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Abstract

Bioclimate-driven regression analysis is a widely used approach for modelling ecological
niches and zonation. Although the bioclimatic complexity of the European continent
is high, a particular combination of twelve climatic and topographic covariates was
recently found able to reliably reproduce the FAO ecological zoning for forest resources
assessment at pan-European scale, generating the first fuzzy similarity map of FAO
ecozones in Europe. The reproducible procedure followed to derive this collection of
bioclimatic indices is now presented. It required an integration of data-transformation
modules (D-TM) using both geospatial tools such as GIS software, and array-based
mathematical implementation such as semantic array programming (SemAP). Base
variables, intermediate and final covariates are described and semantically defined by
providing the workflow of D-TMs and the mathematical formulation following the
SemAP notation. Source layers to derive base variables were extracted by exclusively
relying on global-scale public open geodata in order for the same set of bioclimatic
covariates to be reproducible in any region worldwide. In particular, two freely available
datasets were exploited for temperature and precipitation (WorldClim) and elevation
(Global Multi-resolution Terrain Elevation Data). The working extent covers the whole
European continent to the Urals with a resolution of 30 arc-second. The proposed set
of bioclimatic covariates will be made available as open data in the European Forest
Data Centre (EFDAC). The forthcoming complete set of D-TM codelets will enable the
twelve covariates to be easily reproduced and expanded through free software.
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Introduction

The integrated use of geospatial tools and regression analyses (from basic approaches such as
distance weighting, polynomial interpolation and regression, up to more complex nonlinear
regression techniques) is widely expanding for modelling habitat suitability, ecological niches
and zonation starting from field observations - i.e. presence-only or presence/absence of species
(e.g- [1][2][3]). The selection of predictor variables is an important factor for developing species
distribution models [4]. In this work a set of twelve bioclimatic covariates are derived from
publicly-available datasets and proposed for ecological niche modelling and zonation. This
particular combination of climatic and topographic indices has been elaborated by de Rigo
et al. [5] to reliably reproduce the FAO ecological zoning for forest resources assessment at
pan-FEuropean scale, generating the first fuzzy similarity map of FAO ecozones in Europe.
The original layer of FAO ecological zones was produced on the basis of bioclimatic variables
and potential vegetation and was subject to expert-based refinement [6]. The final product
is distributed as a crisp (i.e. non-fuzzy) vector file. The application of a model based on the
relative distance similarity (RDS) technique allowed each ecological zone to be compared with
climatically and geographically analogous grid-cells, reducing boundary artefacts and modelling a
fuzzy raster map at 1 km?. The analogous approach has been used in Ciscar et al. [7] performing
the RDS method to estimate the impacts of habitat suitability change of a forest tree species
over Europe for different future climate scenarios. The maximum suitability maps have been
computed on the basis of field survey datasets of tree species presence/absence, modelled with a
set of bioclimatic and geographic indicators. This proposed set of predictors has been selected
on the basis of ecological and bio-geographical knowledge and adapted to the European climate.
In this paper these covariates are presented with emphasis on their definitions, technical details
and modelling procedures. The approach of reproducibility has been followed in all processes
in order to allow these covariates to be easily re- used and/or modified for further ecological
regression analyses of niche/zoning modelling.

Datasets

The datasets used for extracting base variables are freely available as GIS layers at global scale.

WorldClime v1.4: is a set of global climate layers with a spatial resolution of 30-arc-second,
which consists of four climate variables: precipitation and mean, minimum, maximum tempera-
ture. Data were gathered from a variety of resources, covering as a current baseline the period
from 1950 to 2000. Future scenarios developed with different models are also available. There
are twelve layers for every variable, representing its 50-years monthly average values [8].

Global Multi-resolution Terrain Elevation Data 2010 (GMTED): is an enhanced eleva-
tion model developed by U.S. Geological Survey and the National Geospatial-Intelligence Agency
at global scale. The product, available in different spatial resolutions up to 7.5-arc-second, is
based on data derived from 11 raster-based elevation sources, and aggregated in six products:
minimum, maximum, mean and median elevation, standard deviation of elevation, systematic
subsample, breakline emphasis [9].

Methods

The process for modelling the final covariates required different data-transformation modules
(D-TMs) integrating geospatial tools and array-based mathematical implementations such as
semantic array programming — i.e. GeoSemAP [10].
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Figure 1. Process modelling workflow: the arrows represent the data transformation modules to
derive the indices, which are grouped and coloured according to their semantics.

The workflow in Figure 1 shows D-TMs from source dataset to bioclimatic covariates. The
colours of arrows define the transformation methods, while the colours of the grouping subsets of
indices define the semantics of the outputs and intermediate layers. GIS technologies (red arrows)
have been used principally for extracting data from source layers and preparing base covariates
as a TIFF raster. In particular, Python scripting [11] with GDAL/OGR libraries [12][13] and
Grass GIS v.7 libraries [14] have been used to operate with spatial layers. Data-transformation
for converting raster maps into semantic array and SemAP procedure (blue arrows) have been
based on GNU Octave/MATLAB programming language [15] with Mastrave library [16] and on
Python language with SciPy library [17].

The working spatial environment is established to cover Europe completely to the Urals (north
72°, south 28°, east 75°, west -25°). The adopted projection is WGS84 with a spatial resolution
of 30-arc-second, operating with TIFF raster files with a dimension of approximately 63 million
pixels as floating point values. Variables are defined in each spatial grid ¢ and for each month m.
In Table 1 both variables and covariates are described with relative symbols, descriptions and
reference equations. The temperature T is expressed in degree Celsius + 100°, avoiding negative
values. Temperature without symbols is defined as the average value of the month, while symbol
[ ] defines the maximum of the month and the symbol | | the minimum. The precipitation P is
in millimetres and values state the total sum of monthly precipitation. The elevation E without
symbols is the average value inside the 1 km grid measured in metres. The solar irradiation S is
expressed in watt-hour per square metre (Whm’2). Quantities averaged with a spatial moving
window of 3 by 3 km are denoted with 3*3. The definition of variable average, maximum and
minimum guarantees them to be sematically sortable ensuring ::nonnegative:: values.

(not yet published)+ (3)


http://mastrave.org
http://www.scipy.org
http://www.earthzine.org/?p=(not yet published)
https://doi.org/10.1101/009589

bioRxiv preprint doi: https://doi.org/10.1101/009589; this version posted September 25, 2014. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

IEEE FEarthzine 2014 Vol. 7 Issue 2 — Caudullo: Applying geospatial semantic-array programming for
a reproducible set of bioclimatic indices in Europe

Table 1. List of the computed variables and covariates with relative descriptions and equations.

vilgggle Description of variable
E. Mean elevation
LE]. Minimum elevation
[ET]. Maximum elevation
S Total solar irradiation in the central day of the month m
P Total precipitation of the month m
" Average temperature of the month m
L Minimum temperature of the month m
[ Maximum temperature of the month m
Base Description of the base covariate Reference equation
covariate p v d
Glight Total potential solar irr. of the 6 lighter months
Sdark Total potential solar irr. of the 6 darker months
P. Annual total precipitation >om P
pay Total precipitation of the driest month min,, P."
pret Total precipitation of the wettest month max,, P)"
Te Annual average temperature ST
oM Average temperature of the coldest month min,, T,
Tyvarm Average temperature of the warmest month max., T."
Ttundra Nordenskisld index Tyarm 4170 — 9
AT, Mean of monthly temperature range /12y [T\7—T|7"
Derived Description of derived riat Referen tion
covariates escription of derived covariate eference equatio
1. ERY>® 3 kmx 3 km average elevation range ([E].—|E],)*®
2. S, Annual potential solar irradiation Glight | gdark
glight,3x3 _ gdark,3x3
3. [As)P? 3 km x 3 km seasonal variation of pot. solar irr. =< PR
(normalised by semestral minimum) Se
4.  SAT. Potential irradiation by montly temp. range S.-AT.
(simplified avg. monthly solar entransy flux)
Pwet _ Pdry
5. [AP], Seasonal variation of monthly precipitation %
(normalised by minimum: driest month) Pe
Pwet _ Pdry
6. [AP], Seasonal variation of monthly precipitation CPTtC
(normalised by maximum: wettest month) ¢
7. Nmdw Number of dry months S <2177
8. TMOp, Shifted temperature per rain magnitude order T /1og,o( Pe +1)
9, T 00 Shifted average annual temperature T. +100°C
10. Tgold+100 Shifted average temp. of the coldest month T 4 100°C
11. eqfundra Nordenskiold exponential index exp(Tundra)
12. Np=z1oC Number of months with T, > 10°C Sl >10]

Temperature and Precipitation variables (from WorldClime raster dataset) have “No Data”
values covering water pixels, converted to “not a number” (NaN) values on semantic arrays. NaN
creates a water mask which propagates on array computations up to derived covariates. The
Tundra covariate is identified by the equation of Nordenskiold and Mecking [18]. The average
temperature of coldest month and the number of dry months and months with a temperature
higher than 10°C are defined by Food and Agriculture Organization of the United Nations [6] for
the ecological zones. The combination of potential solar irradiation by temperature range is a
simplification of the solar entransy flux [19][20]. Covariates counting the number of months were
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Figure 2. Ecological niche diagram of European beech (Fagus sylvatica) comparing the annual
total precipitation and annual average temperature (shifted +100° C): the observed presence of
the species (red dots) is highlighted over nearly 250,000 sample points (grey dots).

calculated tacking into account the temperature variation within the 1x1 km spatial grid due to
difference in elevation adopting the lapse rate. Covariates derived from solar irradiation required
heavy computations performed by Grass GIS 7 software. The potential solar irradiation was
selected instead of the actual one due to its stability under different climate change scenarios.
It was modelled starting from the average of the GMTED with a higher spatial resolution
at 0.75 arc-second, gaining raster dimension of 273 million pixels. It is proved that the solar
irradiation derived from a digital elevation model at 0.3 arc-second is less accurate compared
with the aggregation to 0.3 arc-second of solar irradiation derived from a 0.75 arc-second. The
average elevation was calculated using “r.sun” Grass module [21], combining the shadowing
effects of “r.horizon” module derived every 5 degrees [22]. The atmospheric turbidity and albedo
effects were not modelled, thus solar energy layer is a proxy of the potential one and essentially
dependent on the aspect, latitude and orography-induced patterns of shadows. Twelve maps of
solar irradiation were produced for the central days of each month. The monthly aggregation
was computed by integrating data of grid maps using the trapezoidal rule. Thereafter the solar
irradiation covariates were harmonized to 30-arc-second through a spatial mean aggregation.
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Figure 3. Ecological niche diagram of European beech (Fagus sylvatica) comparing the annual
total precipitation and mean of monthly temperature range: the observed presence of the species
(red dots) is highlighted over nearly 250,000 sample points (grey dots).

Results

All described covariates will be visualized and downloadable on the European Forest Data
Centre (EFDAC at http://efdac.jrc.ec.europa.eu) of the Forest Information System for Europe
(FISE). The modelling procedures have been performed with free software packages which allow
a complete reproducibility of D-TMs. This set of twelve bioclimatic covariates, selected and
elaborated for the first time to reproduce European forest ecological zones, is a combination of
regression analysis predictors suitable for biological niche modelling related principally to forest
resources at European scale — e.g. forest type and species suitability maps [23][24][25], forest pest
outbreak predictions [26][27][28]. The same proposed set of predictors will be processed with
the RDS regression method for the European Atlas of Forest Tree Species (FISE-EFDAC, in
preparation), a publication where habitat suitability maps of main European tree species will be
also presented. The codelets of described procedures were organized in modules corresponding to
the D-TMs, enabling the complete set of covariate raster maps to be reproduced from different
data sources and at different scales (technical details on de Rigo, Caudullo [29]). The forthcoming
codelets will be also available on the EFDAC website.

In addition to geographic maps, covariates may be represented two by two as diagrams plotting
values on the x and y axis within the study area. This family of charts can be used to analyse
correlations between variables, and also to show ecological niche patterns when a certain species
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Figure 4. Ecological niche diagram of European beech (Fagus sylvatica) comparing annual average
temperature (shifted +100° C) and the annual potential solar irradiation: the observed presence
of the species (red dots) is highlighted over nearly 250,000 sample points (grey dots).

presence is highlighted. To exemplify this possible usage, the realised ecological niche of European
beech (Fagus sylvatica) has been computed using the EFDAC-FISE datasets, part of them
deriving from a harmonisation effort of the European National Forest Inventories. The data
refer to observed presences of the tree species. In Figure 2 nearly 250,000 sample points are
represented for annual Precipitation and annual average Temperature (grey dots). The presence
of European beech is large (red dots) and centred in the middle of the observation cloud,
confirming its common and widespread distribution in temperate forests [30]. Figure 3 shows
the relation between Precipitation and the annual range in Temperature. Here it is more evident
that the current presence of European beech is limited by a minimum precipitation of about
500 mm and a maximum of 2,000 mm. Annual range in Temperature gives a measure of the
continentality of the climate. Beech is clearly absent above a range of 33-34°C in Temperature,
confirming that this tree has a realised niche characterized by more oceanic climates [30]. Solar
irradiation and annual average Temperature covariates show a positive correlation (Figure 4),
since ground temperature depends principally on solar energy. The observation cloud shows a
linear growing trend even if wider in the middle. On the other hand beech presence does not
present crisp boundaries on the ecological niche modelled with these two covariates. Isolated
samples are still present on the cloud edges, in particular where solar irradiation has lower
values, without evident thresholds.
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