parameter estimates and those derived from alternative

datasets. For example, our estimates of mutation bias and those from mutational accumulation exper-

iments are highly correlated (ρ = 0.95). Our estimates of codon specific translational inefficiencies are

tRNA copy number based estimates of ribosome pausing time (ρ = 0.64), and mRNA and ribosome

profiling footprint based estimates of gene expression (ρ = 0.53 − 0.74) are also highly correlated, thus

supporting the hypothesis that selection against translational inefficiency is an important force driving

the evolution of CUB. Surprisingly, we find that for particular amino acids, codon usage in highly ex-

pressed genes can still be largely driven by mutation bias and that failing to take mutation bias into

account can lead to the misidentification of an amino acid’s ‘optimal’ codon. In conclusion, our method

demonstrates that an enormous amount of biologically important information is encoded within genome

scale patterns of codon usage, accessing this information does not require gene expression measurements,

but instead carefully formulated biologically interpretable models.

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2015. ; https://doi.org/10.1101/009670doi: bioRxiv preprint 

https://doi.org/10.1101/009670


Introduction

Genomic sequences encode a trove of biologically important information. Over 49,600 genomes are cur-

rently available from the Genomes OnLine Database (Pagani et al., 2012) alone and the flow of newly

sequenced genomes is expected to continue far into the future. As a result, developing ways to turn this

data into useful information is one of the major challenges in the life sciences today. Although great

strides have been made in extracting this information, ranging from the simple, e.g. identification of

protein coding regions, to the more difficult, e.g. identification of regulatory elements (Hughes et al.,

2000; Wasserman and Sandelin, 2004; Dunham et al., 2012; Kundaje et al., 2015), much of this infor-

mation remains untapped. To address one aspect of this challenge, we present a method to estimate

the expression levels of every gene, codon specific selection coefficients, and mutation biases solely from

patterns of codon usage bias (CUB) in protein coding sequences within a genome.

One of the earliest arguments against neutrality between synonymous codon usage was given by

Clarke (1970). Since then, evidence for selection acting on CUB has been repeatedly observed. CUB

clearly varies systematically within and between open reading frames (ORFs) within a species as well

as across species (Grantham et al., 1980; Ikemura, 1981a, 1985; Bennetzen and Hall, 1982; Sharp and

Li, 1987; Andersson and Kurland, 1990b; Qin et al., 2004; Gilchrist and Wagner, 2006; Chamary et al.,

2006; Hershberg and Petrov, 2008; Plotkin and Kudla, 2011). These patterns in CUB are driven by

two evolutionary forces: mutation bias and natural selection (Ikemura, 1981a; Bulmer, 1988, 1991).

Current evidence supports multiple selective forces contributing to the evolution of CUB. Most of these

hypothesized selective forces affect the efficiency and efficacy of ORF translational through factors such

as ribosome pausing times (Andersson and Kurland, 1990b; Bulmer, 1991; Sørensen and Pedersen, 1991;

Plotkin and Kudla, 2011; Shah and Gilchrist, 2011a), missense and nonsense errors (Kurland, 1987,

1992; Akashi, 1994; Gilchrist, 2007; Drummond and Wilke, 2008, 2009), co-translational protein folding

(Thanaraj and Argos, 1996; Kimchi-Sarfaty et al., 2007; Tsai et al., 2008; Pechmann and Frydman,

2013), equalizing tRNA availability (Qian et al., 2012), and the stability and/or accessibility of mRNA

secondary structures (Kudla et al., 2009; Tuller et al., 2010; Gu et al., 2012; Bentele et al., 2013). The

relative importance of each of these selective forces is expected to vary both within and between genes.

The effects of these forces can be unified within a single framework by considering how the codon usage

of a given ORF alters the ratio of the expected cost of protein synthesis over the expected benefit of

protein synthesis, or the cost-benefit ratio η for short (Gilchrist et al., 2009) (see Methods).

One likely way different synonymous codons lead to changes in a gene’s cost-benefit ratio η results

from differences in the abundances of cognate and near cognate tRNAs and the stability of the Watson-

Crick base pairing between a given codon and tRNA anticodons (Ikemura, 1981a; Zaher and Green, 2009;
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Plotkin and Kudla, 2011). These differences, in turn, are predicted to lead to differences in ribosome

pausing times and error rates between codons. Specifically, codons with higher abundances of cognate and

near-cognate tRNAs are thought to have both shorter pausing times and lower error rates than codons

with lower abundances of cognate and near-cognate tRNA (Ikemura, 1981a; Kurland, 1992, though see

Shah and Gilchrist (2010) for a more nuanced view).

The assumption that natural selection favors codon usage which reduces the protein synthesis cost-

benefit ratio η implies that the strength of this selection should scale with the gene’s protein synthesis

rate: highly expressed genes should show the strongest bias for codons with shorter pausing times and

error rates (Ikemura, 1981a, 1985; Sharp and Li, 1986, 1987). As a result, given sufficiently large Ne,

such that high expression genes contain some signal of adaptation, the patterns of CUB observed within

a genome should contain a significant amount of information about the average protein synthesis rate φ

for a given gene. Further, because low expression genes are under very weak selection to reduce η, their

patterns of CUB should provide information on the mutational biases experienced within a genome.

Accessing this information held within CUB patterns of an organism’s genome has been the focus of

several decades of research in molecular evolution. However, most approaches examine mutation bias and

selection in isolation and, ignore their possible interactions. The strength of mutation bias has typically

been investigated by comparing the differences in GC content of synonymous sites of codons to the rest

of the gene (Galtier et al., 2001; Knight et al., 2001; Palidwor et al., 2010). Numerous methods have

been used to quantify or describe selection on synonymous codon usage.

For example, Sharp and Li (1987) relied on the codon usage in a set of highly expressed genes to

identify the ‘optimal’ codon for a given amino acid as these genes are under stronger selection to be

translated efficiently and accurately. Approaches that focus on a subset of high expression genes in this

way implicitly assume the contribution of mutation bias to CUB is overwhelmed by natural selection and,

therefore, can be ignored. As our results show, because this view lacks an explicit population genetics

framework it is likely overly simplistic and may lead to the misidentification of ‘optimal’ codons.

Phylogeny based models of protein evolution, some of which are derived from population genetics

models, have also been used to generate estimates of codon-specific selection coefficients and mutation

biases (Tamuri et al., 2012; Rodrigue et al., 2010; Yang and Nielsen, 2008). Other approaches have relied

on intra-specific variation to make similar types of inferences (Keightley and Eyre-Walker, 2007; Lawrie

et al., 2013) or a combination of inter-specific divergence and intra-specific variation Akashi (1995).

However, all of these approaches fail to disentangle how the contributions of mutation bias and natural

selection change with gene expression. Furthermore, these models are either fitted independently across

genes and thus estimate a large number of gene specific parameters from a relatively small amount of

data or assume that the magnitude of selection is uniform across genes.
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We, along with others, have previously worked to link gene expression levels to patterns of CUB by

nesting a mechanistic model of protein translation into a population genetics model of allele fixation

in order to estimate codon specific mutation and selection parameters (Gilchrist and Wagner, 2006;

Gilchrist, 2007; Shah and Gilchrist, 2011a; Wallace et al., 2013). Although these methods represent

significant advances in estimating codon specific mutation biases and selection coefficients from genomic

data, they are limited to genomes with independent measurements of gene specific protein synthesis rates

or a close proxy. Historically, mRNA abundances have been used as such a proxy due to the fact that

generating reliable genome scale measurements of protein synthesis is an expensive undertaking (Arava

et al., 2005; Ingolia et al., 2009a; Li et al., 2014, e.g). In contrast, the method proposed here does away

with the necessity of having protein synthesis rate estimates (or their proxy) and provides estimates of

the average protein synthesis rate for each gene, φ. Importantly, our method also provides estimates

of codon specific mutation biases and translational inefficiencies, which is the additive contribution of a

codon to the cost of protein synthesis.

Furthermore, we can combine our gene specific estimates of protein synthesis rates and codon spe-

cific translational inefficiencies to produce estimates of the strength of natural selection on synonymous

substitutions on a gene by gene and codon by codon basis. Estimating gene-specific selection coefficients

on synonymous codons is critical to determining whether a gene is evolving under purifying or positive

selection. Current models to identify the selection regime under which a gene evolves rely on estimates of

the rates of non-synonymous changes to rates of synonymous changes (dN/dS) (Li et al., 1985; Nei and

Gojobori, 1986; Yang and Nielsen, 2000). However, the commonly made assumption that all synonymous

changes within a gene are neutral can bias values of dN/dS towards over-estimating the number of genes

evolving under positive selection (Spielman and Wilke, 2015). By accurately estimating strength of se-

lection on synonymous changes, researchers can begin to explicitly incorporate these effects into methods

for identifying purifying and positive selection.

In order to extract information from the genome wide patterns of CUB using our Stochastic Evolu-

tionary Model of Protein Production Rate (SEMPPR) (Gilchrist, 2007; Shah and Gilchrist, 2011a), we

build on the Bayesian statistical advances of Wallace et al. (2013). Because the costs in our model can

be interpreted as proportional differences in ribosome overhead costs (ROC) due to ribosome pausing,

for simplicity we refer to the model formulated here as ROC SEMPPR (see Methods).

Using the Saccharomyces cerevisiae S288c genome as an example, we demonstrate that ROC SEMPPR

can be used to accurately estimate differences in codon specific mutation biases and contributions to the

protein synthesis cost-benefit function η without the need for gene expression data. ROC SEMPPR’s

codon specific estimates of mutation biases and translational inefficiencies generated without gene expres-

sion data match almost exactly those generated with gene expression data (Pearson correlation coefficient
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ρ > 0.99 for both sets of parameters). In the end, we observe a Pearson correlation coefficient of ρ = 0.72

between our predicted protein synthesis rates and the mRNA abundances from Yassour et al. (2009)

(which was identified as the most reliable dataset out of five different mRNA abundance datasets by

Wallace et al. (2013)).The variation between our predictions and Yassour et al. (2009)’s measurements

is on par with the variation observed between mRNA abundance measurements from different labo-

ratories (Wallace et al., 2013). Further, our predictions show strong and significant correlations with

measurements of mRNA abundance from four other labs and estimates of protein synthesis rates based

on ribosome profiling data from three other labs (Supporting Figures S4 and S5).

By releasing our work as a stand alone package in R (see Chen et al. (2014)), researchers can po-

tentially take the genome of any microorganism and obtain accurate, quantitative information on the

effect of synonymous substitutions on protein translation costs, gene expression levels, and the strength

of selection on codon usage bias.

Results

The posterior means estimated from our Bayesian MCMC simulation of ROC SEMPPR demonstrate

two key facts: 1) we are able to estimate the strength of selection on synonymous codon usage bias

from the patterns of codon usage observed within a genome and, 2) we can attribute this selection

to the interaction of two underlying biological traits: difference between synonymous codons in their

contribution to the cost-benefit ratio η for protein synthesis and the protein synthesis rate of the ORF

φ averaged across its various environments and lifestages.

For this study, we scale our codon specific translational inefficiencies relative to the strength of genetic

drift, 1/Ne,

∆ηi,j = 2Ne q (ηi − ηj) (1)

where q described the proportional decline in fitness per ATP wasted per unit time. More specifically,

∆ηi,j describes the difference in the contribution of synonymous codons i and j to the protein synthesis

cost benefit-ratios of an ORF, (ηi − ηj), scaled by effective population size Ne � 1 and the relative

fitness cost of expending an extra ATP per unit time, q. The greater the contribution of a codon to η,

the greater its inefficiency. For a set of synonymous codons, by convention, we define codon 1 as the

codon with the lowest inefficiency, i.e. the codon which makes the smallest additive contribution to η and

is most favored by selection. Thus, ∆ηi,1 = 0 for i = 1 and ∆ηi,1 > 0 for i > 1. For notational simplicity,

we will only include the subscripts when needed for clarity.
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At equilibrium, under the weak-mutation regime (Sella and Hirsh, 2005b; Shah and Gilchrist, 2011b;

McCandlish and Stoltzfus, 2014), the expected frequency of observing a synonymous codon i (pi) of an

amino acid in a gene with an average protein synthesis rate φ follows a multinomial logistic distribution.

Specifically, for a given amino acid a with na unique codons

pi =
exp [−∆Mi,1 −∆ηi,1 φ]∑na
j=1 exp [−∆Mj,1 −∆ηj,1 φ]

, (2)

where ∆Mi,1 is a unitless measure of codon specific mutation bias. Note that, as with ∆η, ∆Mi,1 = 0 for

i = 1 but, unlike with ∆η, ∆Mi,1 can be positive or negative. Further, because it relies on the stationary

probability of observing a synonymous codon, ROC SEMPPR can only detect variation in mutation bias,

not variation in absolute mutation rates. Additional model details can be found in the Methods and

Materials.

The utility of Equation (2) is that it allows us to probabilistically link ROC SEMPPR’s parameters of

interest, i.e. codon specific differences in mutation biases, ~∆M = {∆Mj,1|j = 2, . . . , na; a = 1, 2, . . . , naa},

translational inefficiencies ~∆η = {∆ηj,1|j = 2, . . . , na; a = 1, 2, . . . , naa}, and gene specific protein syn-

thesis rates, ~φ =
{
φ1, φ2, . . . , φng

}
, to the CUB patterns observed within and between ORF of a given

genome. The terms naa represents the number of amino acids that use multiple codons while ng represents

the number of genes in the genome, respectively.

Because moving between the synonymous codon groups (TCA, TCC, TCG, TCT) and (AGC, AGT)

for Ser requires at least one non-synonymous nucleotide substitution, we treated these two groups as

if they were different amino acids, Ser4 and Ser2, respectively. So while strictly speaking, 18 of the

canonical 20 amino acids use more than one codon, because we treat Ser as two separate amino acids,

Ser2 and Ser4, for our purposes naa = 19. Assuming a log-normal distribution (LogN) with a mean of 1

as the prior for φ allows us to employ a random walk Metropolis chain to estimate the posteriors for ~∆η,

~∆M , and ~φ without the need for any laboratory measurements of gene expression, ~Φ. This ability to fit

our ROC SEMPPR model without ~Φ data is the major advance of our work over Wallace et al. (2013).

Tables with estimates of gene specific protein synthesis rates, ~φ, mutation biases, ∆M , and translational

inefficiencies, ∆η, based on ROC SEMPPR’s posterior sampling for the S. cerevisiae genome can be

found in the Supporting Materials.

Evaluating Model Parameter Estimates

Briefly, when fitted to the S. cerevisiae S288c genome, we find nearly perfect agreement between ROC

SEMPPR’s with and without ~Φ estimates for codon specific protein synthesis translational inefficiencies,

∆η, and mutation bias, ∆M (Pearson correlation ρ > .99 for both sets of parameters, see Figures 1) and
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2). We note that, with the exception Arginine’s ∆ηCGT,AGA, the central 95% Credibility Intervals (CIs)

for ROC SEMPPR’s ∆η and ∆M parameters do not overlap with zero (see Supplemental Tables S1-

S4). These results indicate that information on the genome scale parameters, ~∆η and ~∆M are robustly

encoded and estimable from CUB patterns and that ~Φ, provides little additional information.

(Approximate Location of Figure 1)

(Approximate Location of Figure 2)

Instead of simply comparing our ROC SEMPPR model’s without ~Φ estimates of ∆M and ∆η to its

with ~Φ estimates, we can also compare these parameters to other data. Due to the detailed balance

requirement of the stationary distribution of our population genetics model (Sella and Hirsh, 2005a),

differences in ∆M values between codons that can directly mutate to one another will equal the log of

the ratio of their mutation rates. Thus, our estimates of ∆M provide testable hypotheses about the ratio

of mutation rates in S. cerevisiae. We use estimates of per base-pair mutation rates from a recent high-

throughput mutation accumulation experiment in S. cerevisiae (Zhu et al., 2014). These experimental

estimates of mutation bias, ∆Me, are calculated as

∆Me
NNNi,NNNj = ln

[
ni→j
ni

/
nj→i
nj

]
(3)

where
ni→j

ni
is the number of i → j mutations observed per ni bases in the genome. Since mutations

in mutation accumulation experiments are strand agnostic, i.e. they do not distinguish between the

coding and template strand nucleotides, we cannot distinguish between the mutations NNC→NNG and

NNG→NNC nor NNA→NNT and NNT→NNA. As a result, our empirical estimates of ∆Me
C,G and

∆Me
A,T are set to 0. We find that our estimates of codon specific mutation rates correlate highly with

empirical mutation rates in S. cerevisiae (ρ = 0.95, Figure 3).

(Approximate Location of Figure 3)

Unlike mutation bias parameters, empirical estimates of the codon specific differences in translational

efficiencies do not exist. However, one of the simplest ways of linking a codon to η is based on the indirect

cost of codon specific ribosome pausing during translation. That is, ηi − ηj ∝ ti − tj where ti is the

average time a ribosome pauses when translating codon i. We calculate empirical estimates of pausing

times based on a simple model of translation where pausing times at a codon depend only on its cognate

tRNA abundances and associated wobble parameters (Ikemura, 1981b; Andersson and Kurland, 1990a;

Sørensen and Pedersen, 1991; Kanaya et al., 1999; Gilchrist and Wagner, 2006; Zaher and Green, 2009;

Shah et al., 2013).

∆ti,j =
1

tRNAiwi
− 1

tRNAjwj
. (4)
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Specifically, tRNAi is the gene copy number of the tRNA that recognize codon i and wi is the wobble

penalty between the anti-codon of tRNAi and codon i. When a codon is recognized by its canonical

tRNA, we set wi = 1. We assume a purine-purine (RR) or pyrimidine-pyrimidine (YY) wobble penalty to

be 39% and a purine-pyrimidine (RY/YR) wobble penalty to be 36% based on Curran and Yarus (1989)

and Lim and Curran (2001). We find that our genome-wide estimates of ∆t are positively correlated

with empirical estimates of ∆t in S. cerevisiae (ρ = 0.64, Figure 4).

(Approximate Location of Figure 4)

Predicting Protein Synthesis Rates

Given the strong correlation between ROC SEMPPR’s with and without ~Φ estimates of the codon specific

mutation biases ~∆M and translational inefficiencies ~∆η, it is not surprising that with and without ~Φ

estimates of φ from ROC SEMPPR are highly correlated (ρ = 0.99, Figure 5(a)). More importantly, the

without ~Φ based estimates of φ show substantial correlation with the mRNA abundance based estimates

of ~Φ values from Yassour et al. (2009) (ρ = 0.72, Figure 5 (b)). To be clear, these ~Φ values are the same

values used as inputs to the with ~Φ model fits.

Supporting Figures S4 and S5 explore this issue further by plotting ROC SEMPPR’s posterior mean

estimates of φ produced with and without ~Φ against eight sets of experimental data. This data includes

three genome wide estimates based on ribosome-profiling (RPF) measurements (Ingolia et al., 2009b;

Artieri and Fraser, 2014; McManus et al., 2014) and five other genome wide estimates of mRNA abun-

dances (Arava et al., 2003; Nagalakshmi et al., 2008; Holstege et al., 1998; Sun et al., 2012). The with

~Φ posterior estimates are generated using mRNA abundance measurements from Yassour et al. (2009)

and are, therefore, independent of the measurements from other labs. Correlation between φ estimates

for the without ~Φ ROC SEMPPR fits and measured mRNA abundances range from 0.534 to 0.707, and

measured RPF reads range from 0.629 to 0.742. The correlation between φ estimates for the with ~Φ fits

and mRNA provide only a 7% to 15% increase in explanatory power over the without ~Φ ROC SEMPPR

predictions of φ. Similarly, correlation between φ estimates for ROC SEMPPR’s with ~Φ fits and RPF

reads provide a 6% to 12% increase in explanatory power over its without ~Φ predictions of φ.

(Approximate Location of Figure 5)

Changes in CUB with Protein Synthesis Rate

As first shown in Shah and Gilchrist (2011a), the relationship between codon usage and protein synthesis

rate φ can range from simple and monotonic to complex. Figure 6 illustrates how codon usage changes

across approximately 2 orders of magnitudes of φ̂ for each of the naa = 19 multicodon amino acids.
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Both ROC SEMPPR’s with and without ~Φ model fits accurately predict how CUB changes with protein

synthesis rates (Figure 6). Indeed, the predicted changes in CUB between the with and without ~Φ

ROC SEMPPR model fits are almost indistinguishable from one another, reflecting the strong agreement

between their estimates of ∆M and ∆η across models as discussed above.

Changes in codon frequency with φ are the result of a subtle interplay between natural selection

for reducing η and mutation bias (Figure 6). The simplest cases involve two codon amino acids where

the same codon is favored both by selection and mutation bias, i.e. Cys, Glu, and Ser2. In these three

cases, the selectively and mutationally favored codon 1 is used preferentially across all protein synthesis

rates and the frequency of the preferred codon increases monotonically with φ. The next simplest cases

involve two codon amino acids where codon 1 is favored by selection and codon 2 is favored by mutation

bias, e.g. Asp, Asn, and Phe. In these cases, the mutationally favored codon 2 is used preferentially at

low φ values and the selectively favored codon 1 is used preferentially used in genes at high φ values.

Nevertheless, as before the codon frequency changes monotonically with φ.

(Approximate Location of Figure 6)

More complex, non-monotonic changes in codon frequencies can occur in amino acids that use three

or more codons. For example, the Ile codon ATC has the lowest translational inefficiency ∆η and,

therefore, is the most favored codon by natural selection while ATT has the second lowest translational

inefficiency. As a result, both codons initially increase in frequency with increasing φ at the expense of

the most inefficient codon ATA. However, once the frequency of ATA approaches 0, selection for ATC

begins driving the frequency of ATT down. These non-monotonic changes in codon frequency is most

notable in Ala, Ile, Thr, and Val. Examining the derivative of ~p with respect to φ indicates that if

w̄ > 1, a given codon i will increase in frequency with φ, if
∑
j 6=i pj(φ)∆ηij > 0 i.e. if the sum of the

derivatives of the selective advantage of codon i over the other codons is positive. For the reference

codon 1 where, by definition, ∆ηi,1 ≥ 0, we see that this inequality always holds. This criteria can

only be met by the non-reference codon in amino acids with more than two synonyms and when there

are other non-reference codons with lower fitnesses at appreciable probabilities. In the S. cerevisiae

S288c genome, these conditions can occur when the codon most favored by natural selection is strongly

disfavored by mutation. Although this non-linear quality of multinomial logistic regression is well known

among statisticians, the fact that non-optimal codons other than the choice most favored by selection

can increase with production rate has not been widely recognized by biologists.

If we ignore the noise in the ~Φ data, our with ~Φ model fitting simplifies to the standard logistic

regression model applied in Shah and Gilchrist (2011a). This simplification results in a slight distortion

of ∆M estimates and a general attenuation of our estimates of ∆η (Wallace et al., 2013). The effect of

this attenuation can be seen in Figure 6 where the changes in CUB predicted from the standard logistic
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regression model fit lag behind the predicted changes when either the error in ~Φ is accounted for or the

~Φ data is not used. In the case of Ser2 controlling for error leads to a change in the codon identified as

being favored by natural selection. While Shah and Gilchrist (2011a) predicted codon AGC would be

favored by selection over AGT, both of ROC SEMPPR’s with and without ~Φ fits predict the opposite.

Although, this switch in order is ’significant’ in that the 95% CI for ∆ηAGT,AGC is < 0, the amino acid

Ser2 is used at very low frequency in high expression genes and its 97.5% CI boundary lies very close to

0. (The upper boundary lies at 0.00387 and 0.000634 for the with and without ~Φ ROC SEMPPR fits,

respectively.) As a result, this discrepancy is not strongly supported and warrants further investigation.

In summary, for genes with protein synthesis rates substantially lower than the average, i.e. log10(φ̂) .

−0.5, codon usage is largely determined by mutation bias terms ∆M . For about half of the amino

acids (e.g. Cys, Lys, and Pro), in genes with protein synthesis rates 10 or more times greater than

average, i.e. log10(φ̂) ≥ 1, codon usage is largely determined by selection for the codon with the smallest

translational inefficiency ∆η. This result is largely consistent with the frequent assumption that in

the set of genes with the highest expression levels the most translationally efficient codon dominates.

However, for the amino acids (e.g. Ala, Ile, and Arg) selection for reducing η in high expression genes is

substantially tempered by the force of mutation bias.

Estimating Selection on Synonymous Codon Usage

The assumptions of the ROC SEMPPR model imply that the codon specific translational inefficiencies

are independent of codon position within a sequence. As a result, the relative strength of purifying

selection on synonymous codon j in comparison to codon i in a gene with an average protein synthesis

rate φ is,

S (∆ηi,j , φ) = −∆ηi,j φ. (5)

We remind the reader that ∆η includes the effective population size, Ne, in its definition. As a result, our

selection coefficients S are measured relative to the strength of genetic drift, 1/Ne, as is commonly done.

The distribution of S across all genes for each alternative to an amino acid’s reference codon are illustrated

in Figure 7 and summarized in Table 1. Tables with genome wide gene and codon specific estimates of

S can found in the Supporting Materials. Recall that S is scaled by φ and that the distribution of φ

values across genes appears to follow a heavy tailed distribution. As a result even though, by definition,

the average value of φ is 1, the large majority of genes have φ values less than 1. As a result, although

purifying selection on synonymous codons is universal, its selection coefficients are usually quite small

(i.e. > −0.5). Nevertheless, because our framework utilizes information on CUB held across genes, we
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can clearly detect the signature of selection at the genome level, specifically in the form of ∆η values

whose posterior credibility intervals differ from 0, while other approaches might fail.

(Approximate Location of Figure 7)

(Approximate Location of Table 1)

Figure 8 compares our without ~Φ ROC SEMPPR based estimates of S to those estimated using

the FMutSel phylogenetic model of Yang and Nielsen (2008) using PAML (Yang, 2007) for the 106

genes in the Rokas et al. (2003) dataset. Overall we observe reasonable qualitative agreement between

the two models with the majority of codon specific predictions having correlation coefficients ρ > 0.3.

Unfortunately, while PAML provides maximum likelihood point estimates of parameters, it does not

provide any confidence intervals for these parameters. Given the large number of parameters (> 60)

estimated from each coding sequence by FMutSel, the confidence intervals for each parameter is likely to

be large and, hence, could explain much of the variation we observe between ROC SEMPPR and FMutSel

parameter estimates. Nonetheless, for 85% of the codons examined (34/40), we observe is a significant

(p < 0.05) and positive linear relationship between the ROC SEMPPR and the FMutSel estimates of

S (see Table S11). Of the remaining 6 codons, half exhibit a positive, but non-significant relationship

between ROC SEMPPR and FMutSel’s estimates of S, while the other half exhibit a negative, but

again non-significant, relationship between estimates of S. Thus for 92% of the codons, both the ROC

SEMPPR and FMutSel estimates of S agree qualitatively.

The three exceptions to this qualitative agreement are codons CGT (Arg), TCT (Ser4), and ACT

(Thr) and it is worth noting two points. First, the central 95% CI for CGT (Arg) overlaps with 0 in both

the with and without ~Φ ROC SEMPPR model fits. Second, the Ser4 codon TCT and Thr codon ACT

are two of the four codons that ROC SEMPPR indicates have been misidentified as ‘optimal’ codons in

the past. Relative to the ROC SEMPPR reference codons, TCT and ACT have small ∆η values, ∼ 0.01,

and ∼ 0.05 respectively, and large ∆M values, ∼ −0.5 for both. Thus, it appears in these last two cases

the FMutSel model is misattributing the CUB towards these codons to selection rather than mutation

(see Figure 6).

(Approximate Location of Figure 8)

Discussion

Recent advances in technology have led a remarkable and continuing decrease in the cost of genome

sequencing. What is now needed are robust models and computational tools that allow researchers to

access the information encoded within these genomes. Several models have been proposed that estimate

selection coefficients of all 61 sense codons either on a whole gene basis or on a site-by-site basis (Tamuri
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et al., 2012; Rodrigue et al., 2010; Yang and Nielsen, 2008). While important advances, these models fail

to leverage information on CUB encoded across genes. In contrast, ROC SEMPPR estimates selection

coefficients and other key parameters by assuming a common directionality of selection on CUB, but

where the strength of selection varies with protein synthesis rate.

As a result, ROC SEMPPR provides a modeling framework which can quickly extract information on

codon specific translational inefficiencies ∆η, mutation biases ∆M , and gene specific estimates of protein

synthesis rates ~φ, using only genome wide patterns of CUB. This ability stems from the hypotheses that

the intergenic variation in patterns of CUB observed within a genome reflect a lineage’s evolutionary

responses to selection against inefficient protein translation as well as mutation bias. Our results clearly

show that these CUB patterns contain remarkably large amounts of useful quantitative information and

the use of carefully constructed, mechanistically driven mathematical models can greatly improve our

ability to access and interpret this information. Indeed, we find that for S. cerevisiae ROC SEMPPR’s

without ~Φ estimates of ∆M , ∆η, and ~φ values match almost exactly with the with ~Φ estimates of these

parameters. By removing the need for gene expression data ~Φ and, instead, providing reliable predictions

of their average protein synthesis rates ~φ, the methods developed here should be especially helpful for

molecular-, systems-, and micro-biologists for whom genomic sequence data are both abundant and

inexpensive to obtain. For example, the protein translation rates we estimate ~φ should contain useful

information about the physiology and ecology of the organism. Indeed, for the large number of sequenced

micro-organisms that cannot be easily cultured in the laboratory, their genome sequence may become

the primary source of information about their biology for the near future.

Of course ROC SEMPPR may not work for all organisms. For example, some organisms may evolve

under Ne values too small for adaptation in CUB to occur. Under these conditions, our method should fail

to confidently identify the selectively preferred codon (i.e. our credibility intervals for our ∆η parameters

will overlap with 0). However, because our estimates of ∆η are based on the analysis of the entire

genome simultaneously rather than the combination of independent assessments of individual genes, our

method may be able to detect the signature of selection on CUB in organisms where it previously went

undetected. Alternatively, there may be organisms where Ne is so large that, as a result, there is not

enough variation in CUB to reliably estimate our parameters. Assuming we retain our flat priors on

∆η, in these cases we expect our estimates of ∆η for the most selectively favored codons to continually

increase in magnitude rather than eventually stabilizing. Such behavior reflects a lack of information in

the data rather than a flaw in our model and has been observed in other approaches, such as those using

inter- and intra-specific variation (Yang and Nielsen (2008) and Lawrie et al. (2013), respectively). ROC

SEMPPR may also fail to work with organisms whose adaptation in CUB are driven by more complex

or less consistent selective forces. If these forces are uncorrelated across amino acids within a gene or
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varied greatly with position within a gene, then our method should not be able to confidently identify

the selectively preferred codons, similar to the case with of organisms with small Ne.

While direct, codon specific estimates of ∆M and ∆η do not exist, data from mutation accumulation

lines and tRNA copy number can be used as proxies. Reassuringly, we observe strong and consistent

agreement between ROC SEMPPR’s parameter estimates and these proxies. In addition, when compar-

ing ROC SEMPPR’s estimates of S to the FMutSel model we observe general agreement between our

estimates with the three key exceptions likely due to relatively small differences in translational ineffi-

ciencies between these synonymous codons and their most efficient alternative and strong mutation bias

against the most efficient, which is misinterpreted by FMutSel as selection. In contrast, the selective

values S on synonymous codon usage we estimate using ROC SEMPPR are substantially smaller than

those estimated by Lawrie et al. (2013) based on intra-specific variation in four fold degenerate sites for

Drosophila melanogaster. While we have no immediate explaination for these differences we do note that

Lawrie et al. (2013) acknowledge that the high S values they estimate are the exception rather than the

rule for population genetic studies, including those looking at non-synonymous substitutions.

Because of ROC SEMPPR’s derivation from population genetics, it should be possible to take any

observed intra-specific variation into account by expanding our codon counts likelihood function in equa-

tion (8) to be calculated across the polymorphic alleles in proportion to their frequencies. Further, given

that the directionality of selection in ROC SEMPPR is estimated using information from across the

genome, our ability to detect site specific violations of the model should be much greater than when

analyzing the CUB of each gene separately. Expanding ROC SEMPPR to utilize inter-specific variation,

however, is more complex and will require expanding the model to include the effects of non-synonymous

substitutions and phylogenetic history.

For organisms that can be cultured in the laboratory, researchers can utilize experimental techniques

to measure mRNA, ribosome profiles, and protein abundances. Even though impressive gains have been

made in our ability to measure these quantities at a genome scale, abundance data still have limitations.

For example, mRNA abundance measurements have been shown to vary substantially between labs

using the same strain and the same general conditions (Wallace et al., 2013). Indeed, our posterior

mean estimate of the error in mRNA abundance measurement (s̄ε = 0.929) indicates that the error in

a given measurement ranges over an order of magnitude. In terms of protein abundance measurements,

most proteomic studies have difficulty quantifying membrane bound proteins [Durr et al. (2004); Babu

et al. (2012); Chen et al. (2013)]. Furthermore, both transcriptomic and proteomic measurements are,

by their very nature, restricted to the specific growth conditions used. Unfortunately, the frequency with

which organisms outside of the lab encounter such conditions is generally unknown. This is particularly

important for understanding a pathogenic organism, where expression of genes involved in its persistence
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and spread are highly dependent on their hosts and are difficult to mimic in vitro.

The predictions of protein synthesis rates ~φ generated by ROC SEMPPR contain independent and

complementary information to that found in mRNA or protein abundance measurements. As a result,

this information can be used on its own or in combination with other measures of gene expression. For

example, our work provides estimates of protein production based on the average environment that an

organism’s lineage has experienced. These estimates of average gene expression can be used to further

contextualize gene expression measurements in different environments. For example, comparing the

φ values for proteins involved in different, environment specific pathways should give researchers an

understanding of the relative importance these environments in the lineage’s evolutionary history. At a

finer scale, gene-specific incongruences between mRNA abundance measurements and φ estimates may

indicate genes undergoing extensive post-transcriptional regulation, a hypothesis that can be evaluated

experimentally.

The fact that the additional information provided by the ~Φ data from Yassour et al. (2009) leads

to a relatively small increase in the quality of our predictions of ~Φ data from other labs may seem

surprising. However, we believe this behavior indicates that the information in ~Φ about gene specific

protein synthesis rates is largely redundant with the information held within the CUB patterns within a

gene and across a genome.

Of course a skeptic might proffer a different interpretation, i.e. the model is somehow ignoring or

insensitive to the information in ~Φ. We, however, believe this is not the case for the following reasons.

First, ROC SEMPPR was carefully formulated to combine the information from independent ~Φ mea-

surements and the CUB of each gene in a straightforward and logical manner (See Supporting Materials:

Fitting of Model to Genomic Data and Noisy Measurements and Equation (S1) in particular). Instead of

a priori assuming one source of information is better than the other, ROC SEMPPR actually evaluates

the relative quality of each source of information in explaining the observed bias in codon usage for a

gene across the naa amino acids. Next, given the fact that the 95% Posterior Credibility Intervals for

∆η differ for at least one pair of codons for each amino acid indicates that the information held within

the CUB patterns is reliable. In contrast, ROC SEMPPR’s estimate of the error in ~Φ indicates that

the empirical measurements ~Φ are noisy, consistent with the findings from other studies. For example,

Wallace et al. (2013) looked at the the correlation in ~Φ measurements between independent labs and

found non-trivial disagreement in their values. Finally, and perhaps most convincingly, the without ~Φ

version of ROC SEMPPR treats the φ values as missing values and is able to predict their values to a

similar level of accuracy observed between empirical measurements from different laboratories and using

different platforms (Supporting Figures S4 and S5).

Accessing information on ~Φ using a mechanistic, model based approach as developed here has addi-
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tional, distinct advantages over more ad-hoc approaches frequently used by other researchers. Quantifying

selection on synonymous codons is important for phylogenetic inference. Classical codon substitution

models of protein evolution typically assume that synonymous codons of an amino acid are selectively

neutral. In contrast, our estimates of codon-specific translation inefficiencies ∆η and expression levels ~φ

provide an independent measure of selection on synonymous codons from a single genome. By incorpo-

rating these measures in codon substitution models, researchers would be able to measure selection on

non-synonymous changes either within a gene or on a site-by-site basis.

In addition, current measures to identify the selective regime in which a gene evolves, e.g. posi-

tive, negative or nearly-neutral, are based on estimating the number of non-synonymous to synonymous

changes (dN/dS) (Li et al., 1985; Nei and Gojobori, 1986; Yang and Nielsen, 2000) or polymorphism data

(McDonald and Kreitman, 1991). These tests generally assume that synonymous changes are neutral.

However, (Spielman and Wilke, 2015) have recently shown, ignoring selection on synonymous changes

can lead to a false positive signal of a gene evolving in response to diversifying selection. By using our

codon-specific estimates of translation inefficiencies, researchers will now be able to explicitly account for

biases in estimates of dS due to selection on synonymous changes (Spielman and Wilke, 2015).

Estimates of codon-specific translation inefficiencies are also important for practical applications such

as codon-optimization algorithms that are used to increase heterologous gene expression, for e.g. insulin

expression in E. coli. When heterologous genes are expressed in a particular model organism such as

E. coli or S. cerevisiae, their codon usage is ‘optimized’ by assuming that the most frequently used

codon in a set of highly expressed genes is the optimal one. This approach implicitly assumes that

natural selection against translational inefficiencies overwhelms any mutation bias. In several amino

acids that use more than two synonymous codons, e.g. Ser4, Thr and Val, genes with highest expression

are more often encoded by the mutationally favored, second-best codon rather than the mutationally

disfavored ‘optimal’ codon. As a result, relying on the codon usage of highly expressed genes appears to

be overly simplistic in the case of the S. cerevisiae genome and, if our inferences are correct, has led to

misidentification of the ‘optimal’ codon.

In addition to codon-specific translation inefficiencies ∆η, we also estimate codon-specific mutation

biases ∆M . We find that the direction of mutation biases between synonymous codons is consistent

across all amino acids and in the same direction as genomic AT content. However, as we documented in

Shah and Gilchrist (2011a), ∆M for similar sets of nucleotides differ significantly between amino acids.

For instance, in the case of two-codon amino acids with C-T wobble, we find that ∆MNNC,NNT ranges

from 0.27 to 0.75. For genes with low expression levels (i.e. φ < 1), this corresponds to ratios of T-ending

codons to C-ending codons between amino acids ranging from 1.3 to 2.1. One possible explanation

for this wider than expected range of mutation biases could be context-dependence of mutation rates.
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Recent high-throughput mutation accumulation experiments in yeast support this idea, estimating that

the mutation rate at a particular nucleotide depends on the context of surrounding nucleotides: the C

nucleotide in the context of CCG has several fold higher mutation rate than in the context of CCT (Zhu

et al., 2014).

Despite the numerous advances outlined above, our work is not without its limitations. One impor-

tant limitation stems from our assumption that codons contribute to the cost-benefit ratio of protein

translation in an additive manner. While this assumption is consistent with certain costs of protein

translation, such as ribosome pausing, it ignores many others selective forces potentially shaping the evo-

lution of CUB. For example, the cost of nonsense errors, i.e. premature termination events, are generally

expected to increase with codon position along an ORF and, thus, lead to a non-additive contribution

of a given codon to the cost-benefit ratio η (Gilchrist et al., 2009). Similarly, if one assumes that the

main effect of missense errors is to reduce the functionality of the protein produced, then the cost of

these errors is expected to depend greatly on specific details such as the structural and functional role of

the amino acid at which the error occurs and the physiochemical differences between the correct and the

erroneously incorporated amino acids. Finally, the pausing time at a codon is also influenced by several

factors such as downstream mRNA folding (Yang et al., 2014), presence of polybasic stretches (Brandman

et al., 2012) as well as co-translational folding of the growing polypeptide (Thanaraj and Argos, 1996;

Pechmann and Frydman, 2013). While the contributions of these factors to ribosomal pausing times are

often idiosyncratic and vary widely between genes, they can all influence the cost-benefit ratio η. The

situation becomes even more complex and non-linear when considering how nonsense and missense errors

along with various factors influencing pausing time costs combine to affect η. In all of these situations,

the nonlinear mapping between a codon sequence and η makes direct evaluation of the likelihood func-

tion difficult. In such situations alternative, approximate methods and simulation techniques, such as

those developed by (Murray et al., 2006), will become necessary. Expanding our approach to include

these additional selective forces should allow us to quantitatively evaluate the separate contributions of

ribosome pausing time, nonsense errors, and missense errors have made to the evolution of CUB for a

given species. Doing so will allow us to address the long held goal in molecular and evolutionary biology

of accurately quantifying the factors contributing to the evolution of CUB within a coding sequence and

across a genome.
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Methods and Materials

Modeling Natural Selection on Synonymous Codons

Following the notation and framework introduced in Gilchrist (2007) and Shah and Gilchrist (2011a),

we assume that for each gene, the organism has a target, average protein synthesis rate φ. Protein

synthesis rates have units of 1/time; for convenience and ease of interpretation, we define our time units

such that the average or expected protein synthesis rate across the genome is one, i.e. E(φ) = 1. The

cost-benefit ratio η(~c) represents the expected cost, in ATPs, to produce one functional protein from the

coding sequence ~c = {c1, c2, . . . cn} where ci represents the codon used at position i in a protein of length

n. In its most general form, η(~c) = E(Cost|~c)/E(Benefit|~c), where E(Cost) is the expected direct and

indirect energetic costs incurred by a cell when a ribosome initiates translation of a transcript containing

~c. Similarly, E(Benefit|~c) is the expected benefit, relative to a complete and error free protein, received by

a cell when a ribosome initiates translation of a transcript containing ~c. By definition, in the absence of

translation errors, ribosomes will only produce complete and error free proteins, i.e. for ROC SEMPPER

E(Benefit) = 1. Thus any differences in η are the result of differences in E(Cost) between alternative ~c’s

and E(Cost) simplifies to a1 +
∑n
i=1(a2 + v t(ci)) where a1 is the direct and indirect cost of translation

initiation, a2 is the direct cost of peptide elongation (4 ATPs/amino acid), t(ci) is the average pausing

time a ribosome takes to translate codon ci, and v scales this indirect cost of ribosome pausing from

units of time to ATPs. Based on these definitions, η(~c)φ represents the average energy flux an organism

must expend to meet its target production rate for a given protein. If we assume that every ATP/time

spent leads to a small, proportional reduction in genotype fitness q, then the fitness of a given genotype

is,

W (~c) ∝ exp [−q η(~c)φ] . (6)

In the simplest scenarios, such as when there is selection to minimize ribosome pausing during protein

synthesis, a synonymous codon i makes an additive, position independent contribution to η. In this

scenario, the evolution of the codons in ~c is independent between positions. As a result, the information

held within ~c can be summarized by the number of times each synonymous codon is used within ~c.

Given these assumptions, within the ORF of a given gene the stationary probability of observing a set of

codon counts ~k = {k1, . . . , kna} for a given amino acid with na synonymous codons within ~c will follow

a multinomial distribution with the probability vector ~p = {p1, . . . , pna}. Here, for i = 1, . . . , na,

pi
(
~∆M, ~∆η, φ

)
=

exp [−∆Mi,1 −∆ηi,1φ]∑na
j=1 exp [−∆Mj,1 −∆ηj,1φ]

(7)
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where ∆Mi,1 is a measure of codon specific mutation bias and ∆ηi,1 is a measure of translational ineffi-

ciency. Specifically, ∆Mi,1 = ln (p1/pi) |φ=0, that is the natural logarithm of the ratio of the frequencies of

synonymous codon 1 to i in the absence of natural selection. Following the detailed balance assumptions

in our population genetics model, in the specific cases where codons i and 1 can mutate directly between

each other, ∆Mi,1 is also equal to the log of the ratio of the mutation rates between the two codons

(Sella and Hirsh, 2005a; Shah and Gilchrist, 2011a; Wallace et al., 2013). Following Sella and Hirsh

(2005a), for Ne � 1, for both a haploid and diploid Fisher-Wright populations, we scale the differences

in the contribution two synonymous codons make to η relative to genetic drift, i.e. ∆ηi,j = 2Ne (ηi − ηj).

Because the reference codon 1 is determined by pausing time values, ∆Mi,1 values can be both negative

and positive, unlike ∆η1,i.

Fitting the Model to Genomic Data

Our main goal is to estimate codon specific differences in mutation bias, ~∆M , translational inefficiencies,

~∆η, and protein synthesis rates for all genes, ~φ = {φ1, φ2, . . . φn} from the information encoded in the

codon usage patterns found across a genome. To test our approach we used the S. cerevisiae S288c genome

file orf_coding.fasta.gz which was posted on 03 February 2011 by Saccharomyces Genome Database

http://www.yeastgenome.org/ (Engel et al., 2014)). This data contains 5,887 genes and consists of the

ORFs for all “Verified” and “Uncharacterized” genes as well as any transposable elements. To fit the

with ~Φ model we used RNA-seq derived mRNA abundance measurements from Yassour et al. (2009). We

combined the abundance measures from the four samples, YPD0.1, YPD0.2, YPD15.1, and YPD15.2,

taken during log growth phase and used the geometric mean of these values as a proxy for relative protein

synthesis rates φ′. As is commonly done by empiricists, we rescaled our φ′ values such that they summed

to 15,000. Because our with ~Φ model fits estimate the scaling term, exp(AΦ), the only effect of this

rescaling is on our estimate of AΦ. To reduce noise in the ~Φ data, we only used genes with at least three

non-zero measurements. The intersection of 5,887 DNA ORF sequences and 6,303 mRNA abundance

measurements produced 5,346 ORF’s in common to both datasets. These 5,346 genes made up the final

dataset used for ROC SEMPPR’s with and without ~Φ model fits.

Using an MCMC approach we sample from the posterior distribution, according to the equation

naa∏
i=1

ng∏
j=1

f
(
~∆M i, ~∆ηi, φj , sφ

∣∣∣~ki,j) ∝ naa∏
i=1

ng∏
j=1

f
(
~ki,j

∣∣∣~pi,j ( ~∆M, ~∆η, φ
)
, ni,j

)
f (φj |sφ) f (sφ) (8)

where the likelihood of the codon counts, ~ki,j , are naturally modeled as a multinomial distribution

(Multinom) for the amino acid i in the ORF of gene j as defined in Equation (7), ~pi,j is an inverse

multinomial logit function (mlogit−1) of ~∆M i, ~∆ηi, and φj , and f (φj |sφ) is the prior for the protein
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synthesis rate φj ∼ LogN(mφ, sφ). In order to enforce the restriction that E[φj ] = 1 for all genes we

include the constraint that mφ = −s2
φ/2. As a result there is only one free parameter for the distribution

f(φj |sφ). Further, we propose a flat prior for sφ, i.e. f(sφ) = 1 for sφ > 0.

Figure 9 presents an overview of the structure of our approach, but to summarize,

~ki,j ∼ Multinom(ni,j , ~pi,j),

~pi,j = mlogit−1(− ~∆M i − ~∆ηiφj),

φj ∼ LogN(−s2
φ/2, sφ), and

~∆M i, ~∆ηi, sφ ∝ 1.

Our MCMC routine provides posterior samples of the genome wide parameters ~∆η, ~∆M , and sφ and

the gene specific, protein synthesis parameters ~φ. We refer to this model as the ROC SEMPPR without

~Φ model.

(Approximate Location of Figure 9)

We refer to the more general model which incorporates information on φj from noisy protein synthesis

measurements or their proxy, such as mRNA abundances, as the with ~Φ model. This model differs from

that of Wallace et al. (2013) in that (a) we assume φj is drawn from a log-normal distribution rather

than an asymmetric Laplace distribution, (b) we include and estimate an explicit empirical scaling term

AΦ for the ~Φ data, and (c) as in the without ~Φ approach, we force the prior for φj , f(φj |sφ), to have

E[φj ] = 1 instead of rescaling estimates of φj as a post-processing step. This prevents the introduction

of additional biases in our parameter estimates. See the Supporting Materials for more details.

Model Fitting Details: We briefly describe the model fitting procedure here; full details can be

found in Chen et al. (Prep). The code was originally based on a script published by Wallace et al. (2013),

which was modified extensively and expanded greatly. Unless otherwise mentioned, all model fits were

carried out using R version 3.0.2 (R Core Team, 2013) using standard routines, specifically developed

routines, and custom scripts. All code was run on a multicore workstation with AMD Opteron 6378

processors. For both ROC SEMPPR’s with and without model fits, it takes <30 min and less than 3GB

of memory to run 10,000 iterations of a chain when using 5,346 genes of S. cerevisiae S288c genome.

Each MCMC sampling iteration was divided into three parts:

(1) conditional on a new set of parameters, propose new ~∆M and ~∆η values independently for each

amino acid,

(2) conditional on the updates of (1), propose a new sφ value for the prior distribution of ~φ, and

(3) conditional on the updates of (2), propose new ~φ values independently for each gene. Update the

new set of parameters and return to (1).
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In all three phases, proposals were based on a random walk with step sizes normally or log-normally

distributed around the current state of the chain.

In order to generate reasonable starting values for ~φ in the without ~Φ version of ROC SEMPPR, we

first calculated the SCUO value for each gene (Wan et al., 2006) and then ordered the genes according

to these corresponding values. We then simulated a random vector of equal dimension to ~φ from a

LogN(m = −
(
s

(0)
φ

)2

/2, s = s
(0)
φ ) distribution where s

(0)
φ represents the initial value of sφ and controls

the standard deviation of φ. Next, these random ~φ variates were rank ordered and assigned to the

corresponding gene of the same SCUO rank. As a result, the rank order of a gene’s initial φj value, φj,0,

was the same as the rank order of its SCUO value. We tried a variety of s
(0)
φ values and they all converged

to similar parameter values. For the with ~Φ model, we tried both the SCUO based approach and using

the ~Φ data to initialize our values of φ. In this second scenario, we set φ
(0)
j = X̄g

j /
∑n
i=1 X̄

g
i where X̄g

j

represents the geometric mean of the observed mRNA abundances for gene j. As in the without ~Φ ROC

SEMPPR model fit, we found the with ~Φ chains consistently converged to the same region of parameter

space independent of the initial φ values. It is worth noting that the structure of the probability function

defined in Equation (7) is such that if the rank order of φ0
i were reversed from their true order, the model

would converge to a similar quality of model fit and the signs of the parameters would change. Thus it is

recommended that model fits be checked to ensure that the final estimates of φ for housekeeping genes,

such as and ribosomal proteins, are much greater than 1.

Treating our initial protein synthesis rates φ for the entire genome as explanatory variables, the initial

values for ~∆M and ~∆η were generated via multinomial logistic regression using the vglm() function of

the VGAM package (Yee, 2013). We also used the covariance matrix returned by vglm() as the proposal

covariance matrix for ~∆M and ~∆η for each amino acid. In order to make our random walk more efficient,

we used an adaptive proposal function for all parameters in order to reach a target range of acceptance

rates between 20 and 35%. For example, the covariance matrix of the step sizes was multiplied by a

scalar value that was then increased or decreased by 20% every 100 steps when the acceptance rate of a

parameter set was greater than 35% or less than 20%, respectively. The variance terms of the random

walks for the ~φ and the global parameter sφ were also adjusted in a similar manner.

The results presented here were generated by running the MCMC algorithm for 10,000 iterations and,

after examining the traces of the samples for evidence of convergence, selecting the last 5,000 iterations as

our posterior samples. The arithmetic means of the posterior samples were used as point estimates based

on the mean of our posterior samples. Posterior credibility intervals (CI) are generated by excluding the

lower and upper 2.5% of samples. Additional details on the model fit can be found in the Supporting

Materials and in (Chen et al., Prep). The code is implemented in an R package cubfits (Chen et al.,

2014) which is freely available for download at http://cran.r-project.org/package=cubfits.
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Estimating Selection Coefficients using FMutSel

In order to evaluate the consistency of our estimates of S = −∆η φ with other approaches, we used the

dataset from Rokas et al. (2003) which consisted of 106 aligned genes from 8 yeast species. Details of

the model fitting can be found in Kubatko et al. (view)(available at bioRxivdoi:http://dx.doi.org/

10.1101/007849), but briefly, we used the maximum likelihood tree found by Rokas et al. (2003) and

then generated MLEs of of the stationary probability of a given codon under the FMutSel model from

Yang and Nielsen (2008) using CODONML in PAML 4.4 (Yang, 2007). Using the same notation as in

Yang and Nielsen (2008) we have,

πJ = πj1πj2πj3 exp[F ]

where, for a given gene, πJ represents the stationary probability of observing codon J given nucleotide

specific mutational bias terms πj1 , πj2 , and πj3 and where F = ln(Fitness)2Ne. It follows that the

comparable selection coefficients on synonymous codon usage relative to our reference codon 1 is,

SYN = ∆Fi,1 = Fi − F1 = ln (πI/π1) + ln (πj1πj2πj3/π11π12π13) (9)

A list of these parameter estimates can be found in the Supporting Materials.
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Quantile
AA Codon S̄ var(S) 1% 5% 25% 50% 75% 95% 99%

A GCA -0.4743 0.6171 -4.3994 -1.7817 -0.4715 -0.2096 -0.1135 -0.0620 -0.0466
A GCC -0.0648 0.0115 -0.6014 -0.2436 -0.0645 -0.0287 -0.0155 -0.0085 -0.0064
A GCG -0.6420 1.1306 -5.9551 -2.4117 -0.6382 -0.2837 -0.1536 -0.0839 -0.0631
C TGC -0.3777 0.3913 -3.5032 -1.4187 -0.3754 -0.1669 -0.0903 -0.0493 -0.0371
D GAT -0.1201 0.0396 -1.1142 -0.4512 -0.1194 -0.0531 -0.0287 -0.0157 -0.0118
E GAG -0.2527 0.1752 -2.3440 -0.9493 -0.2512 -0.1117 -0.0605 -0.0330 -0.0248
F TTT -0.2741 0.2061 -2.5425 -1.0297 -0.2725 -0.1211 -0.0656 -0.0358 -0.0269
G GGA -0.8286 1.8834 -7.6861 -3.1127 -0.8237 -0.3662 -0.1982 -0.1083 -0.0815
G GGC -0.4436 0.5398 -4.1149 -1.6664 -0.4410 -0.1960 -0.1061 -0.0580 -0.0436
G GGG -0.7052 1.3641 -6.5412 -2.6490 -0.7010 -0.3116 -0.1687 -0.0921 -0.0693
H CAT -0.1966 0.1060 -1.8233 -0.7384 -0.1954 -0.0869 -0.0470 -0.0257 -0.0193
I ATA -0.8874 2.1604 -8.2318 -3.3337 -0.8822 -0.3922 -0.2123 -0.1159 -0.0872
I ATT -0.0906 0.0225 -0.8403 -0.3403 -0.0901 -0.0400 -0.0217 -0.0118 -0.0089

K AAA -0.2661 0.1943 -2.4686 -0.9997 -0.2646 -0.1176 -0.0637 -0.0348 -0.0262
L CTA -0.2636 0.1906 -2.4452 -0.9902 -0.2620 -0.1165 -0.0631 -0.0344 -0.0259
L CTC -0.7185 1.4162 -6.6650 -2.6991 -0.7143 -0.3175 -0.1719 -0.0939 -0.0706
L CTG -0.4662 0.5961 -4.3242 -1.7512 -0.4634 -0.2060 -0.1115 -0.0609 -0.0458
L CTT -0.4601 0.5807 -4.2679 -1.7284 -0.4574 -0.2033 -0.1101 -0.0601 -0.0452
L TTA -0.2128 0.1242 -1.9741 -0.7995 -0.2116 -0.0941 -0.0509 -0.0278 -0.0209
N AAT -0.3164 0.2746 -2.9347 -1.1885 -0.3145 -0.1398 -0.0757 -0.0413 -0.0311
P CCC -0.5061 0.7027 -4.6948 -1.9013 -0.5031 -0.2237 -0.1211 -0.0661 -0.0498
P CCG -0.8002 1.7567 -7.4230 -3.0061 -0.7955 -0.3537 -0.1914 -0.1046 -0.0787
P CCT -0.2319 0.1476 -2.1513 -0.8712 -0.2306 -0.1025 -0.0555 -0.0303 -0.0228
Q CAG -0.3840 0.4046 -3.5624 -1.4427 -0.3818 -0.1697 -0.0919 -0.0502 -0.0378
R AGG -0.5378 0.7935 -4.9890 -2.0204 -0.5347 -0.2377 -0.1287 -0.0703 -0.0529
R CGA -1.7330 8.2391 -16.0757 -6.5103 -1.7228 -0.7659 -0.4146 -0.2264 -0.1704
R CGC -0.5568 0.8504 -5.1646 -2.0915 -0.5535 -0.2461 -0.1332 -0.0727 -0.0547
R CGG -1.5092 6.2486 -13.9999 -5.6696 -1.5003 -0.6670 -0.3611 -0.1972 -0.1484
R CGT -0.0080 0.0002 -0.0744 -0.0301 -0.0080 -0.0035 -0.0019 -0.0010 -0.0008
S TCA -0.3942 0.4264 -3.6571 -1.4810 -0.3919 -0.1742 -0.0943 -0.0515 -0.0388
S TCG -0.4927 0.6660 -4.5705 -1.8509 -0.4898 -0.2178 -0.1179 -0.0644 -0.0484
S TCT -0.0121 0.0004 -0.1120 -0.0454 -0.0120 -0.0053 -0.0029 -0.0016 -0.0012
T ACA -0.4278 0.5020 -3.9679 -1.6069 -0.4252 -0.1890 -0.1023 -0.0559 -0.0421
T ACG -0.6503 1.1603 -6.0327 -2.4431 -0.6465 -0.2874 -0.1556 -0.0850 -0.0639
T ACT -0.0482 0.0064 -0.4468 -0.1810 -0.0479 -0.0213 -0.0115 -0.0063 -0.0047
V GTA -0.6310 1.0922 -5.8529 -2.3703 -0.6272 -0.2789 -0.1509 -0.0824 -0.0620
V GTG -0.4308 0.5092 -3.9966 -1.6185 -0.4283 -0.1904 -0.1031 -0.0563 -0.0424
V GTT -0.0570 0.0089 -0.5288 -0.2142 -0.0567 -0.0252 -0.0136 -0.0074 -0.0056
Y TAT -0.2857 0.2239 -2.6501 -1.0732 -0.2840 -0.1263 -0.0683 -0.0373 -0.0281
Z AGC -0.0248 0.0017 -0.2297 -0.0930 -0.0246 -0.0109 -0.0059 -0.0032 -0.0024

Table 1: Summary statistics for gene specific selection coefficients on synonymous codon usage S = −∆η φ
from the without ~Φ ROC SEMPPR model fit to the S. cerevisiae genome. The selection coefficient S was
calculated relative to the most translationally efficient codon for a given amino acid on a gene by gene basis.
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Figure 1: Comparison of with and without ~Φ ROC SEMPPR estimates for codon specific differences in
translational efficiencies ∆η which have units 1/(t protein) where the units of time are set such that the
average protein synthesis rate across the genome, φ̄, equals 1. To improve legibility of the plots the two codon
amino acids have been combined into two plots and all of the amino acids with > 2 codons into separate
plots. The dashed blue line represents the 1:1 line between axes and error bars indicate the 95% posterior
credibility intervals (CIs) for each parameter. For both the with and without ~Φ fits of ROC SEMPPR, all
codons but one, Arg codon CGT, have CIs that do not overlap with 0. As illustrated in the last plot, a
linear regression between estimates of ∆η for all codons produces a correlation coefficient ρ > 0.999.
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Figure 2: Comparison of with and without ~Φ ROC SEMPPR estimates for codon specific differences in
mutation biases terms ∆M which are unitless. Specifically, ∆Mi,1 equals the natural logarithm of the ratio
of the frequencies of synonymous codon 1 to i in the absence of natural selection. To improve legibility of
the plots the two codon amino acids have been combined into two plots and all of the amino acids with > 2
codons into separate plots. The dashed blue line represents the 1:1 line between axes and error bars indicate
the 95% posterior credibility intervals (CIs) for each parameter. For both the with and without fits of ROC
SEMPPR, all codons have CIs that do not overlap with 0. As illustrated in the last plot, a linear regression
between estimates of ∆M for all codons produces a correlation coefficient ρ > 0.998.
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Figure 4: Comparison of without ~Φ estimates of codon specific translational inefficiencies ∆η and estimates
of differences in ribosome pausing times, ∆t based on tRNA gene copy number and wobble inefficiencies.
For each amino acid the codon with the shortest pausing time is used as a reference and are not shown
because, by definition their ∆η values are 0. Pearson correlation coefficient ρ for all of the codons is given.
The dashed blue line represents the 1:1 line and the red line represents the best fit linear regression line.
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Figure 5: Evaluation of predicted gene expression levels between models and empirical measurements from
Yassour et al. (2009). (a) Comparison of with and without ~Φ ROC SEMPPR estimates of protein synthesis

rates, φ̂. The units for φ are protein/t and time t is scaled such that the prior for φ satisfies E(φ) = 1. Note

the very strong correlation between the with and without ~Φ estimates of φ for the high expression genes.
(b) Comparison of without ~Φ estimates of φ and empirical measurements of mRNA abundances, ~Φ. The
empirical mRNA abundance measurements, [mRNA], are being used here as a proxy for protein synthesis
rates, i.e. [mRNA] ∝ protein/t. The measurements are scaled such that the mean [mRNA] value is 1.
Pearson correlation coefficients ρ are given and the dashed gray line indicates 1:1 line.
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Figure 6: Model predictions and observed codon usage frequencies as a function of estimated protein synthesis
rate φ for the S. cerevisiae S288c genome. The units for φ are protein/t and time t is scaled such that the
prior for φ satisfies E(φ) = 1. Each amino acid is represented by a separate subplot. Solid, dashed, and

dotted lines represent the without ~Φ, with ~Φ ROC SEMPPR model fits, and a simple logistic regression
approach where the estimation error in ~Φ is ignored, respectively. None of the parameter estimates’ 95%
Credibility Intervals overlap with 0 except ∆ηCGT,AGA. Genes are binned by their expression levels with
solid dots indicating the mean codon frequency of the genes in the respective bin. Error bars indicate the
standard deviation in codon frequency across genes within a bin. For each amino acid, the codon favored by
natural selection for reducing translational inefficiency is indicated by a •. The four ◦ indicate codons that
have been previously identified as ‘optimal’ but our ROC SEMPPR model fits indicate these codons actually
are the second most efficient codons. A histogram of the φ̂ values is presented in the lower right corner.
Estimates of protein synthesis rates φ̂ are based on the with ~Φ ROC SEMPPR model fits, thus representing
our best estimate of their values.
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Figure 7: Distribution of gene specific selection coefficients on synonymous codon usage S = −∆η φ from
the without ~Φ model fit to the S. cerevisiae genome. Selection coefficient S were calculated on a gene
by gene basis and relative to the most translationally efficient codon for a given amino acid (which is the
codon listed first in the legend). The reference codon, which is most favored by selection and for which,
by definition, S = 0, is listed first within the legend of each panel. Genes with S ≤ −2 were combined
together into a single bin. For reference, the fixation probability of a codon relative to a pure drift process,
Θ(S) = 2S/(1− exp [−2S]), are also plotted (– line). Summary statistics can be found in Table 1.
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Figure 8: Comparison of gene specific selection coefficients on synonymous codon usage S = −∆η φ from
the without ~Φ model fit to the S. cerevisiae genome and those from fitting the FMutSel model from Yang
and Nielsen (2008) for 106 yeast genes used in Rokas et al. (2003) as estimated by Kubatko et al. (view) For
more details see the main text. Selection coefficient S were calculated on a gene by gene basis and relative to
the most translationally efficient codon for a given amino acid (which is the codon listed first in the legend).
Lines indicate linear regression line best fit and the corresponding correlation coefficients are listed as well
with a ∗ indicating model fits with p < 0.05. Under the FMutSel model, monomorphic sites across species
can lead to estimates of S = −∞, these observations are plotted on the x-axis.40
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Figure 9: Dependence graph of with and without ROC SEMPPR methods. Shaded circles ~Φj and ki,j repre-
sent observed data. Dashed circles represent key random model parameters while the solid oval represents a
random hierarchical parameter. Solid black squares provide information on the distributional relationships
between quantities. Large rectangular boxes represent replication of each model component across both
amino acids and genes, e.g. pausing, and mutation parameters differ across amino acids but are common
across genes, while counts ki,j differ across both amino acids and genes.
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Supporting Materials

Supporting Materials for Estimating gene expression and codon specific translational efficiencies, muta-

tion biases, and selection coefficients from genomic data alone by Gilchrist et al. (In Review).

Model Validation using Simulated Data

In order to verify the reliability of the with and without ~Φ ROC SEMPPR model fits we apply both

methods to simulated data. Data set S1, is generated from a model with φ values following a LogN

distribution while S2 uses the estimates of φ obtained from our analysis of the S288c genome with ~Φ

data.

Analysis of both simulated datasets show that both the with and without ~Φ methods produce accurate

and unbiased estimates of the mutation bias parameters ~∆M under all circumstances (ρ > 0.99, Figures

S1 & S2, panels c & d). We also obtained accurate estimates of differences in ribosome pausing times ~∆η.

Both with and without ~Φ ROC SEMPPR model fits produced near perfect recovery of ~∆η parameters

when applied to simulated dataset S1 (ρ > 0.99,Figure S1, panels a & b).

When applied to simulated dataset S2, both with and without ~Φ estimates of ~∆η showed strong

agreement with parameter values (ρ > 0.99, Figure S2, panels a & b). We did, however, observe a small

downward bias in their absolute values (∼ 7%). This is a special case of attenuation bias (Fuller, 1987)

which results from the φ values in S2 being distributed with a heavier right tail than the corresponding

LogN distribution with the same mean and variance.

Comparing the with and without ~Φ ROC SEMPPR estimates of protein synthesis rates, e.g. the

posterior means, φ̄, and the φ values used in our simulations illustrates the predictive power of ROC

SEMPPR. For example, analysis of the simulated dataset S1 indicates that under ideal conditions we

observe correlation coefficients between the log of our protein synthesis estimates, log(φ̄), and the log of

their true values, log(φ) of ∼ 0.96 for both the with and without ~Φ ROC SEMPPR model fits (Figure

S1). Even when the true distribution of φ values violates the LogN assumption as in S2, we still observe

correlation coefficients between log(φ̄) and log(φ) of ∼ 0.96 (Figure S2).

Scaling Bias due to Noise and Inherent Uncertainty

Because measurements of mRNA abundances, whether via microarray florescence or sequencing data,

are usually not scaled to any particular unit, researchers often use either the sum of all the measurements

or their mean value as a means of scaling their results. While it is intuitive to scale the data in this way,

S1
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Figure S1: Comparison of estimated parameters versus actual parameters used to simulate data under the
model ROC SEMPPR. Here φ ∼ LogN as assumed when fitting ROC SEMPPR. (a) Comparison of with
~Φ ROC SEMPPR parameter estimates ∆η vs. actual data generating parameters ∆η. (b) Comparison

of without ~Φ ROC SEMPPR parameter estimates ∆η vs. actual data generating parameters ∆η. (c)

Comparison of with ~Φ ROC SEMPPR parameter estimates ∆M vs. actual data generating parameters
∆M . (d) Comparison of without ~Φ ROC SEMPPR parameter estimates ∆M vs. actual data generating

parameters ∆M . (e) Comparison of with ~Φ ROC SEMPPR parameter estimates φ vs. actual data generating

parameters φ. (f) Comparison of without ~Φ ROC SEMPPR parameter estimates φ vs. actual data generating
parameters φ. S2
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Figure S2: Comparison of estimated parameters versus actual parameters used to simulate data under the
model ROC SEMPPR. Here φ values used in the simulation were based on the with ~Φ fit of the S. cerevisiae
S288c genome dataset and, as a result, do not follow a log-normal distribution as assumed when fitting
ROC SEMPPR: (a) Comparison of with ~Φ parameter estimates ∆η vs. actual data generating parameters

∆η. (b) Comparison of without ~Φ parameter estimates ∆η vs. actual data generating parameters ∆η. (c)

Comparison of with ~Φ parameter estimates ∆M vs. actual data generating parameters ∆M . (d) Comparison

of without ~Φ parameter estimates ∆M vs. actual data generating parameters ∆M . (e) Comparison of with
~Φ parameter estimates φ vs. actual data generating parameters φ. (f) Comparison of without ~Φ parameter
estimates φ vs. actual data generating parameters φ.S3
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Figure S3: Comparison between posterior mean estimates of φ for the with ~Φ model fit and ~Φ data consisting
of mRNA abundance measurements from Yassour et al. (2009).

if the additional measurement noise is not taken into account a subtle biases on φ and ~∆η is introduced.

The nature of the bias can be most easily illustrated when we assume that both the signal and the

noise follow log-normal distributions, however, the effects should be present as long as the noise is not

symmetrically distributed around the underlying signal values.

For example, let φ′i represent the true, unscaled protein synthesis rate of gene i, i.e. ln(φ′i) = ln(φi) +

AΦ and assume that, across the genome, φ′ ∼ LogN(mφ′ , sφ′), such that E(φ′) = exp
[
mφ′ + s2

φ′/2
]
.

Let Φi,j represent a given noisy observation or estimate of φ′i, i.e. Φi,j is part of our ~Φ data set. Also

let Φi,j = φ′iεj where εj ∼ LogN(0, sε) and implies that the observation Φi,j is log normally distributed

around the true values φ′i. Even though the noise is centered around the true value, because the log-normal

distribution is asymmetric, E(Φi|φ′i) = φ′i exp[s2
ε/2] > φ′i and when considering the entire distribution

E(Φ) = exp
[
mφ′ + s2

φ′/2 + s2
ε/2
]

= E(φ′) exp[s2
ε/2]. Thus we see that the mean of our observed values

is actually greater than the mean of the true signals underlying them and, as a result, if one scales by

the sum or the mean of these observed values the resulting values will be biased downward by a factor of

exp[s2
ε/2]. To remove this bias, we introduce an additional scaling term AΦ such that mφ′ = AΦ − s2

φ′/2

and, as a result, E(φ′) = exp [AΦ] and E(Φ) = exp
[
AΦ + s2

ε/2
]
. Our empirical data provides an

estimate of E(Φ) and the inconsistency between the degrees of adaptation in CUB observed across genes

and their expression levels greater than that expected due to genetic drift allows us to estimate sε while,

simultaneously estimating AΦ.

S4
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Finally, we note that simply scaling one’s estimates of x by the mean of these estimates during the

MCMC run also introduces bias. This is because our estimates of φ′i during the MCMC, ΦMCMC are

imprecise and, as a result, their mean value will be overestimated. Assuming our uncertainty in x is log-

normally distributed LogN(m = 0, s = sMCMC), E(ΦMCMC) = E(φ′)E(s2
MCMC/2). As a consequence,

the scaled protein synthesis rates, φ, are biased downward leading to an overestimation in the absolute

differences in pausing times between codons, ~∆η. The effects of this bias are actually evident in Wallace

et al. (2013) Figure 5A where the estimates of the coefficients differ from the values used during their

simulations. Including the parameter AΦ, which explicitly models this scaling terms, provides a simple

way to avoid these issues.

Fitting of Model to Genomic Data and Noisy Measurements

of Protein Synthesis

We generalize our ROC SEMPPR model to include the extraction of information from noisy, unscaled

measurements of protein synthesis for each gene, i.e. ~Φj . This is essentially the same model as Wallace

et al. (2013) except instead of rescaling estimates of ~φ and ~∆η in pre- and post-MCMC data processing

step, we include the estimation of the scaling term AΦ discussed in the last section.

naa∏
i=1

ng∏
j=1

f
(
~∆M i, ~∆ηi, φj , sφ, AΦ, s

2
ε

∣∣∣~ki,j , ni,j , ~Φj) ∝
naa∏
i=1

ng∏
j=1

f
(
~ki,j

∣∣∣~pi,j , ni,j) f (~Φj∣∣∣φj , AΦ, s
2
ε

)
f (φj |sφ) f (sφ) f (AΦ) f

(
s2
ε

)
(S1)

where, as before, ~∆M i and ~∆ηi are the mutation and selection coefficients respectively for amino acid i,

~ki,j are the codon counts following a multinomial distribution for the amino acid i in the ORF of gene j

as defined in Equation (2), ni,j is the sum of all codon counts related to a particular amino acid i in the

gene j, ~pi,j is an inverse multinomial logit function of ~∆M i, ~∆ηi, and φj , f (φj |sφ) is the prior for the

protein synthesis rate φj ∼ LogN(−s2
φ/2, sφ), and f(sφ) = 1.

Additionally, we assume that log
(
~Φj
)
∼ N

(
log (φj) +AΦ, s

2
ε

)
, i.e. the log transformed measurements

log
(
~Φj
)

are offset by a constant AΦ and normally distributed around log(φ) +AΦ with variance s2
ε. We

also assume f(AΦ) = 1 and f(s2
ε) ∝ 1/s2

ε. Both AΦ and s2
ε are genome scale parameters and are estimated

in the with ~Φ model. In the future, the assumption that s2
ε is the same across genes could be relaxed. In

the absence of any ~Φ data, the f
(
~Φj

∣∣∣φj , AΦ, s
2
ε

)
, f (AΦ), and f

(
s2
ε

)
terms are undefined and drop out.
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The system below summarizes the expressions just given describing Equation (S1):

~ki,j ∼ Multinom(ni,j , ~pi,j),

~pi,j = mlogit−1(− ~∆M i − ~∆ηiφj),

log
(
~Φj
)
∼ N(log(φj) +AΦ, s

2
ε),

φj ∼ LogN(−s2
φ/2, sφ),

~∆M i, ~∆ηi, sφ, AΦ ∝ 1, and

f(s2
ε) ∝ 1/s2

ε.

To fit the without and with ~Φ models, we apply the following algorithm with a superscript (i) indicating

the ith iteration of an MCMC chain.

Step 1. Update ~∆M and ~∆η conditional on all other parameters in the ith iteration through a random

walk Metropolis-Hasting (MH) algorithm:

(a) Step i = 0 only.

i. Calculate SCUO value for each gene following Wan et al. (2006).

ii. Generate random ordered values φ(0) by simulating from LogN(m = −s2(0)
φ /2, s = s

(0)
φ ),

and sorting them in the same order as the SCUO values to maintain the rank order of

production rates among genes.

iii. Given φ(0), for each amino acid a estimate initial values ~∆M
(0)

a , ~∆η
(0)

a , and the covariance

matrix of these estimates Σ
(0)
~∆Ma, ~∆ηa

using multinomial logistic regression.

(b) For each amino acid, independently simulate a new proposal for ( ~∆Ma, ~∆ηa) jointly from a

multivariate normal distribution which has mean ( ~∆M
(i)

a , ~∆η
(i)

a ) and covariance c
(i)
a Σ

(0)

( ~∆Ma, ~∆ηa)

with initial adaptive scaling factor c
(0)
a = 1. See Marin and Robert (2007, Chapter 2) for details

on incorporating a covariance matrix in practice.

(c) Accept the proposal with the MH probability based on the acceptance ratio and set ~∆M
(i+1)

a

and ~∆η
(i+1)

a accordingly for all amino acids.

Step 2. Update hyperparameters conditional on all other parameters:

(a) If using the fitting with ~Φ model: update
(
s

(i+1)
ε

)2

∼ Inv-Gamma((ng − 1)/2,
(
S(i)

)2

/2)

where
(
S(i)

)2

=
∑ng
j=1(log ~Φj −A(i)

Φ − log φ
(i)
j )2.

(b) Update s
(i+1)
φ using a random walk MH with proposal distribution LogN(log s

(i)
φ , σ

(i)
sφ ) with ini-

tial value σ
(0)
sφ = 1 for the adaptive scaling factor of MCMC. Also, set m(i+1) = −

(
s(i+1)

)2

/2.

(c) If fitting with ~Φ model: update A
(i+1)
Φ using a random walk MH with proposal distribution

N(A
(i)
Φ , σ

2(i)
AΦ

) with initial value σ
(0)
AΦ

= 0.1 for the adaptive MCMC scaling factor.
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Step 3. Update protein translation rates conditional on Steps 1 and 2 and all other parameters:

For each gene j, generate φj through a random walk MH step:

(a) Propose φj from LogN(φ
(i)
j , σ

(i)
φj

) with initial value σ
(0)
φj

= 1 for the adaptive MCMC scaling

factor.

(b) Accept the proposal with the MH probability based on the acceptance ratio and set φ
(i+1)
j

accordingly.

Step 4. Update all adaptive scaling factors if the acceptance rate of each set of parameters falls outside the

20-35% acceptance rate in the above Steps 1, 2, and 3 in order to sample the posterior distribution

efficiently.

Comparison of Predicted Protein Synthesis Rates φ to In-

dependent mRNA Abundance Measurements

Figure S4 compares posterior mean estimates of φ produced with (using the mRNA abundance measure-

ments of Yassour et al. (2009)) and without ~Φ to four additional lab measurements of mRNA abundances

reported by Arava (2003); Nagalakshmi et al. (2008); Holstege et al. (1998); Sun et al. (2012). These

values can be found in Table S9. Correlation coefficients are provided for each figure and tend to be

slightly higher for estimates generated using the with ~Φ algorithm. Although this seems to indicate that

with ~Φ estimates are superior, it is worth noting that these data measure mRNA expression levels. Be-

cause the without ~Φ algorithm estimates protein synthesis rates, fundamentally a different quantity, we

would expect these estimates to differ. Because the with ~Φ measurement algorithm shrinks the protein

synthesis estimates toward the mRNA expression observations, it is natural that with ~Φ estimates show

higher correlation with measurements from other laboratories.
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Figure S4: Scatter plot comparisons of with (Yassour measurements) and without ~Φ posterior mean estimates
to empirical measurements from four additional laboratories. The units for φ are protein/t and time is scaled
such that the prior for φ satisfies E(φ) = 1. The empirical mRNA abundance measurements, [mRNA], are
being used here as a proxy for protein synthesis rates, i.e. [mRNA] ∝ protein/t. The measurements are
scaled such that the mean [mRNA] value is 1. Pearson correlation coefficients ρ are given and the dashed
black line represents the fit of a linear regression model.S8
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Figure S5: Scatter plot comparisons of with ~Φ (Yassour) and without ~Φ posterior mean estimates to empirical
measurements from three ribosome profiling datasets from three different laboratories. The units for φ are
protein/t and time is scaled such that the prior for φ satisfies E(φ) = 1. The empirical ribosome profiling
measurements were originally in units of reads per kilobase of transcript per million mapped (rpkm) corrected
for mRNA length. These measurements are scaled such that the mean rpkm value is 1. Pearson correlation
coefficients ρ are given and the dashed black line represents the fit of a linear regression model.S9
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Supplemental Tables

Data in supplemental tables can be downloaded from doi: http://dx.doi.org/10.1101/009670

S1. Summary statistics of posterior estimates of ∆M for S. cerevisiae S288c genome estimated with ~Φ

(s288c deltam wphi.tsv).

S2. Summary statistics of posterior estimates of ∆M for S. cerevisiae S288c genome estimated without

~Φ (s288c deltam wophi.tsv).

S3. Summary statistics of posterior estimates of ∆η for S. cerevisiae S288c genome estimated with ~Φ

(s288c deltaeta wphi.tsv).

S4. Summary statistics of posterior estimates of ∆η for S. cerevisiae S288c genome estimated without

~Φ (s288c deltaeta wophi.tsv).

S5. Summary statistics of posterior estimates of φ for S. cerevisiae S288c genome estimated with ~Φ

(s288c phi wphi.tsv).

S6. Summary statistics of posterior estimates of φ for S. cerevisiae S288c genome estimated without ~Φ

(s288c phi wophi.tsv).

S7. Gene and codon specific selection coefficients for S. cerevisiae S288c genome estimated with ~Φ

(s288c selection coefficient wphi.tsv).

S8. Gene and codon specific selection coefficients for S. cerevisiae S288c genome estimated without ~Φ

(s288c selection coefficient wophi.tsv).

S9. Additional absolute mRNA measurements from multiple laboratories of S. cerevisiae Genome

(s.cerevisiae.mRNA.measurements.tsv).

S10. Additional measurements of protein synthesis rates from ribosome profiling experiments from mul-

tiple laboratories of S. cerevisiae Genome (s.cerevisiae.rpf.measurements.tsv).

S11. Results from linear regression of FMutSel estimates of S vs. without ~Φ ROC SEMPPR estimates of

S for the 106 genes in the Rokas et al. (2003) dataset (FMutSel S vs ROC wo phi S regressions.txt).
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