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Abstract

Bioclimate-driven regression analysis is a widely used approach for modelling ecological
niches and zonation. Although the bioclimatic complexity of the European continent is
high, a particular combination of 12 climatic and topographic covariates was recently
found able to reliably reproduce the ecological zoning of the Food and Agriculture
Organization of the United Nations (FAO) for forest resources assessment at pan-
European scale, generating the first fuzzy similarity map of FAO ecozones in Europe.
The reproducible procedure followed to derive this collection of bioclimatic indices is
now presented. It required an integration of data-transformation modules (D-TM) using
geospatial tools such as Geographic Information System (GIS) software, and array-based
mathematical implementation such as semantic array programming (SemAP). Base
variables, intermediate and final covariates are described and semantically defined by
providing the workflow of D-TMs and the mathematical formulation following the SemAP
notation. Source layers to derive base variables were extracted by exclusively relying on
global-scale public open geodata in order for the same set of bioclimatic covariates to
be reproducible in any region worldwide. In particular, two freely available datasets
were exploited for temperature and precipitation (WorldClim) and elevation (Global
Multi-resolution Terrain Elevation Data). The working extent covers the European
continent to the Urals with a resolution of 30 arc-second. The proposed set of bioclimatic
covariates will be made available as open data in the European Forest Data Centre
(EFDAC). The forthcoming complete set of D-TM codelets will enable the 12 covariates
to be easily reproduced and expanded through free software.
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Introduction

The integrated use of geospatial tools and regression analyses (from basic approaches such as
distance weighting, polynomial interpolation and regression, up to more complex nonlinear
regression techniques) is widely expanding for modelling habitat suitability, ecological niches
and zonation starting from field observations (i.e., presence-only or presence/absence of species)
[1][2][3]. The selection of predictor variables is an important factor for developing species
distribution models [4]. In this work a set of twelve bioclimatic covariates are derived from
publicly-available datasets and proposed for ecological niche modelling and zonation. This
particular combination of climatic and topographic indices has been elaborated by de Rigo et al.
[5] to reliably reproduce the ecological zoning of the Food and Agriculture Organization of the
United Nations (FAO) for forest resources assessment at pan-European scale, generating the
first fuzzy similarity map of FAO ecozones in Europe. The original layer of FAO ecological zones
was produced on the basis of bioclimatic variables and potential vegetation and was subject to
expert-based refinement [6]. The final product is distributed as a crisp (i.e., non-fuzzy) vector
file. The application of a model based on the relative distance similarity (RDS) technique
allowed each ecological zone to be compared with climatically and geographically analogous
grid-cells, reducing boundary artefacts and modelling a fuzzy raster map at 1 square kilometer.
The analogous approach has been used in Ciscar et al. [7] performing the RDS method to
estimate the impacts of habitat suitability change of a forest tree species over Europe for different
future climate scenarios. The maximum suitability maps have been computed on the basis of
field survey datasets of tree species presence/absence, modelled with a set of bioclimatic and
geographic indicators.

This proposed set of predictors has been selected on the basis of ecological and bio-geographical
knowledge and adapted to the European climate. In this paper, these covariates are presented
with emphasis on their definitions, technical details and modelling procedures. The approach of
reproducibility has been followed in all processes in order to allow these covariates to be easily
re- used and/or modified for further ecological regression analyses of niche/zoning modelling.

Datasets

The datasets used for extracting base variables are freely available as Geographic Information
System (GIS) layers at global scale.

WorldClime v1.4: is a set of global climate layers with a spatial resolution of 30 arc-second,
which consists of four climate variables: precipitation and mean, minimum, maximum tempera-
ture. Data were gathered from a variety of resources, covering as a current baseline the period
from 1950 to 2000. Future scenarios developed with different models also are available. There
are 12 layers for every variable, representing its 50-years monthly average values [8].

Global Multi-resolution Terrain Elevation Data 2010 (GMTED): is an enhanced eleva-
tion model developed by the U.S. Geological Survey and the National Geospatial-Intelligence
Agency at global scale. The product, available in different spatial resolutions up to 7.5 arc-second,
is based on data derived from 11 raster-based elevation sources, and aggregated in six products:
minimum, maximum, mean and median elevation, standard deviation of elevation, systematic
subsample, breakline emphasis [9].
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Figure 1. Process modelling workflow: the arrows represent the data transformation modules to
derive the indices, which are grouped and coloured according to their semantic constrains.

Methods

The process for modelling the final covariates required different data-transformation modules
(D-TMs) integrating geospatial tools and array-based mathematical implementations such as
semantic array programming (i.e., GeoSemAP) [10]. The workflow in Figure 1 shows D-TMs
from source dataset to bioclimatic covariates. The colours of arrows define the transformation
methods, while the colours of the grouping subsets of indices define the semantics of the outputs
and intermediate layers. GIS technologies (red arrows) have been used principally for extracting
data from source layers and preparing base covariates as a GeoTIFF raster. In particular,
Python scripting [11] with GDAL/OGR libraries [12][13] and Grass GIS v.7 libraries [14] have
been used to operate with spatial layers. Data-transformation for converting raster maps into
semantic array and SemAP procedure (blue arrows) have been based on GNU Octave/MATLAB
programming language [15] with Mastrave library [16] and on Python language with SciPy
library [17]. Indices are grouped in modules and colored according to their semantic constraints,
which are exemplified with the notation ::constrains::. The working spatial environment is
established to cover Europe completely to the Urals (north 72 degrees, south 28 degrees, east 75
degrees, west -25 degrees). The adopted projection is WGS84 with a spatial resolution of 30
arc-second, operating with GeoTIFF raster files with a dimension of approximately 63 million
pixels as floating point values. Variables are defined in each spatial grid c and for each month m.
In Table 1, both variables and covariates are described with relative symbols, descriptions and
reference equations. The temperature T is expressed in degree Celsius + 100, avoiding negative
values. Temperature without symbols is defined as the average value of the month, while symbol
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Figure 2. Ecological niche diagram of European beech (Fagus sylvatica) comparing the annual
total precipitation and annual average temperature (shifted +100 degrees Celsius): the observed
presence of the species (red dots) is highlighted over nearly 250,000 sample points (gray dots).

d e defines the maximum of the month and the symbol b c the minimum. The precipitation P is
in millimeters and values state the total sum of monthly precipitation. The elevation E without
symbols is the average value inside the 1 km grid measured in meters. The solar irradiation S is
expressed in watt-hour per square meter (Whm-2). Quantities averaged with a spatial moving
window of 3 by 3 km are denoted with 3x3. The definition of variable attributes minimum,
average and maximum guarantees them to be semantically sortable ensuring ::nonnegative::
values for the difference between any pair of attributes in ascending order, thus eliminating
potential inconsistencies in the original data.

Temperature and precipitation variables (from WorldClime raster dataset) have “No Data”
values covering water pixels, converted to “not a number” (NaN) values on semantic arrays. NaN
creates a water mask which propagates on array computations up to derived covariates. The
Tundra covariate is identified by the equation of Nordenskiold and Mecking [18]. The average
temperature of coldest month and the number of dry months and months with a temperature
higher than 10 degrees Celsius are defined by FAO for the ecological zones [6]. The combination
of potential solar irradiation by temperature range is a simplification of the solar entransy flux
[19][20]. Covariates counting the number of months were calculated tacking into account the
temperature variation within the 1x1 km spatial grid due to difference in elevation adopting the
lapse rate. Covariates derived from solar irradiation required heavy computations performed
by Grass GIS v.7 software. The potential solar irradiation was selected instead of the actual
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Table 1. List of the computed variables and covariates with relative descriptions and equations.

Variable
code Description of variable

Ec Mean elevation
bEcc Minimum elevation
dEec Maximum elevation
Sm
c Total solar irradiation in the central day of the month m

Pm
c Total precipitation of the month m

Tm
c Average temperature of the month m
bT cmc Minimum temperature of the month m
dT emc Maximum temperature of the month m

Base
covariate Description of the base covariate Reference equation

Slight
c Total potential solar irr. of the 6 lighter months

Sdark
c Total potential solar irr. of the 6 darker months

Pc Annual total precipitation
∑

m Pm
c

P dry
c Total precipitation of the driest month minm Pm

c

Pwet
c Total precipitation of the wettest month maxm Pm

c

Tc Annual average temperature
∑

m Tm
c

T cold
c Average temperature of the coldest month minm Tm

c

Twarm
c Average temperature of the warmest month maxm Tm

c

T tundra
c Nordenskiöld index Twarm

c + 0.1T cold
c − 9

∆Tc Mean of monthly temperature range 1/12
∑

m dT e
m
c −bT c

m
c

Derived
covariates Description of derived covariate Reference equation

1. ER3×3
c 3 km×3 km average elevation range (dEec−bEcc)

3×3

2. Sc Annual potential solar irradiation Slight
c + Sdark

c

3. d∆Se3×3
c 3 km×3 km seasonal variation of pot. solar irr.

(normalised by semestral minimum)

Slight,3×3
c − Sdark,3×3

c

Sdark,3×3
c

4. S∆Tc Potential irradiation by montly temp. range
(simplified avg. monthly solar entransy flux)

Sc ·∆Tc

5. d∆P ec Seasonal variation of monthly precipitation
(normalised by minimum: driest month)

Pwet
c − P dry

c

P dry
c

6. b∆P cc Seasonal variation of monthly precipitation
(normalised by maximum: wettest month)

Pwet
c − P dry

c

Pwet
c

7. Nmdry
c Number of dry months

∑
m[Pm

c ≤ 2Tm
c ]

8. T+100lPc Shifted temperature per rain magnitude order T+100
c / log10(Pc + 1 )

9. T+100
c Shifted average annual temperature Tc + 100 ◦C

10. T cold+100
c Shifted average temp. of the coldest month T cold

c + 100 ◦C

11. eT tundra
c Nordenskiöld exponential index exp(T tundra

c )

12. Nm≥10 ◦C
c Number of months with Tc ≥ 10 ◦C

∑
m[Tm

c ≥ 10]

one due to its stability under different climate change scenarios. It was modelled starting from
the average of the GMTED with a higher spatial resolution at 7.5 arc-second, gaining raster
dimension of 273 million pixels. It is proven that the solar irradiation derived from a digital
elevation model at 30 arc-second is less accurate compared with the aggregation to 30 arc-second
of solar irradiation derived from a 7.5 arc-second. The average elevation was calculated using
r.sun Grass module [21], combining the shadowing effects of r.horizon module derived every
5 degrees [22]. The atmospheric turbidity and albedo effects were not modelled, thus solar
energy layer is a proxy of the potential one and essentially dependent on the aspect, latitude
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Figure 3. Ecological niche diagram of European beech (Fagus sylvatica) comparing the annual
total precipitation and mean of monthly temperature range: the observed presence of the species
(red dots) is highlighted over nearly 250,000 sample points (gray dots).

and orography-induced patterns of shadows. Twelve maps of solar irradiation were produced
for the central days of each month. The monthly aggregation was computed by integrating
data of grid maps using the trapezoidal rule. Thereafter the solar irradiation covariates were
harmonized to 30 arc-second through a spatial mean aggregation.

Results

All described covariates will be visualized and downloadable on the European Forest Data Centre
of the Forest Information System for Europe (EFDAC-FISE). The modelling procedures have
been performed with free software packages which allow a complete reproducibility of D-TMs.
This set of 12 bioclimatic covariates, selected and elaborated for the first time to reproduce
European forest ecological zones, is a combination of regression analysis predictors suitable for
biological niche modelling related principally to forest resources at European scale (e.g., forest
type and species suitability maps [23][24][25] and forest pest outbreak predictions [26][27][28]).
The same proposed set of predictors will be processed with the RDS regression method for the
European Atlas of Forest Tree Species (in EFDAC-FISE), a publication where habitat suitability
maps of main European tree species also will be presented. The codelets of described procedures
were organized in modules corresponding to the D-TMs, enabling the complete set of covariate
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Figure 4. Ecological niche diagram of European beech (Fagus sylvatica) comparing annual
average temperature (shifted +100 degrees Celsius) and the annual potential solar irradiation:
the observed presence of the species (red dots) is highlighted over nearly 250,000 sample points
(gray dots).

raster maps to be reproduced from different data sources and at different scales (technical details
on de Rigo, Caudullo) [29]. The forthcoming codelets also will be available on the EFDAC-FISE
website.

In addition to geographic maps, covariates may be represented two by two as diagrams plotting
values on the x and y axis within the study area. This family of charts can be used to analyze
correlations between variables, and show ecological niche patterns when a certain species presence
is highlighted. To exemplify this possible usage, the realized ecological niche of European beech
(Fagus sylvatica) has been computed using the EFDAC-FISE datasets, part of them deriving
from a harmonization effort of the European National Forest Inventories. The data refer to
observed presences of the tree species. In Figure 2, nearly 250,000 sample points are represented
for annual precipitation and annual average temperature (gray dots). The presence of European
beech is large (red dots) and centered in the middle of the observation cloud, confirming its
common and widespread distribution in temperate forests [30]. Figure 3 shows the relation
between precipitation and the annual range in temperature. Here it is more evident that the
current presence of European beech is limited by a minimum precipitation of about 500 mm and
a maximum of 2,000 mm. Annual range in temperature gives a measure of the continentality
of the climate. Beech is clearly absent above a range of 33-34 degrees Celsius in temperature
range, confirming that this tree has a realized niche characterized by more oceanic climates [30].
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Solar irradiation and annual average temperature covariates show a positive correlation (Figure
4), since ground temperature depends principally on solar energy. The observation cloud shows
a linear growing trend. On the other hand, beech presence does not present crisp boundaries on
the ecological niche modelled with these two covariates. Isolated samples are still present on the
cloud edges, in particular where solar irradiation has lower values, without evident thresholds.
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