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Abstract. Evolutionary-rate variation among sites within proteins depends on

functional and biophysical properties that constrain protein evolution. It is generally

accepted that proteins must be able to fold stably in order to function. However,

the relationship between stability constraints and among-sites rate variation is not

well understood. Here, we present a biophysical model that links the thermodynamic

stability changes due to mutations at sites in proteins (∆∆G) to the rate at which

mutations accumulate at those sites over evolutionary time. We find that such a

“stability model” generally performs well, displaying correlations between predicted

and empirically observed rates of up to 0.75 for some proteins. We further find that

our model has comparable predictive power as does an alternative, recently proposed

“stress model” that explains evolutionary-rate variation among sites in terms of the

excess energy needed for mutants to adopt the correct active structure (∆∆G∗). The

two models make distinct predictions, though, and for some proteins the stability

model outperforms the stress model and vice versa. We conclude that both stability

and stress constrain site-specific sequence evolution in proteins.

Keywords : protein evolution, rate variation among sites, biophysical model,

thermodynamics, stability, stress

Submitted to: Phys. Biol.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2014. ; https://doi.org/10.1101/009423doi: bioRxiv preprint 

https://doi.org/10.1101/009423
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thermodynamic constraints on evolutionary divergence 2

1. Introduction

The evolution of protein-coding genes is shaped by functional and biophysical constraints

on the expressed proteins (Pal et al. 2006, Thorne 2007, Worth et al. 2009, Wilke &

Drummond 2010, Grahnen et al. 2011, Liberles et al. 2012). These constraints create

patterns of rate variation among and within proteins. Among proteins, the primary

determinant of rate variation is gene expression level (Drummond & Wilke 2008), though

many other factors have been identified that also contribute to rate variation (Lemos

et al. 2005, Xia et al. 2009, Liao et al. 2010, Pang et al. 2010). Within proteins, the

primary determinants of rate variation seem to be linked to geometrical properties of

the folded protein, in particular the Relative Solvent Accessibility (RSA) (Bustamante

et al. 2000, Dean et al. 2002, Franzosa & Xia 2009, Ramsey et al. 2011, Shahmoradi

et al. 2014) and the Local Packing Density (LPD) (Liao et al. 2005, Franzosa &

Xia 2009, Yeh et al. 2014a, Yeh et al. 2014b) of sites in the three-dimensional protein

structure.

To develop a mechanistic understanding of the causes that link geometrical

properties, such as RSA and LPD, with site-specific rates of evolution, we need to

develop explicit models of protein evolution. For example, recently a mechanistic

“stress model” was proposed to explain the LPD–rate relationship (Huang et al. 2014).

According to this stress model, LPD is a proxy of the stress energy ∆∆G∗, a

thermodynamic quantity that is a measure of the excess free energy needed for a folded

mutant protein to adopt the correct active conformation. The stress model considers

the effect of the stress free energy difference ∆∆G∗ but not that of possible mutational

changes on global stability ∆∆G. However, most proteins will function properly if they

have folded stably into the correct conformation. To what extent stability constraints

shape site-specific sequence evolution is not known.

Recent work has shown that describing protein evolution from the perspective

of thermodynamic stability provides a wealth of insight into important aspects of

protein evolution, such as the evolution of mutational robustness (Bloom et al. 2007),

the origin of epistatic interactions (Bershtein et al. 2006, Gong et al. 2013), lethal

mutagenesis (Chen & Shakhnovich 2009), determinants of evolutionary rate at protein

level (Drummond & Wilke 2008, Serohijos et al. 2012), the evolution of novel function

(Bloom et al. 2006, Tokuriki et al. 2008), and the expected equilibrium distributions of

stability and the explanation of marginal stability (Taverna & Goldstein 2002, Goldstein

2011, Wylie & Shakhnovich 2011). Moreover, some studies suggest that ∆∆G-based

models are useful to study site-specific constraints. For example, Bloom & Glassman

(2009) have shown that changes in stability upon mutation (∆∆G values) are intimately

linked to the patterns of amino-acid substitutions observed over evolutionary divergence,

to the extent that ∆∆G values can actually be inferred with accuracy comparable to

state-of-the art structure-based methods solely from an alignment of diverged protein

sequences. More recently, Arenas et al. (2013) have used stability-based models to

predict site-specific amino acid distributions. Despite the recognized importance of
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folding stability, stability-based models have not been used to predict the variation of

evolutionary rates among sites.

Here, we investigate the relationship between mutational changes of stability and

the site-dependency of rates of substitution. Following Bloom & Glassman (2009),

we derived a neutral “stability model” of evolution which relates the ∆∆Gs due to

mutations at a site with the site’s rate of substitution. For a diverse set of more

than 200 enzymes, we compare the predicted rates with empirical rates (inferred from

multiple sequence alignments) and with predictions of the stress model. The ∆∆G-based

and ∆∆G∗-based predictions have on average similar correlations with empirical rates.

However, the two models make significant independent contributions, which suggests

that both stability and stress mould sequence divergence.

2. Stability Model: ∆∆G-based rates

Our stability model is based on earlier work by Bloom and coworkers (Bloom &

Glassman 2009, Bloom et al. 2005). The core idea of Bloom’s model is that there

is a stability threshold ∆Gthreshold such that all proteins more stable than the threshold

are neutral (i.e. have all the same fitness) whereas all proteins less stable than the

threshold are inviable (have fitness = 0). Thus, if ∆G is the stability of a protein, then

its fitness f(∆G) is assumed to be:

f(∆G) =

 1 if ∆G ≤ ∆Gthreshold,

0 if ∆G > ∆Gthreshold.
(1)

It is convenient to define

∆Gextra = ∆G−∆Gthreshold , (2)

so that

f(∆Gextra) =

 1 if ∆Gextra ≤ 0,

0 if ∆Gextra > 0.
(3)

We further assume that the mutational effect on stability of a mutation i → j at

site k is independent of the sequence background. We refer to this stability change as

∆∆Gk
ij. Because of the assumption of sequence independence, the stability difference

between two sequences can be written as

∆G(j1, j2, . . .)−∆G(i1, i2, . . .) =
∑
k

∆∆Gk
ikjk

(4)

where i1, i2, . . . and j1, j2, . . . represent the amino acids of the two sequences, respectively.

While this assumption cannot strictly be true, in practice it has worked well in several

applications (e.g. Bloom et al. 2005, Bloom & Glassman 2009). The assumption is

further supported by the observation that mutational effects on stability are frequently

additive (Wells 1990, Serrano et al. 1993, Zhang et al. 1995) and tend to be conserved

during evolution (Ashenberg et al. 2013).
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Next we describe the evolutionary process. Throughout this work, we assume that

the product of the protein-wide mutation rate µ and the effective population size Ne

is small, µNe � 1. As a consequence, our populations are monomorphic, and we only

have to track the evolution of a single representative sequence over time. We further

assume that at most a single mutation arises at each time step.

The probability that a substitution i→ j occurs at site k in a single time step, Qk
ij,

can be written as the product of the probability that the mutation i → j occurs, Mij,

and the probability it goes to fixation

Qk
ij = Mij × pfix . (5)

Here, we have assumed that all sites experience the same mutational process, so that

Mij does not depend on k. Note that Mij scales with the effective population size Ne,

since all sequences in the population may mutate in one time step, and pfix scales with

1/Ne, because we are modeling the case of neutral evolution (Eq. 3). Thus Ne cancels,

and we can set it equal to 1 without loss of generality.

Under the assumption of neutral evolution, the fixation probability is either one

or zero, depending on whether the mutation keeps the extra stability in the negative

or not. Because we have previously assumed that stability effects are independent of

the sequence background (Eq. 4), they are fully specified by i, j, and k. (In other

words, a mutation from i to j at site k always has the same stability effect ∆∆Gk
ij.)

However, the extra stability after the mutation, ∆Gextra + ∆∆Gk
ij, depends on the

sequence background through the value of ∆Gextra before the mutation. From Eq. 3 we

find the conditional fixation probability

pfix(∆∆Gk
ij|∆Gextra) =

 1 if ∆Gextra + ∆∆Gk
ij ≤ 0,

0 if ∆Gextra + ∆∆Gk
ij > 0.

(6)

If ∆Gextra + ∆∆Gk
ij ≤ 0, then the mutated protein is viable, and hence it fixes with

probability 1. (Recall that we set Ne = 1.) By contrast, if ∆Gextra + ∆∆Gk
ij > 0, then

the mutated protein is not viable and will not fix.

To proceed, we could write down a Markov process that keeps track of the extra

stability at all time points (Bloom et al. 2007, Raval 2007). Instead, here we employ

the “mean field” approximation of Bloom & Glassman (2009), in which we assume that

∆Gextra before mutation is drawn randomly from the steady-state distribution of ∆Gextra

values, p0(∆Gextra), so that we can write the unconditional fixation probability as

pfix(∆∆Gk
ij) =

∫
pfix(∆∆Gk

ij|∆Gextra)p0(∆Gextra)d∆Gextra . (7)

For p0(∆Gextra), Bloom & Glassman (2009) make the ansatz that it has an

exponential probability-density function p0(∆Gextra):

p0(∆Gextra) =

αeα∆Gextra

if ∆Gextra ≤ 0,

0 if ∆Gextra > 0.
(8)

where α > 0 is a free parameter. This form cannot be derived from first principles, but

it is justified by visual inspection of the probability density functions obtained under

simulations (Bloom et al. 2007) (but see Wylie & Shakhnovich 2011).
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Inserting Eq. 6 and Eq. 8 into Eq. 7, we obtain

pfix(∆∆Gk
ij) =


1 if ∆∆Gk

ij ≤ 0,∫ −∆∆Gk
ij

−∞
αeα∆Gextra

d∆Gextra if ∆∆Gk
ij > 0.

(9)

After taking the integral, we find

pfix(∆∆Gk
ij) =

 1 if ∆∆Gk
ij ≤ 0,

e−α∆∆Gk
ij if ∆∆Gk

ij > 0.
(10)

The stability model is completely specified by Eq. 5 and Eq. 10.

Next we consider the calculation of site-specific substitution rates. The substitution

process at site k is described by a rate matrix Qk with elements

Qk
ij =


Mij × pfix(∆∆Gk

ij) if i 6= j,

−
∑
j 6=i

Qk
ij if i = j. (11)

The stationary distribution πki of the substitution process is given by the left null

eigenvector of Qk, normalized such that
∑
i π

k
i = 1. The rate of substitution at site

k, Kk
stability, follows as

Kk
stability =

∑
i

∑
j 6=i

πkiQ
k
ij = −

∑
i

πkiQ
k
ii . (12)

The subscript “stability” emphasizes that this rate estimate is calculated using the

stability model.

In the case of symmetric mutations, Mji = Mij, the equilibrium frequencies can be

expressed as

πki =
e−α∆∆Gk

0i∑
j e
−α∆∆Gk

0j

, (13)

where ∆∆Gk
0i is the stability change relative to an arbitrarily chosen reference amino

acid at site k. In the limit of unbiased mutations, Mij = const for i 6= j, the rate can

be simplified to

Kk
stability = 2

∑
i

πki [rank(−πki )− 1] . (14)

Here, rank(−πki ) represents the rank order of πki , from largest to smallest. (The

advantage of using Eq. 14 instead of Eq. 12 is that the latter contains a double-sum and

hence is slower to evaluate.)

3. The Stress Model: ∆∆G∗-based rates

The stability model is based on the assumption that fitness depends on whether the

protein is stable enough to fold, so that the probability of fixation of a mutation will

depend on the difference of folding free energy between the mutant and the wild-type,

each in their respective equilibrium conformations. A different mechanistic model, the
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“stress model,” was recently derived based on the idea that, to be viable, a mutant must

not only be stable, it must also be able to adopt a correct active conformation (Huang

et al. 2014). Following this idea, the fixation probability of a mutant was modeled as

the mutant’s probability of adopting the active conformation. According to this model,

the rate of substitution for site k is

Kk
stress = a+ b〈∆∆G∗〉k , (15)

where ∆∆G∗ = ∆Gmutant(ractive) − ∆Gwt(ractive) is the free energy difference between

mutant and wild-type when both adopt the active conformation and 〈∆∆G∗〉k is its

average over random mutations at site k. Since in general the active conformation will

not necessarily be the relaxed equilibrium conformation, ∆∆G∗ represents the energy

needed to stress the protein into adopting the right active conformation.

Further assuming that the active conformation is the wild type’s equilibrium

conformation and approximating the free energy landscape using the parameter-free

Anisotropic Network Model of Yang et al. (2009), it can be shown that 〈∆∆G∗〉k ∝
WCNk, where WCNk =

∑
j 6=k d

−2
kj is the Weighted Contact Number introduced by Lin

et al. (2008) and found to be among the best structural predictors of site-dependent

evolutionary rates (Yeh et al. 2014a, Yeh et al. 2014b). Because of the proportionality

between WCNk and 〈∆∆G∗〉k, we can also write Eq. 15 as

Kk
stress = a+ b̃WCNk. (16)

In practice, we obtain rates Kk
stress by calculating the WCNk for each site k in a protein

structure, fitting the linear expression a + b̃WCNk to a set of empirically estimated

rates, and then using Eq. 16 to calculate a predicted rate at each site.

It is worthwhile to keep in mind that while the stability model takes into account

whether the mutant is able to fold, the stress model takes into account the probability

that the mutant adopts the right conformation. In principle both factors can affect

fitness independently and therefore may both have an influence on substitution rates. If

this is the case, both models are incomplete: the stability model does not consider the

effect of possible conformational changes as long as the mutant is stable and the stress

model takes stability for granted and considers only the destabilzation of the active

structure.

4. Comparing the theoretical models with empirical data

4.1. Data set and calculation of empirical and predicted evolutionary rates

We tested our theory on the data set of Huang et al. (2014), which consists of 213

monomeric enzymes of known structure covering diverse structural and functional

classes. Each structure is accompanied by up to 300 homologous sequences. In

our analysis, we omitted four structures (1bbs, 1bs0, 1din, 1hpl) that had missing

data at insertion sites. We aligned the homologous sequences for each structure

with MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh et al.
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2005, Katoh & Standley 2013). Using the resulting alignments as input, we

inferred Maximum Likelihood phylogenetic trees with RAxML (Randomized Axelerated

Maximum Likelihood), using the LG substitution matrix (named after Le and Gacuel)

and the CAT model of rate heterogeneity (Stamatakis 2014).

For each structure, we then used the respective sequence alignment and phylogenetic

tree to infer site-specific substitution rates with Rate4Site, using the empirical

Bayesian method and the amino-acid Jukes-Cantor mutational model (aaJC) (Mayrose

et al. 2004). The aaJC model poses equal probabilities for all amino-acid mutations,

so that it is consistent with the theory presented in Section 2 and with the assumption

of modeling amino-acid mutations as completely random perturbations made in the

derivation of the stress model (Huang et al. 2014). Site-specific relative rates were

obtained by dividing site-specific rates by their average over all sites of the protein, so

that the mean relative rate of all sites in a protein was 1. In the following, we will refer

to the rates inferred by Rate4Site as empirical rates, and will denote them by KR4S.

We will refer to the rates calculated according to the stability model (Kstability) or the

stress model (Kstress) as predicted rates. If necessary, we will distinguish between the

predictions of the stability and stress model using the terms ∆∆G-predicted rates and

∆∆G∗-predicted rates, respectively.

We calculated ∆∆G values with the program FoldX, following the default protocol

(Guerois et al. 2002, Schymkowitz et al. 2005). Specifically, we first optimized the

energy for each structure, using the RepairPDB method. We then calculated a ∆∆Gk
0j

value for all possible 19 amino-acid substitutions at all sites in all proteins, using the

PositionScan method, and considering the amino acid present in the PDB structure at

each site as the reference amino acid at that site.

Rates predicted by the stability model were obtained using Eq. 13 and Eq. 14 either

with α = 1 or with α chosen specifically for each protein. To determine the appropriate

scale factor α for each protein, we maximized the correlation coefficient between the

predicted site-specific rates as given by Eqs. 13 and 14 and the empirical site-specific

rates as calculated by Rate4Site. To calculate the rates predicted by the stress model,

we performed a linear fit between the site-dependent KR4S and WCN for each protein,

and then used Eq. 16 to calculate Kstress at each site.

All statistical analysis was carried out with R (R Core Team 2014). To fit the

stability model to the data, we used the built-in function optimize() with default

parameter settings. To fit the stress model to the data, we used the built-in function

lm(). Correlation coefficients between predicted and empirical rates were calculated

using cor() and partial correlations were obtained using the function pcor.test() of

package ppcor.

All data and analysis scripts necessary to reproduce this work are available at:

https://github.com/wilkelab/therm constraints rate variation/.
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4.2. Relationship between empirical and predicted evolutionary rates

We found that rates predicted by the stability model correlate significantly with the

empirical rates. Correlation coefficients ranged between 0.25 and 0.75, with a median of

0.57 (Figure 1A). Scale values α fell between 0.52 and 2.63, with a median of 1.19. We

further found that correlation coefficients and scale values were not correlated (r = 0.05,

P = 0.47). To determine to what extent optimizing α for each protein affected the

resulting correlation coefficients, we also calculated correlation coefficients with α = 1

for all proteins. We found that adjusting α made only a small difference, resulting on

average in an increase in correlation coefficient of 0.007 (Figure 1A).

We next investigated the functional relationship between empirical rates and rates

predicted by the stability model. We pooled the data from all sites in all 209 proteins

and calculated the joint distribution of the two rates. We also grouped sites into 20

bins of similar number of points using quantile breaks along the predicted rates axis.

Figure 2 shows the joint distribution as well as the mean empirical rates and the 25%

and 75% quantiles for each bin. The mean empirical rates fall nearly on top of the x = y

line (which represents a perfect fit), with only a small amount of curvature around the

mean predicted rate. The correlation between average empirical and predicted rates is

r = 0.995, consistent with a very good linear fit. Despite the good fit of avarage rates,

there is significant variation around x = y, as can be seen from the dispersion of the

joint distribution around the x = y line and the error bars in Figure 2. The overall

square correlation between ∆∆G-predicted rates and empirical rates is r2 = 0.31, so

that 69% of the variance of empirical rates is not explained by the stability model.

Next, we compared the predictions of the stability model with those from the stress

model (Huang et al. 2014), which describes site-specific evolutionary rates in terms of

the increased stress that results in the protein’s active conformation due to mutation

(∆∆G∗). In a protein-by-protein comparison, the stability model is somewhat better

(dots above the x = y line in Figure 3) for 127 of the 209 proteins, a proportion

significantly larger than 50% (binomial test: 61%, P = 0.002). When considering all

sites together, the two models perform comparably. The correlations between empirical

and predicted rates for all sites are 0.56 with ∆∆G-based predictions and 0.55 with

∆∆G∗-based predictions. However, even though the two models perform comparably

on average, there is substantial variation around the mean trend (Figure 3). For some

proteins, the ∆∆G model clearly outperforms the stress model and vice versa. Also,

considering all sites, the partial correlations between empirical rates and predicted rates

for one model controling for the predictions of the other are 0.33 and 0.31 for the ∆∆G

model and the stress model, respectively. These values are large and highly significant

(P � 10−3), showing that the predictions of the two models are quite independent and

may be accounting for different constraints.

The relative independence of stress and stability as determinants of site-specific

evolutionary rates suggests that considering both factors should improve predictions. To

verify this hypothesis, we fit empirical rates to a linear combination of rates predicted
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from ∆∆G∗ and ∆∆G. Considering all sites of all proteins, the two-variable model

results in a square correlation R2 = 0.38, approximately a 23% improvement over

R2 = 0.31 of the stability model and R2 = 0.30 of the stress model. Both predictors

in the two-variable model are highly significant (P < 10−15). These results further

support the idea that stability and stress provide significant independent constraints to

evolutionary divergence at site level.

All ∆∆G-based predictions presented above used ∆∆G values calculated by FoldX.

It is possible that a different ∆∆G predictor would yield substantially different results.

In particular, even though FoldX is a state-of-the-art ∆∆G predictor its predictions

explain only 25% of the variance in measured ∆∆G values (Potapov et al. 2009, Thiltgen

& Goldstein 2012), indicating a substantial need for improved ∆∆G prediction methods

with higher accuracy. Therefore, we also asked to what extent our results depended on

the method by which we calculated ∆∆G values. We calculated a second set of ∆∆G

values, using the ddg monomer application in Rosetta (Kellogg et al. 2011). Because

this application runs approximately 500 times slower than FoldX, we could not run

it on all proteins in our data set. Instead, we arbitrarily selected five proteins (PDB

IDs 1bp2, 1lba, 1ljl, 1pyl, and 2acy) as a test case. We found that FoldX performs

similarly or better than ddg monomer (Figure 4). Thus, in our application here, we

could not identify any major differences between predictions obtained from FoldX and

those obtained from Rosetta ddg monomer.

5. Conclusion

We have developed a biophysical model linking stability changes ∆∆G due to mutations

at individual sites in proteins to site-specific evolutionary rates. This stability model

predicts site-specific rates in very good agreement with empirical rates. Indeed, the

overall correlation between empirical rates and ∆∆G-based predictions is similar to

the correlation with the best structural determinant, the packing density measure

WCN, which, according to a recent mechanistic stress model, is a measure of the

local stress introduced by mutations into the active protein structure ∆∆G∗ (Yeh

et al. 2014b, Huang et al. 2014). However, despite the similar performance, large

partial correlations show that the two factors ∆∆G and ∆∆G∗ result in largely

independent predictions. Moreover, there are proteins for which the stability model

performs significantly better than the stress model, while for other proteins the reverse is

true. Consistently, a two-variable model that combines stability and stress significantly

improves predictions. Therefore, both the overall stability ∆∆G and the stress ∆∆G∗

seem to capture distinct thermodynamic constraints on protein evolution.

The stability model presented here is a neutral model in which mutations are

either neutral or completely deleterius according to whether the mutant’s stability

is above a certain threshold (Taverna & Goldstein 2002, Bloom et al. 2005, Bloom

& Glassman 2009). A presumably more sophisticated model is based on posing a

continuous dependence between fitness and ∆G (Tokuriki & Tawfik 2009, Chen &
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Shakhnovich 2009, Goldstein 2011, Wylie & Shakhnovich 2011). However, even though

the continuous fitness models appear to be more realistic than the neutral stability-

threshold models, in a recent study Arenas et al. (2013) found that the neutral model

leads to better predictions of site-specific amino-acid distributions. This finding provides

additional support for our choice of using a neutral ∆∆G-based model. In future work, it

will be worthwhile to explore the site-dependency of substitution rates using continuous

fitness-stability models.
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Figure 1. Correlations between rates predicted from ∆∆G and rates inferred by

Rate4Site. (A) Correlation coefficients vs. the fitted, protein-specific scales α. Each

dot represents data for one protein. There is no relationship between the correlation

coefficients and α (r = 0.10, P = 0.16). (B) Fitted α values provide only a small

benefit over α = 1. Fitting α to each protein increases correlation coefficients, on

average, by 0.007 (paired t-test, mean difference d̄ = 0.007, df = 208, P < 10−10).
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Figure 2. The relationship between rates predicted from ∆∆G and rates inferred by

Rate4Site is nearly linear. The joint distribution of empirical vs. predicted rates is

shown using shaded areas. All sites were grouped into 20 bins of approximately equal

number of sites using quantile breaks on the predicted rate axis. Yellow dots are the

mean rates obtained by averaging over sites within a bin. Yellow error bars correspond

to the 25% and 75% quantiles for each bin. Average empirical rates (yellow circles) are

very close to the x = y line that corresponds to a perfect empirical-predicted fit (the

correlation coeffient between mean empirical and predicted rates is 0.995). However,

there is substantial variation around the mean trend, as can be seen from shaded areas

and yellow error bars (correlation between non-averaged empirical and predicted rates

is 0.558).
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Figure 3. Correlations between rates inferred by Rate4Site and rates predicted by

either the stress ∆∆G∗-based model (shown along the x axis) or the stability ∆∆G-

based model (shown along the y axis). The correlation coefficients from the two

models are significantly correlated (r = 0.64, P < 10−10). Correlations have similar

magnitudes, with the ∆∆G-based model giving slightly better results on average

(paired t-test, mean difference d̄ = 0.026, df = 208, P < 0.001). For 127 of the 209

proteins the stability model gives better correlations while for 82 of the 207 proteins

the stress model gives better results.
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Figure 4. Rates predicted using ∆∆G values obtained from FoldX perform as well as

or better than the ones obtained from the ddg monomer protocol in Rosetta. Shown are

the correlation coefficients of measured rates with rates predicted using the stability

model with FoldX ∆∆G values (y axis) vs. Rosetta ∆∆G values (x axis) for five

proteins.
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