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ABSTRACT 

Identifying genomic annotations that differentiate causal from associated variants is 

critical to fine-map disease loci. While many studies have identified non-coding 

annotations overlapping disease variants, these annotations colocalize, complicating 

fine-mapping efforts. We demonstrate that conventional enrichment tests are inflated 

and cannot distinguish causal effects from colocalizing annotations. We developed a 

sensitive and specific statistical approach that is able to identify independent effects 

from colocalizing annotations. We first confirm that gene regulatory variants map to 

DNase-I hypersensitive sites (DHS) near transcription start sites. We then show that (1) 

15-35% of causal variants within disease loci map to DHS independent of other 

annotations; (2) breast cancer and rheumatoid arthritis loci harbor potentially causal 

variants near the summits of histone marks rather than full peak bodies; and (3) 

variants associated with height are highly enriched for embryonic stem cell DHS sites. 

We highlight specific loci where we can most effectively prioritize causal variation. 
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Functional genomic annotations, including transcription factor binding sites and open 

chromatin regions, are rapidly becoming available1-3. These annotations provide 

valuable information for prioritizing potential causal variants within complex trait loci 

identified through genome-wide association studies (GWAS)4-15. However, the overlap 

of an associated variant with an annotation does not necessarily imply causality. While 

different functional genomic annotations might be most effective for prioritizing 

variants at individual loci, certain mechanisms might play a more dominant role for 

specific traits. So, annotations corresponding to those mechanisms may be able to 

prioritize causal variants for that trait. For example, binding sites for transcription 

factors regulating key pathogenic pathways might prioritize variants for diseases8,10, or 

promoters active in a specific cell-type might be able to prioritize eQTLs variants from 

that cell-type.  

 

Robust statistical strategies are required to identify informative annotations. A suitable 

strategy must control for two important types of potentially confounding genomic 

features: (1) local structure of genetic variation near SNP associations, and (2) 

colocalization of functional genomic annotations. First, trait-associated SNPs often 

map to regions with greater gene density, genetic variation, and more linkage 

disequilibrium (LD) compared to the rest of the genome. Second, functional 

annotations colocalize, and are often enriched within trait-associated loci. For 

example, DHSs colocalize with exons16,17, and regulatory elements cluster together 

near and within gene transcripts. Therefore an observed enrichment for one 
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annotation may be the consequence of unaccounted colocalization with other 

annotations, thus confounding inferences of causality.  

 

Existing enrichment tests assess significance by comparison to matched SNP sets 

(Supplementary Table 1). These tests may be inflated if they fail to capture the 

genetic features at trait-associated loci. Therefore his we developed GoShifter, a 

statistical approach that accounts for these important confounders. To estimate the 

significance of overlap between trait-associated variants and annotations, we 

generate null distributions by randomly shifting annotations locally within a tested 

region. Additionally, we present a stratified test to identify independent contributions 

from colocalized annotations. 

 

RESULTS 

Summary of the statistical approach. To assess the statistical significance of an 

overlap between trait-associated SNPs and an annotation X, we first identify all 

variants in LD with each index SNP (r2>0.8 in 1000 Genomes Project18, Figure 1A). We 

then quantify the proportion of loci where at least one linked SNP overlaps X. To assess 

significance, we generate the null distribution by randomly shifting X sites within each 

trait-associated locus, and quantifying the proportion of overlapping loci (Figure 1B). 

We circularize each locus, so that shifted annotations remain within locus boundaries. 

This approach ensures that the null distribution maintains local genomic structures, 

such as locus size, number of SNPs in LD, gene density, and annotation density 

(Online Methods). We calculate a delta-overlap parameter that quantifies the 
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difference between the observed overlap and the null. Larger delta-overlaps indicate 

larger proportions of overlapping variants, in a manner that is independent of the 

number of SNPs in LD and TSS or TES proximities of associated SNP sets 

(Supplementary Figure 1). For each locus, we also calculate an overlap-score, which 

reflects the probability of a specific SNP to overlap with X by chance. 

 

To assess the significance of overlap of trait-associated SNPs with annotation X, while 

accounting for a second (possibly colocalizing) annotation Y we present a stratified 

approach. To do this, we partition each locus into two subsegments based on the 

presence of Y: (1) the set of Y annotated regions (denoted as Y), and (2) the set of 

regions lacking Y (denoted as !; Figure 1C). We then merge the Y regions together 

and the ! regions together for each locus into separate subsegments. Ultimately each 

merged subsegment includes variants and X annotations. Contiguous X annotated 

regions may be split if only parts of it are overlapping Y.   This approach stratifies each 

locus, fixing the overlap of the SNPs to Y, as well as the spatial relationship between X 

and Y. We then generate the null distribution by shifting X sites within the Y and ! 

subsegments separately, and then quantifying the proportion of loci in which any 

linked SNPs overlaps X in either Y or !. If X contains information independent of the 

colocalization with Y, stratified shifting should reduce the number of loci where linked 

SNPs randomly overlap X.  
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We implemented both unstratified and stratified analyses in our method, called 

GoShifter. 

 

GoShifter demonstrated appropriate statistical properties; standard enrichment 

tests demonstrated inflated statistics.  To evaluate the statistical properties of 

GoShifter and other enrichment tests, we simulated 1,000 sets of 1,416 trait-associated 

SNPs resembling variant associations identified through GWAS (Online Methods). 

Unlike real trait-associated variants where the function and identity of causal variants 

is unknown, we designed our SNP sets based on causal variants that mapped to 

specific genomic annotations (Supplementary Figure 2), such as DHS, promoters, 

5’UTRs, exons, 3’ UTRs, introns, and intergenic regions. We tested these 1,000 SNP sets 

for overlap with DHS regions consolidated from 217 cell types (Online Methods). 

Choosing causal SNPs to overlap specific annotations allowed us to assess a method’s 

ability to identify true enrichment and reject spurious overlap (Supplementary 

Figure 3). An appropriate strategy should detect DHS enrichment in SNP sets that 

were designed to tag functional variants in regulatory regions (DHS, promoters, 

5’UTRs), modest enrichment for exons and 3’UTRs (which colocalize with DHS)16,17, but 

not at introns or intergenic regions (Online Methods). 

 

GoShifter was well powered to detect significant enrichment in simulated SNP sets that 

tagged variants in DHS, promoter, and 5’UTR regions; 100% of such SNP sets obtained 

p<0.001 based on 1,000 shifting iterations (Figure 2A and Supplementary Figure 4). 

By chance, we would expect 5% of the SNP sets tagging variants in intronic and 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trynka et al  SNP enrichment for genomic annotations  

! 7!

intergenic regions to obtain p<0.05. Indeed, we observed that 4.44% and 7.4%, 

respectively, obtained p<0.05 (Figure 2A, Supplementary Table 2). The SNP sets 

tagging exons and 3’UTR appropriately showed modest enrichment (60% and 11% of 

these SNP sets obtained p<0.05, respectively).  

 

We also tested commonly used matching-based enrichment tests1,5,8,10-13,15,19-28 

(Supplementary Table 1). These tests assess significance by comparing observed 

overlap to that of SNP sets randomly sampled from the genome. Typically, such 

methods match SNPs based on localization within or outside a gene (GEN), minor 

allele frequency (MAF), and proximity to transcription start site (TSS)1,5,10,15,20,24,27. All 

simulated SNP sets, including 100% of those deriving causal variants from intergenic 

regions, obtained p<0.05 for DHS enrichment (Figure 2A, Supplementary Table 2), 

using any matching-based enrichment tests. This demonstrates that matching 

strategies can result in highly inflated statistics that might produce false positive 

results.  

 

We further tested the effectiveness of matching on different combinations of genomic 

features, and observed that the results were highly sensitive to the choice of specific 

matching parameters. We noted that the number of SNPs in LD is not typically used as 

a parameter, yet crucial for reducing inflated statistics (Supplementary Figure 4). 

While MAF was frequently included, it has little effect. Matching on the combination of 

GEN, TSS, TES, and LD adequately controlled type I error, if the SNPs were selected 

from non-regulatory regions (e.g. intergenic or intronic regions).  
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GoShifter outperformed stringent SNP-matching. We calculated the power to 

detect DHS enrichment, using SNP sets harboring various proportions of functional 

variants within DHS. GoShifter outperformed SNP-matching on GEN, TSS, TES and LD 

(Figure 2B). When 10% of a SNP set tagged DHS, GoShifter had a 55% power to detect 

enrichment, compared to 31% with stringent SNP-matching (Figure 2B).  

 

Differentiating effects of colocalizing annotations. To test the ability of GoShifter to 

control for the effects of colocalized annotations, we examined two scenarios. First, we 

queried the enrichment of different annotations in 1,000 sets of 1,416 SNPs tagging 

variants selected from exon sites. While we observed appropriate enrichment with 

exons across all SNP sets (p<0.05), we also saw DHS enrichment in 60% of them 

(Figure 2A). This secondary enrichment was a result of colocalization between the 

DHS sites and exons16,17. Testing for DHS enrichment after stratifying on exons 

produced much lower type I error rate with only 10.2% of SNP sets obtaining p<0.05. 

The modest residual inflation was likely because our simulation strategy used array-

based SNPs (Online Methods), which are enriched for DHS5.  

 

Second, we assessed 1,000 sets of SNPs tagging variants within DHS. While all SNP sets 

were enriched for DHS at p<0.05, 98% of the SNP sets were also enriched for H3K4me3 

sites, which highlights promoters and colocalizes with DHS. Since H3K4me3 

enrichment was likely secondary to functional variants in DHS, we expected the effect 

to become insignificant once we stratified on DHS. After stratifying on DHS, only 1.3% 
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of the SNP sets showed H3K4me3 enrichment at p<0.05, confirming that it was a non-

independent effect. Conversely, when tested for enrichment stratifying on H3K4me3, 

DHS overlap remained significant in 100% of SNP sets. 

 

The stratified analysis only modestly compromises power to detect effects. For SNP 

sets where causal variants were generated from DHS and exons, stratifying on exons 

reduced power to detect DHS enrichment at p<0.001 only when ≤20% of the causal 

variants were from DHS (Figure 2C). However, stratifying on DHS sites did not limit the 

power to detect exon enrichment at all.  

 

eQTL SNPs are enriched for DHS and enhancers close to transcription start sites. 

To demonstrate the applicability of our approach with real data, we aimed to identify 

causal genomic annotations that overlapped 6,380 expression quantitative trait loci 

(eQTLs) that influenced gene expression. We selected eQTLs as an instructive example 

since they are known to localize near the TSS and sites involved in active gene 

regulation29,30. We observed that the TSS proximity (+/-0.5kb, 1kb, 2kb, 5, 10kb, 25kb 

and 50kb) and DHS consolidated from 217 cell types each showed highly significant 

enrichment (p<10-4; Figure 3A). We tested the DHS overlap while stratifying on 

different TSS proximity windows, and observed highly significant independent 

enrichment (p<10-4). In contrast, when we tested TSS proximity stratifying on DHS, we 

detected significant enrichment only at sites very close to the TSS (+/-500 bp, 

p=2x10-4). Furthermore, DHS located within 5kb around the TSS demonstrated the 

strongest signal. Genome-wide DHS sites were not significantly associated when we 
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stratified on DHS sites 10kb around the TSS region (p>0.03). These results suggested 

that causal variants for eQTL-SNPs influence gene expression largely (but not 

exclusively) through specific open chromatin sites in close proximity to TSS.  

 

We also observed enrichment (p<0.05) for histone modifications that indicated active 

gene regulation (H3K9ac, H3K4me3 and H3K4me1) as well as for gene transcripts 

(Figure 3B). Stratified testing on combinations of all annotations immediately 

revealed that the observed enrichment for transcripts was due only to colocalization 

with DHS. DHS showed the strongest enrichment and remained significant when 

stratified on all other annotations (p<10-4). We also observed a nominal independent 

enrichment at H3K4me1 sites (p=0.02). Therefore, causal eQTL variants might be best 

prioritized by identifying SNPs (1) in DHS sites, (2) within close proximity to the TSS (up 

to 5kb) or (3) within H3K4me1 regions. 

 

Quantifying the proportion of GWAS catalog SNPs with DHS causal variants. We 

assessed 1,416 independent SNP associations from the NHGRI GWAS Catalog31 for 

overlap with different annotations (Online Methods). We observed enrichment at 

DHS (p<10-4), and evidence of enrichment at genes, H3K4me3 and H3K4me1 marks, as 

well as 5 and 10kb windows around TSS (Figure 4A). Pairwise stratified tests showed 

that DHS sites were independently enriched from other annotations (p≤7x10-4). In 

contrast, the enrichment for gene transcripts and TSS regions were not significant 

after stratifying on DHS. Both H3K4me1 and H3K4me3 retained nominal enrichment 

independent from each other and DHS (p≤0.05; Figure 4B). These results suggest that 
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causal disease-associated variants in DHS sites function through mechanisms 

independent of those indicated by H3K4me3 and H3K3me1. 

 

Previous reports estimated that 40-80% of trait-associated variants within the GWAS 

catalog overlap with DHSs1,5,15. To accurately determine the proportion of GWAS loci 

that tag variants in DHS, we compared the delta-overlap, which quantifies the strength 

of association, for DHS observed in the GWAS catalog with delta-overlap values for 

DHS sites using 11,000 sets of 1,416 randomly selected independent SNPs with 

variable proportions of causal SNPs in DHS sites (Online Methods; Figure 4C). For 

DHS overlapping the GWAS catalog, we observed a delta-overlap of 3.17. Delta-

overlap is independent of the number of SNPs in LD and TSS or TES proximities of 

associated SNP sets (Supplementary Figure 1). We determined that this value was 

consistent with having 15-36% causal variants within DHS (95% confidence, Figure 

4D), suggesting DHS enrichment may be more modest than previously reported. 

 

Rheumatoid arthritis and breast cancer associations are enriched at the summits 

of cell-type specific histone marks. We examined two phenotypes with large 

numbers (>50) of associated variants, to test GoShifter’s ability to identify cell-type 

specific functional variants. We first tested 88 SNPs associated with rheumatoid 

arthritis (RA)32 for enrichment of non-coding annotations. We focused on CD4+ 

memory T cells given recent observations of cell-type specific gene expression and 

eQTL within these loci4,33,34. We observed no association with H3K4me3 peak bodies in 

CD4+ memory T cells (p=0.17) or in the aggregate of all 118 cell types from our 
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datasets (p=0.14, Figure 5A). Since the median width of H3K4me3 mark peaks varied 

widely (110bp to 86,490bp), we examined the summit regions (+/-100bp of H3K4me3 

summits) where active gene regulatory elements were most likely located. In the 

summit regions we observed significant overlap both for the 118 cell types collectively 

(p=0.044) and CD4+ memory T cells specifically (p=1.6x10-3). The CD4+ memory T cell 

signal remained significant after stratification on the summit regions of the other 117 

cell types (p=2.7x10-3). In contrast, the other cell types did not retain significant 

enrichment after stratifying on CD4+ memory T cells (p=0.08). These results suggested 

that examining the H3K4me3 summit regions in CD4+ memory T cells could help 

prioritizing causal variants in RA loci. 

 

Similarly, we examined 69 SNPs35 associated with breast cancer. H3K4me3 summit 

regions revealed no significant overlap with the three breast tissues present in our 

dataset (p>0.4). We therefore tested for enrichment with another active regulatory 

mark, H3K4me1, for which there were four breast tissues in our dataset. This mark 

identified only breast myoepithelial cells with nominal significance (p=0.034). 

However, when we used H3K4me1 summit regions we observed more significant 

overlap for variant human mammary epithelial cells (vHMEC; p=2x10-3; Figure 5B). We 

performed pairwise stratified enrichment tests across the four breast tissues, and 

found that the vHMEC summit region enrichment was maintained when stratifying on 

peaks from each of the other three breast tissues (p<3.6x10-3). DHS appeared less 

informative for breast cancer, as we found that none of the DHS samples in our dataset 

showed nominally significant enrichment. These results show that our stratified 
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approach can be applied to narrow down the specific cell type in which disease 

associated variants function, even from within the disease tissue of interest.   

 

Stratified analysis can indicate relevant cell types for height. We assessed 697 

SNPs associated with adult human height36, a highly polygenic trait without clearly 

established causal cell types. When we examined DHS from 217 cell types collectively, 

we observed nominal evidence of overlap (p=0.019). Individually, many tissues 

demonstrated some evidence of overlap, including 13 at p<10-3 (Figure 5C). We 

observed the strongest enrichment in embryonic stem cells (H1-hESC; p<10-4) and 

primary CD3+ cells from cord blood (p<10-4). The enrichment in H1-hESC retained 

significance after stratifying on cord blood CD3+ cells (p=9.6x10-3); but the CD3+ cell 

DHS enrichment diminished after stratifying on H1-hESC (p=0.08). Examining DHS in 

embryonic stem cells or a related cell type might be informative for fine-mapping 

height loci for potential causal variants. 

 

Fine-mapping to functional variants. Once critical annotations had been identified, 

we used the overlap-score from GoShifter to identify loci where variants might be best 

prioritized. In breast cancer, the lowest overlap-score was the rs889312 locus 

(score=0.097, Figure 6). This SNP was in LD with seven other variants, of which only 

rs1862626 overlapped a vHMEC H3K4me1 summit region. This SNP is upstream of 

MAP3K1 and modifies a predicted binding site for estrogen receptor alpha (ER-α)37, 

supporting the well-established role of estrogen-mediated signaling in breast cancer 
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progression38,39. For height, the rs11677466 locus showed the lowest overlap-score 

(0.026; Figure 6). This SNP itself overlaps an embryonic stem cell DHS site that is a 

known binding site for the HNF-4α40-42, a transcription factor that plays important roles 

in metabolic regulation and stem cell differentiation. 

 

DISCUSSION 

To date, most published studies estimate the statistical significance of the overlap of 

associated variants with genomic annotations by using a random sets of matched 

SNPs for comparison. These approaches are vulnerable to inflated statistics and false 

discoveries, and might overestimate the utility of certain genomic annotations (see 

Supplementary Figure 5). For instance, we estimate that DHS accounts for 15-36% of 

GWAS catalog variants rather than the widely reported 40-80%. We note that 

matching-based enrichment tests for DHS must at least include TSS, TES, LD, and GEN 

as parameters. Other annotations may require different parameters sets, adding 

additional challenges to using such approaches.  

 

GoShifter stringently controls for local features by shifting annotations within trait-

associated loci. Similar approaches have been employed to study the relationship of 

variants with genomic annotations and different annotations with each other4,27,43,44. In 

addition, our method represents an important advance over current approaches in its 

ability to assess independent effects from colocalizing annotations. One potential 

limitation of this approach is that it cannot easily account for the biases intrinsic to 
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commercial arrays; however as studies increasingly use whole-genome imputation 

and sequencing, this limitation will become less relevant.  

 

Applying GoShifter, we observed that different annotations play dominant roles in 

different traits. For example, height-associated variants showed DHS enrichment 

specifically in embryonic stem cells, while breast cancer variants enriched for 

H3K4me1 but not DHS. These may be partly due to different trait-relevant tissues 

being mapped with different assays. Nevertheless, variants associated with different 

phenotypes are likely to act through various mechanisms, resulting in differential 

enrichment of annotations.  

 

Once the most informative annotations and trait-relevant tissues are identified, it 

becomes possible to functionally fine-map trait-associated regions. For example, we 

demonstrated that the summit regions of histone marks are more informative than the 

entirety of histone mark sites for breast cancer and rheumatoid arthritis. We anticipate 

that the applications of accurate enrichment statistics will only increase as more loci 

are discovered and better localized with dense-genotyping and sequencing, and as 

the diversity and quality of genomic annotations expand. 
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FIGURE LEGENDS 

 

Figure 1. Schematic of the GoShifter method. To assess the statistical significance of 

an overlap between trait-associated SNPs and an annotation X, (A) we first use 1000 

Genomes Project data to identify variants in LD with each index SNP (r2>0.8). (B) We 

quantify the observed overlap: the proportion of loci where at least one linked SNP 

overlaps annotation X (shaded boxes). The significance of observed overlap is 

estimated by comparing to a null distribution generated by randomly shifting X sites 

within each locus. After each shift, we calculate the proportion of loci overlapping the 

annotation. To ensure that the same number of shifted annotations remains within 

locus boundaries we circularize each region. (C) To determine the significance of an 

overlap with annotation X independent of a possibly colocalizing annotation Y, we 
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partition each locus into two types of fragments: those regions mapped by Y sites 

(light blue blocks), and those that lack them (denoted as !; white blocks). We join the 

respective Y and ! fragments into two independent continuous segments. To 

generate the null distribution, we shift annotation X separately within each of the two 

segments. For each iteration we count the proportion of loci where any of the linked 

SNPs overlaps annotation X in either Y or !. 
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Figure 2. Comparison of statistics between GoShifter and matching-based tests. 

(A) The most widely used matching-based test (GEN+MAF+TSS) results in highly 

significant DHS overlap even in the SNP sets that do not tag regulatory elements (e.g. 

introns). This is corrected by including LD and TES parameters in matching. However, 

even though this improves the false positive rate in intergenic SNP sets, this test is 

inappropriate in more complex SNP sets, such as non-synonymous variants, where it 

fails to recognize true enrichment. (B) GoShifter is better powered than stringent 

matching to detect DHS enrichment in SNP sets with 0 to 30% of loci tagging DHS 

variant at p<0.05 and p<0.001. (C) Without accounting for possible colocalization 

between exons and DHS, 12.5% of SNP sets show significant DHS enrichment when all 

loci tag exonic variant (at p<0.001). This drops to 0.7% when testing for DHS 
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enrichment and stratifying on exons (upper panel). GoShifter retains the power to 

detect enrichment for exons across SNP sets with 10% loci tagging exon variants, even 

when stratifying on possible colocalization with DHS (lower panel).  

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trynka et al  SNP enrichment for genomic annotations  

! 21!

 

Figure 3. eQTL variants localize to DHS near TSS regions. (A) Results and the effect 

size of the enrichment for DHS and proximity to TSS across 6,380 eQTL variants. We 

examine windows around the TSS and assess significance of eQTL overlap. (B) 

Enrichment result across active regulatory chromatin marks and gene transcripts with 

eQTL SNPs. Upon stratifying on DHS, association of different annotations is reduced. 

This is particularly apparent for gene transcripts, indicating that the observed 

enrichment is due to the colocalization with gene regulatory elements.
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Figure 4. Quantifying the proportion of causal variants within the GWAS catalog 

derived from DHS. (A) The enrichment results of different genomic annotations with 

1,416 independent NHGRI GWAS Catalog SNPs. (B) Pairwise stratified analysis 

implicates that the primary driver of the enrichment is DHS. Additionally, H3K4me3 
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and H3K4me1 summit regions are independently enriched but to a lesser extent than 

DHS. (C) We estimate delta-overlap for DHS at 3.17, (D) which corresponds to 15-36% 

of loci with causal variants within DHS. 
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Figure 5. Enrichment results for three selected sets of trait-associated SNPs. (A) 

Rheumatoid arthritis variants show highly significant enrichment within summit 

regions of H3K4me3 peaks from CD4+ memory T cells. (B) Breast cancer SNPs are 

highly enriched for summit regions of H3K4me1 peaks in variant human mammary 

epithelial cells (vHMEC; p=2x10-3; left panel). This enrichment is maintained when 

stratifying on summit regions from each of the other three breast tissues (p<3.6x10-3; 

right panel). (C) SNPs associated with height show high enrichment for DHS regions in 

embryonic stem cells and CD3+ cells from cord blood (left panel). However, the CD3+ 

cell DHS enrichment diminishes after stratifying on embryonic stem cells (p=0.08), 
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while embryonic stem cells retain significance when stratifying on CD3+ cells 

(p=9.6x10-3; right panel).  
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Figure 6. Locusplots showing the peaks, variants and reads in two trait-

associated loci. (A) The locus with the best overlap-score among breast cancer SNP 

associations was the locus marked by the index SNP rs889312. This SNP has a variant in 

LD (r2>0.8; rs1862626) that overlaps with the summit region of an H3K4me1 peak. This 

peak overlaps with a predicted estrogen-alpha binding site. The associated locus is 

located upstream of potential oncogene MAP3K1. (B) Of the the height assocated 
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SNPs, the locus with the best overlap-score was the one marked by the index SNP 

rs11677466, located in an exon of DIS3L2. This SNP overlaps a DNase-I hypersensitivity 

peak, which also overlaps a known HNF4-alpha binding site.
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ONLINE METHODS 
 

Enrichment Tests: Assessing the Significance of Overlap of Variants and 

Functional Genomic Annotations  

Typically, enrichment tests first quantify the proportion of loci that overlap with a 

tested annotation, and then assess if the observed overlap exceeds chance using a null 

distribution of expected overlap. This null distribution can be derived by sampling 

random sets of SNPs from the genome with properties that match the tested SNPs, or 

by locally shifting the annotations within the tested loci, as we propose here.  

 

A. Assessing enrichment by local annotation shifting.  

One approach is to define the null distribution of overlap by locally shifting 

annotations within loci4,27,43,44, which we implemented in GoShifter (see Figure 1). 

Shifting annotations locally ensures that we always test the same number of 

annotations and the same number of linked SNPs. Also, it preserves the structure of 

the annotations within each locus.  

 

We first determined the median size of the tested annotation. We then defined the 

locus boundaries based on the position of the most upstream and downstream SNPs 

in LD (r2 > 0.8), and further extended by twice the median size of the tested 

annotation. This ensured that variants without SNPs in LD had non-zero locus sizes. 

We identified all annotation sites within each locus boundaries, and determined the 

number of loci where at least one SNP overlapped with the annotation. To construct 
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the null distribution of chance overlap, we circularized the region, which prevents the 

annotation from being shifted outside the locus boundaries. We then fixed the 

positions of the SNPs in the locus while shifting all annotations by a random distance, 

preserving the distances between annotation intervals. For each shift, each locus is 

assigned a random shift value ranging from –li to +li, where li represents the size of the 

locus i. At each iteration, we count the number of loci with at least one SNP 

overlapping the annotation after shifting, which estimates the number of loci that 

overlap by chance. Over all iterations, we create a null distribution from which we 

compute the p-value as the proportion of iterations for which the number of 

overlapping loci is equal to or greater than that for the tested SNPs. For all analyses in 

this paper that used simulated SNP sets, we conducted n = 103 shifts. To test for 

enrichment of trait-associated variants we performed n = 104 shifts. 

 

Delta-overlap parameter. 

To quantify the effect size of the observed enrichment we introduce the delta-overlap 

parameter. We define the proportion of loci overlapping the annotation under the null 

by shifting as described above. The delta-overlap is the difference between the 

observed proportion of loci with overlap and the mean of the null distribution. If there 

is no enrichment, the observed real overlap will be close to the mean overlap 

observed under the null, and delta-overlap will be close to zero. Conversely, larger 

delta-overlap values correspond to stronger enrichment.  

 

Overlap-score parameter.  
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We define the overlap-score as the likelihood of each locus to overlap an annotation 

beyond the overlap expected by chance. This is computed only for the loci that 

overlap the annotation in the observed data. Overlap-score is defined as !!!  where ls is 

the number of shifting iterations where at least one SNP overlaps the annotation and n 

is the total number of iterations. A small score reflects a low probability that the 

overlap will happen by chance. The loci with low scores are the ones likely to be 

driving significant observations, making them higher-priority candidates for further 

functional investigations.  

 

B. Stratified enrichment of an annotation, controlling for the effect of a secondary 

annotation.  

We further extend the shifting enrichment test to assess the significance of overlap of 

an annotation X, controlling for any overlap with a potentially colocalizing annotation 

Y (see Figure 1). This approach allows the comparison of multiple annotations against 

each other. To do so, we divide each locus into regions overlapping Y and regions not 

overlapping Y, and treat them independently in a “stratified” analysis.  

 

For each associated locus we map all annotations X (to be tested) and Y (to be 

conditioned on) that fall between region boundaries. We first identify segments within 

the locus into fragments that either overlap Y or not.!We fuse all Y-overlapping 

fragments into one continuous segment (denoted Y), and similarly fuse all non-Y-

overlapping fragments into another segment (denoted as !). When we fuse the 
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segments we include overlapping variants and regions annotated with X. If an X 

annotation does not fall entirely within Y or !, it is split at the boundary into the Y and 

! segments. As the result, the relationships and relative positions between X, Y, and 

the SNPs in the locus are preserved in both segments. 

 

We then count the number of loci within which at least one SNP overlaps with 

annotation X in the Y or ! segment. To evaluate the statistical significance of the 

observed enrichment, we shift annotation X within segment Y and ! independently. 

We circularize each of the two segments Y and ! to ensure that an annotation cannot 

fall outside the segment boundaries. At each iteration, we sum the number of loci 

containing at least one SNP that overlaps annotation X in one of the segments. We 

define the enrichment p-value as the proportion of iterations where the number of 

loci with SNP overlapping X exceeds the number of loci overlapping X prior to shifting 

 

C. Assessing enrichment by SNP matching.  

The common strategy to assess enrichment of an annotation is to compare associated 

SNPs to random matched SNPs in an attempt to control for possible genomic 

confounders, however there is no consensus as to which parameters are relevant for 

the matching-based tests (Supplementary Table 1).  

 

We noted that different genotyping platforms had distinct biases due to their designs 

[ref] (efficiency of tagging, allele frequency of included SNPs, number of SNPs, and 
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physical distribution in the genome). To avoid such bias produced by platform 

differences, here we derived the null distribution by sampling variants from the same 

platform that we used for simulating the SNP sets (Illumina Omni 2.5). 

 

To match the set of SNPs being tested for enrichment, we binned them by GEN (gene 

overlap), MAF (frequency bins incremented by 5%), TSS proximity (defined by 500bp, 

2kb, 5kb, 10kb, 20kb and 100kb distance from the nearest TSS), TES proximity (defined 

by 1kb, 2kb, 5kb, 10kb, 20kb and 100kb distance from TES of the same gene as the 

nearest TSS), and the number of SNPs in LD. If fewer than 20 SNPs were present in the 

matched bin, we expanded to the nearest LD bins while matching on the other 

properties. We constructed the null distribution by repeatedly sampling the overlap 

between the annotation and the matched SNP sets. Then, we calculated the 

enrichment p-value as the proportion of matched SNP sets with a number of overlaps 

equal to or greater than the tested SNPs. 

 

Genomic Annotations 

Our study utilized several commonly used functional genomic annotations, as well as 

gene annotations. These annotations were used to test enrichment for different 

variant sets, and in some cases were used to generate simulated SNP sets to assess 

statistical properties. All of these annotations were compiled from publically available 

resources.  

 

DNase Hypersensitivity Data 
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We used the DHS data from 80 experiments from ENCODE1 and 137 from NIH 

Roadmap Epigenomics Project2. See Supplementary Table 3 for a detailed list of 

included tissues and cell types. We consolidated DHS tracks across all cell-types for 

analyses on eQTL and GWAS catalog data (as in Figures 2, 3, 4), but for individual cell-

types for height data (as in Figure 5C and 6). For both datasets we downloaded hg19-

mapped ChIP-Seq reads. We merged reads from samples with multiple replicates into 

a single library. For each sample, we used the corresponding input DNA library as the 

control if available. We ran MACS software (v2.0)45 using default settings (FDR= 0.01 

and bandwidth = 300 bp) to identify significant peaks by comparing the DHS libraries 

with the control. For each experiment we located the start and end positions of the 

peaks to define genomic intervals in a BED file. We combined replicates so that any 

overlapping DHS peaks from different replicates were merged into a single interval. In 

total, the 217 experiments consisted of 1,331,772 distinct autosomal DHS positions, 

collectively spanning 16.4% of the genome.  

 

Histone Modifications 

Similarly, we used MACS software (v2.0) with default parameters to call H3K4me3, 

H3K4me1 and H3K9ac peaks in 118, 114, and 50 tissue and cell type samples, 

respectively, from the NIH Roadmap Epigenome2. We examined histone mark data by 

aggregating across all cell-types for eQTL and GWAS catalog data, and for individual 

cell-types for breast cancer and rheumatoid arthritis. See Supplementary Table 3 for 

a detailed list of included tissues and cell types. We downloaded data from 

http://www.genboree.org/EdaccData/Current-Release/experiment-sample/ as 
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available on Jan 2, 2014. If multiple replicates of the same tissue (input and control) 

were available, we provided multiple BED files as input for MACS. For each experiment 

we located the start and end of the peaks, as well as the summit regions defined as +/- 

100bp around summits called by MACS.  

 

Gene Annotations 

We defined gene annotations, including gene (whole transcript), exons, 5’ UTR, 3’ UTR, 

intron and promoter regions. To this end, we downloaded the RefSeq gene 

coordinates from the UCSC Genome Browser (http://genome.ucsc.edu/). We retained 

only transcripts with more than one exon. To exclude poorly studied genes, 

pseudogenes, and falsely identified genes, we restricted our analysis to genes with at 

least one PubMed publication46. The final set represented 18,183 genes. Based on this 

set of genes, we identified their respective exons, introns, and UTRs. We defined 

promoter regions as the first 500 bp upstream from the transcription start site. Using 

our gene and DHS sets we estimated that the DHS coverage for different gene features 

was 26% for exons, 73% for promoters, 75% for 5’UTRs, 22% for 3’UTRs, and 20% for 

introns. 

 

Associated variants 

For this study we examined variants from the GWAS catalog, variants that were eQTLs, 

and variants that were associated with three specific traits.  

 

Disease Associated Variants from the NHGRI GWAS catalog 
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To obtain a large set of disease-associated variants, we used the NHGRI GWAS 

Catalog31 (downloaded on November 5, 2013) and selected genome-wide significant 

SNPs (p-value < 5x10-8). To simplify the linkage disequilibrium (LD) calculations in our 

downstream enrichment analysis, we only included the studies that were performed in 

Europeans or where Europeans contributed to the majority of the final samples. We 

used UCSC Genome Annotations LiftOver Tool to map SNPs to the human 

GRCh37/hg19 reference. We excluded sex chromosomes and low frequency SNPs 

(MAF<0.05). For LD calculations, we used the 379 European samples from the 1000 

Genomes Project18 available at the Beagle website 

(http://faculty.washington.edu/browning/beagle/beagle.html#reference_panels; 

Phase 1, release 2), using only bi-allelic SNPs with at least 5 copies of the minor allele. 

To ensure that the SNPs in our set were independent, for each pair of SNPs, we 

randomly excluded one SNP if r2 > 0.1 or if the distance between the SNPs was < 

100kb. Finally, we excluded phenotypes with less than 10 independent SNP 

associations after our filtering criteria. This resulted in 1,416 SNPs in our test set.  

 

Trait-Associated Variants 

To test for enrichment with trait associated variants, we used 689 SNPs reported to be 

associated with height36, 89 SNPs associated with rheumatoid arthritis in Europeans 

alone or shared between Europeans and Japanese32, and 69 SNPs associated with 

breast cancer35. 

 

Expression Quantitative Trait Loci 
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We assembled a set of cis eQTL SNPs from 923,022 SNPs associated with whole blood 

gene expression at a FDR of 0.521. For each reported eQTL gene, we selected the single 

SNP most significantly associated with its expression, then performed LD pruning47 

(using a window of 1,000 SNPs, sliding by one SNP at a time, and excluding one SNP in 

a pair if r2 > 0.1) to ensure independence of the SNPs in our final SNP set. This resulted 

in 6,381 SNPs in the final SNP set for whole blood gene expression. 

 

Simulating sets of trait-associated SNPs 

To assess the performance of different enrichment tests, we wanted to define sets of 

SNPs that might emerge from a GWAS study where causal variants were predefined. 

With our approach we defined causal variants as emerging from a specific pre-defined 

functional region. By using this approach, we could then test the sensitivity and 

specificity of enrichment tests to identify appropriate enrichment.  

 

1) Defining functional SNP classes 

Using a total of 6,830,225 common autosomal SNPs (MAF > 5% in Europeans in the 

1000 Genomes Project), we grouped SNPs into seven categories: nonsynonymous, 

intronic, 3’ UTR, 5’ UTR, promoter (<500bp from the TSS), intergenic (>5kb TSS), and 

those residing within DHS sites. To identify nonsynonymous variants, we used SIFT48. 

We defined promoter SNPs as the ones that mapped within 500bp upstream of the 

transcription start site (TSS) and intergenic SNPs as those that mapped more than 5kb 

upstream of the nearest TSS.  
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2) Simulating SNP sets tagging defined functional GWAS variants  

We simulated 1000 sets of 1,416 causal SNPs (to match the NHGRI catalog SNP list), 

selected to overlap each of the predefined genomic functional categories: exons, 

introns, UTR’s, intergenic and DHS regions. In each set, variants were randomly 

selected from a given functional category. For each functional variant we then 

identified a tagging SNP in LD that was available on a commercial genotyping array 

(Illumina Human Omni2.5), in order to mimic a typical GWAS approach. In total, 

5,569,657 of the available SNPs were tagged (r2 ≥ 0.5) by 1,218,618 common (MAF ≥ 

5%) variants on the Illumina Human Omni 2.5 array. If multiple SNPs were in LD with 

the causal variant, we selected the one with the greatest r2. Finally, we required SNPs 

in the final set to be more than 100kb apart from each other to ensure independence.  

 

3) SNP sets with variable proportions of causal functional variants within DHSs. 

In addition to defining SNP sets derived from causal variants within a single 

annotation, we also defined SNP sets where casual variants were derived from two 

separate functional annotations. In these instances, we selected a proportion of causal 

variants from one annotation, and the remainder from a second annotation.  

 

Inferring the proportion of NHGRI GWAS Catalog causal variants in DHS  

We calculated the delta-overlap for DHS enrichment in the NHGRI GWAS Catalog, then 

aimed to infer the proportion of loci that overlap with DHSs from the observed delta-

overlap value. We first simulated SNP sets of the same size as the GWAS Catalog, with 

variable proportions of causal variants within DHS, and calculated the delta-overlap in 
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each set. We then used this relationship to infer the DHS overlap of the GWAS Catalog. 

Specifically, as described above, we created 1,000 SNP sets with a range of 0-45% of 

causal variants in DHS, in 3% increments, and calculated their corresponding delta-

overlap values. (The observed delta-overlap of the real data was not consistent with 

any proportion that exceeded 45%,). We identified simulated sets that obtained delta-

overlap values consistent with the observed delta-overlap (+/-0.2). Then, from those 

sets we estimated a probability distribution of proportion of causal variants within 

DHS. From this distribution, we estimated the mean and 95% confidence range for the 

proportion of causal variants in DHSs. 

 

Implementation 

GoShifter is implemented as scripts written in Python-2.7. The scripts and 

documentation can be downloaded from www.broadinstitute.org/mpg/goshifter. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trynka et al  SNP enrichment for genomic annotations  

! 39!

REFERENCES 

1. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human 
genome. Nature 489, 57-74 (2012). 

2. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat 
Biotechnol 28, 1045-8 (2010). 

3. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in 
blood. Nat Biotechnol 30, 224-6 (2012). 

4. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping 
complex trait variants. Nat Genet 45, 124-30 (2013). 

5. Maurano, M.T. et al. Systematic localization of common disease-associated 
variation in regulatory DNA. Science 337, 1190-5 (2012). 

6. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 
with systemic lupus erythematosus. Nat Genet 43, 253-8 (2011). 

7. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 
1p13 cholesterol locus. Nature 466, 714-9 (2010). 

8. Cowper-Sal lari, R. et al. Breast cancer risk-associated SNPs modulate the affinity 
of chromatin for FOXA1 and alter gene expression. Nat Genet 44, 1191-8 (2012). 

9. Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease 
impair interferon-gamma signalling response. Nature 470, 264-8 (2011). 

10. Karczewski, K.J. et al. Systematic functional regulatory assessment of disease-
associated variants. Proc Natl Acad Sci U S A 110, 9607-12 (2013). 

11. Liu, J.Z. et al. Dense fine-mapping study identifies new susceptibility loci for 
primary biliary cirrhosis. Nat Genet 44, 1137-41 (2012). 

12. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes 
risk-associated variants. Nat Genet 46, 136-43 (2014). 

13. Paul, D.S. et al. Maps of open chromatin highlight cell type-restricted patterns 
of regulatory sequence variation at hematological trait loci. Genome Res 23, 
1130-41 (2013). 

14. Pickrell, J.K. Joint analysis of functional genomic data and genome-wide 
association studies of 18 human traits. Am J Hum Genet 94, 559-73 (2014). 

15. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease 
associations with regulatory information in the human genome. Genome Res 
22, 1748-59 (2012). 

16. Mercer, T.R. et al. DNase I-hypersensitive exons colocalize with promoters and 
distal regulatory elements. Nat Genet 45, 852-9 (2013). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trynka et al  SNP enrichment for genomic annotations  

! 40!

17. Birnbaum, R.Y. et al. Coding exons function as tissue-specific enhancers of 
nearby genes. Genome Res 22, 1059-68 (2012). 

18. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human 
genomes. Nature 491, 56-65 (2012). 

19. Gerasimova, A. et al. Predicting cell types and genetic variations contributing to 
disease by combining GWAS and epigenetic data. PLoS One 8, e54359 (2013). 

20. Lee, Y. et al. Variants affecting exon skipping contribute to complex traits. PLoS 
Genet 8, e1002998 (2012). 

21. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of 
known disease associations. Nat Genet (2013). 

22. Anttila, V. et al. Genome-wide meta-analysis identifies new susceptibility loci for 
migraine. Nat Genet 45, 912-7 (2013). 

23. Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. 
Nat Genet 45, 1274-83 (2013). 

24. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers 
functional variation in humans. Nature 501, 506-11 (2013). 

25. Akhtar-Zaidi, B. et al. Epigenomic enhancer profiling defines a signature of 
colon cancer. Science 336, 736-9 (2012). 

26. Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage 
disequilibrium dictate levels of gene expression to confer susceptibility to 
common traits. Genome Res 24, 1-13 (2014). 

27. Khurana, E. et al. Integrative annotation of variants from 1092 humans: 
application to cancer genomics. Science 342, 1235587 (2013). 

28. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human 
cell types. Nature 473, 43-9 (2011). 

29. Degner, J.F. et al. DNase I sensitivity QTLs are a major determinant of human 
expression variation. Nature 482, 390-4 (2012). 

30. Gaffney, D.J. et al. Dissecting the regulatory architecture of gene expression 
QTLs. Genome Biol 13, R7 (2012). 

31. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic Acids Res 42, D1001-6 (2014). 

32. Okada, Y.W., D.; Trynka, G.; Raj, T.; Terao, C.; . Genetics of rheumatoid arthritis 
contributes to biology and drug discovery. Nature (2013). 

33. Hu, X. et al. Regulation of Gene Expression in Autoimmune Disease Loci and the 
Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS Genet 10, 
e1004404 (2014). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trynka et al  SNP enrichment for genomic annotations  

! 41!

34. Hu, X. et al. Integrating autoimmune risk loci with gene-expression data 
identifies specific pathogenic immune cell subsets. Am J Hum Genet 89, 496-
506 (2011). 

35. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated 
with breast cancer risk. Nat Genet 45, 353-61, 361e1-2 (2013). 

36. Wood, A.R. et al. Defining the role of common variation in the genomic and 
biological architecture of adult human height. Nat Genet in press(2014). 

37. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, 
conservation, and regulatory motif alterations within sets of genetically linked 
variants. Nucleic Acids Res 40, D930-4 (2012). 

38. Folkerd, E.J. & Dowsett, M. Influence of sex hormones on cancer progression. J 
Clin Oncol 28, 4038-44 (2010). 

39. Jordan, V.C. Selective estrogen receptor modulation: concept and 
consequences in cancer. Cancer Cell 5, 207-13 (2004). 

40. McDonald, T.J. & Ellard, S. Maturity onset diabetes of the young: identification 
and diagnosis. Ann Clin Biochem 50, 403-15 (2013). 

41. Santangelo, L. et al. The stable repression of mesenchymal program is required 
for hepatocyte identity: a novel role for hepatocyte nuclear factor 4alpha. 
Hepatology 53, 2063-74 (2011). 

42. DeLaForest, A. et al. HNF4A is essential for specification of hepatic progenitors 
from human pluripotent stem cells. Development 138, 4143-53 (2011). 

43. Bickel, P.J., Boley, N., Brown, J.B., Huang, H. & Zhang, N.R. Subsampling methods 
for genomic inference. The Annals of Applied Statistics 4, 1660-1697 (2010). 

44. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in 
present-day humans. Nature 507, 354-7 (2014). 

45. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 
(2008). 

46. Raychaudhuri, S. et al. Identifying relationships among genomic disease 
regions: predicting genes at pathogenic SNP associations and rare deletions. 
PLoS Genet 5, e1000534 (2009). 

47. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet 81, 559-75 (2007). 

48. Ng, P.C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein 
function. Nucleic Acids Res 31, 3812-4 (2003). 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2014. ; https://doi.org/10.1101/009258doi: bioRxiv preprint 

https://doi.org/10.1101/009258
http://creativecommons.org/licenses/by-nc-nd/4.0/

