
	
   1	
  

Article/Discovery 

Inference of Gorilla demographic and selective history from whole genome sequence data  

 

Kimberly F. McManus1,2*, Joanna L. Kelley3,4*, Shiya Song5*, Krishna Veeramah7, August E. 

Woerner7, Laurie S. Stevison8, Oliver A. Ryder9, Great Ape Genome Project, Jeffrey M. 

Kidd§,5,6, Jeffrey D. Wall8, Carlos D. Bustamante3, and Michael F. Hammer§,7 

 
1Department of Biology, 2Department of Biomedical Informatics, and 3Department of Genetics 

Stanford University, Stanford CA 94305. 
4School of Biological Sciences, Washington State University, Pullman WA 642812.  
5Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor 

MI 48109. 
6Department of Human Genetics, University of Michigan, Ann Arbor MI 48109.  
7ARL	
  Division	
  of	
  Biotechnology, University of Arizona, Tucson AZ 85721.	
   
8Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143. 
9San	
  Diego	
  Zoo	
  Institute	
  for	
  Conservation	
  Research,	
  San	
  Diego	
  Zoo	
  Global,	
  Escondido,	
  CA	
  

92027.	
  
10Department of Epidemiology & Biostatistics, University of California San Francisco, San 

Francisco CA 94143.  

 

*Contributed equally 
§Corresponding authors: Jeffrey M. Kidd and Michael Hammer 

Emails: jmkidd@med.umich.edu and mfh@email.arizona.edu

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2014. ; https://doi.org/10.1101/009191doi: bioRxiv preprint 

https://doi.org/10.1101/009191
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   2	
  

Abstract 

 
While population-level genomic sequence data have been gathered extensively for humans, 

similar data from our closest living relatives are just beginning to emerge. Examination of 

genomic variation within great apes offers many opportunities to increase our understanding of 

the forces that have differentially shaped the evolutionary history of hominid taxa. Here, we 

expand upon the work of the Great Ape Genome Project by analyzing medium to high coverage 

whole genome sequences from 14 western lowland gorillas (Gorilla gorilla gorilla), 2 eastern 

lowland gorillas (G. beringei graueri), and a single Cross River individual (G. gorilla diehli). 

We infer that the ancestors of western and eastern lowland gorillas diverged from a common 

ancestor ~261 thousand years ago (kya), and that the ancestors of the Cross River population 

diverged from the western lowland gorilla lineage ~68 kya. Using a diffusion approximation 

approach to model the genome-wide site frequency spectrum, we infer a history of western 

lowland gorillas that includes an ancestral population expansion  of ~1.4-fold around ~970 kya 

and a recent  ~5.6-fold contraction in population size ~23 kya. The latter may correspond to a 

major reduction in African equatorial forests around the Last Glacial Maximum. We also analyze 

patterns of variation among western lowland gorillas to identify several genomic regions with 

strong signatures of recent selective sweeps. We find that processes related to taste, pancreatic 

and saliva secretion, sodium ion transmembrane transport, and cardiac muscle function are 

overrepresented in genomic regions predicted to have experienced recent positive selection. 
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Introduction 

The Gorilla genus consists of two morphologically distinguishable species, western (Gorilla 

gorilla) and eastern (Gorilla beringei) gorillas (Grubb et al. 2003), each of which is divided into 

two recognized subspecies. Eastern gorilla populations occur in lowlands and highlands in the 

Democratic Republic of Congo, Uganda and Rwanda; while western gorilla populations reside 

primarily in Cameroon, Equatorial Guinea, Gabon, Congo, and the Central African Republic 

(Thalmann et al. 2007). Western gorillas include western lowland gorillas (Gorilla gorilla 

gorilla), the subspecies with the largest population size (and the main focus of this study), and 

Cross River gorillas (G. gorilla diehli), of which only a few hundred individuals remain. Eastern 

gorillas are composed of eastern lowland gorillas (G. beringei graueri) and mountain gorillas (G. 

beringei beringei), which are found today in only two small isolated subpopulations.  

Gorillas are the largest extant nonhuman primate, with male and female western lowland 

gorilla body weights averaging 170 and 71 kg, respectively (Smith and Jungers 1997). Gorillas 

also demonstrate the largest sexual dimorphism in body size of any of the apes. This is likely 

related to their mating system (Plavcan 2001), where gorillas exhibit a polygynous structure in 

which a single dominant male largely controls access to reproduction with a number of adult 

females. Among the apes, gorillas also demonstrate an unusual diet and digestive anatomy. For 

example, field studies indicate that the western gorilla diet comprises as many as 230 plant parts 

from 180 plant species (Rothman et al. 2006). While consuming extremely diverse and large 

quantities of terrestrial vegetation throughout the year, western gorillas will also regularly eat 

fruit when it is available (Rogers et al. 2004; Doran-Sheehy et al. 2009). Given their large body 

size and strictly herbivorous/frugivorous diet, it is not surprising that the gorilla gut anatomy has 

evolved a distinctive digestive anatomy and physiology. Mainly as a result of the large capacity 

for microbial fermentation in a large pouched colon, gorillas gut anatomy allows for energy gain 

through the absorption of volatile fatty acids and microbial protein (Stevens and Hume 1995). 

Research on demographic events and selective pressures experienced by gorillas may 

provide insights to the evolutionary forces that have uniquely influenced patterns of gorilla 

morphological and genetic variation. Both species of gorilla are considered threatened on the 

IUCN Red List of Threatened Species (IUCN 2013); western gorillas are classified as critically 

endangered and eastern gorillas are classified as endangered. Recent census estimates indicate a 

rapid recent population size contraction in gorillas due to multiple factors including: outbreaks of 
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the Ebola virus, the bushmeat trade, habitat loss and fragmentation (Anthony et al. 2007; Le 

Gouar et al. 2009; Walsh et al. 2003). 

In this study, we use a coalescent approach to infer divergence times, migration rates, and 

effective population sizes based on medium to high coverage whole genome data from three 

gorilla subspecies: western lowland, Cross River and eastern lowland. We use a diffusion 

approximation approach to infer temporal changes in western lowland gorilla effective 

population size, conduct a genome scan for positive selection to identify signatures of recently 

completed selective sweeps, and investigate the nature of genetic changes within those regions to 

identify putative targets of selection. Additionally, we analyze the overall distribution of fitness 

effects for polymorphic sites in western lowland gorillas and the proportion of substitutions 

compared to humans that have been driven by adaptive evolution versus random genetic drift. 

 

Results 

Gorilla population structure 

Whole genome sequence data from 17 gorillas, including 14 western lowland gorillas, 2 eastern 

lowland gorillas, and 1 Cross River gorilla were aligned to the gorGor3 (Ensembl release 62) 

reference genome and processed with filtering as previously described (Prado-Martinez et al. 

2013, Table S1). We limited our analysis to samples without evidence of inter and intra-species 

sequence contamination and characterized patterns of genetic variation based on SNP genotypes 

obtained using the GATK Unified Genotyper, limited to sites with at least eight-fold (8x) 

coverage in all samples. Across the autosomes, we observe that eastern lowland gorillas have the 

lowest heterozygosity (5.62—5.69 x 10-4) of all the groups studied here followed by the single 

Cross River sample (9.09 x 10-4) and 14 western lowland gorillas (1.2—1.6 x 10-3) (Figure S1). 

We used principal components analysis (PCA) (Patterson et al. 2006) and ADMIXTURE 

(Alexander et al. 2009) to further explore relationships among the samples. As previously 

observed (Prado-Martinez et al. 2013), when considering all samples together, PC1 shows clear 

separation of eastern and western gorillas with western lowland and Cross River gorillas arrayed 

along PC2 (Figure S2). PCA performed on only the western lowland gorilla samples does not 

reveal clear population clusters, although the individuals are somewhat ordered by sample 

geography (Figure S3). Results from ADMIXTURE, a model-based clustering algorithm 

allowing for mixed ancestry, support the existence of two clusters dividing eastern and western 
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lowland gorillas (Figure S4). When applied to only the 14 western lowland gorilla samples, we 

observe that K=1 has the lowest cross-validation (CV) error (Figure S5). Moreover, the 

appearance of a cline at K=2 suggests a poor fit of the data to an admixture model with discrete 

sources	
  and PCA does support substructure in the form of a cline in western lowland gorillas 

(Figure S3).   

 

Relationship between Western Lowland and Eastern Lowland Gorillas  

We applied Generalized Phylogenetic Coalescent Sampler (G-PhoCS), a Bayesian coalescent-

based approach, to infer ancestral population sizes, divergence times, and migration rates 

(Gronau et al. 2011) amongst the three gorilla subspecies. This inference is based on genealogies 

inferred at many independent and neutrally evolving loci across the autosomal genome. To avoid 

bias caused by the alleles represented in the reference genome, which is derived from a western 

gorilla, we used BSNP (Gronau et al. 2011), a reference-genome–free Bayesian genotype 

inference algorithm, to perform variant calling separately for each sample. Based on the BSNP 

output, we produced diploid sequence alignments of two eastern lowland gorillas, nine western 

lowland gorillas, one Cross River gorilla, and the human reference genome at 25,573 “neutral 

loci” with size approximately 1 kilobase (kb) and an interlocus distance of approximately 50 kb. 

The neutral loci were chosen based on the positions of putatively neutral loci previously utilized 

for humans (Gronau et al. 2011); loci intersecting with recent transposable elements, exons of 

protein-coding genes, and segmental duplications in the gorilla genome were removed.  

For many of the analyses presented here, we used a four-population phylogeny as 

inferred by TreeMix (Pickrell and Pritchard 2012) and in agreement with our ADMIXTURE 

results (Figures S6 and S7), with eastern and western gorilla ancestors separating first, followed 

by western lowland and Cross River gorilla (Figure 1). We first evaluated four alternative 

scenarios, having either no migration between any gorillas (Figure 1, scenario 1) or bi-

directional migration between any two gorilla species (Figure 1, scenarios 2, 3, and 4). In G-

PhoCS, migration is modeled as migration bands of constant migration rate between two lineages 

over the entire time period of their existence. We utilized several combinations of western 

lowland gorilla samples, always including two eastern lowland gorillas, two western lowland 

gorillas, one Cross River gorilla, and one human. We initially ran G-PhoCS for 50,000 iterations 

and monitored convergence using Tracer (Rambaut et al. 2013). Estimates of population split 
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times are sensitive to model assumptions, particularly migration. Our G-PhoCS analysis finds no 

evidence of migration events between western lowland and Cross River gorillas (Figure S8, 

scenario 2). We do observe evidence of migration from western lowland gorilla to eastern 

lowland gorilla with mean total migration rate 0.3 (95% CI: 0.240—0.356), equivalent to 0.37 

migrants per generation (95% CI: 0.312—0.433) (Figure S8, scenario 4). We also observe a 

small signal of migration from Cross River gorilla to eastern lowland gorilla (Figure S8, 

scenario 3); however, 50,000 iterations were not sufficient for convergence. To further explore 

these results, we tested a scenario with two migration bands: one from western lowland to 

eastern lowland gorilla and another from Cross River to eastern lowland gorilla (Figure 1, 

scenario 5), and extended the number of iterations to 300,000 to allow the posterior estimates to 

fully converge (Figure S9). Setting an additional migration band from Cross River to eastern 

lowland gorilla makes little difference because migration from western lowland to eastern 

lowland gorilla has the strongest migration signal (Figures S10-S13). The estimated migration 

rate from Cross River to eastern lowland gorilla is 0.004 (95% CI: 0.000—0.018), equivalent to 

0.019 migrants per generation (95% CI: 0.000—0.071). By using this setting (Figure 1, scenario 

5), we estimate the split time between western lowland gorilla and Cross River gorilla to be ~68 

thousand years ago, and the split time between eastern lowland and western ancestral gorilla to 

be ~261 thousand years ago when assuming a human and gorilla divergence time of 12 million 

years ago (Scally et al. 2012) (Table 1). We also observed a decrease of western gorilla 

population size and a decrease of eastern gorilla population size after their initial split and a six-

fold difference between current eastern and western gorilla population size. The relative 

population sizes of the gorilla populations are rather robust to the chronological human/gorilla 

split time used for calibration, though the actual estimated size and chronological date of the split 

times are sensitive to the split time assumptions as many calculations are pegged to the 

calibration date (Table 1). 

 

Western Gorilla Demographic Inference 

We additionally inferred the fine-scale population history of western lowland gorillas using the 

genome-wide site frequency spectrum (SFS) obtained from 14 individuals (Gutenkunst et al. 

2009). We utilized a diffusion approximation for demographic inference (𝜕𝛼𝜕𝑖) on the unfolded 

SFS based on 4,554,752 SNPs only considering sites where all samples had at least 8x coverage. 
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Variants were polarized to ancestral and derived alleles based on human out-group sequences, 

and we implemented a context-dependent correction for ancestral misidentification (Hernandez 

et al. 2007). Five demographic models were fit using 𝜕𝛼𝜕𝑖 and inferring the best-fit demographic 

model requires us to assess whether the improvement in fit afforded by additional parameters 

needed in more complex models are justified (Table 2). Our results suggest an ancient expansion 

followed by a more recent drastic, nearly three-fold, population contraction is the best model for 

the data. Specifically, assuming a mutation rate of 1.1 x 10-8 per base pair per generation (Roach 

et al. 2010) and generation time of 19 years (Langergraber et al. 2012), the best-fit model is a 

three-epoch model that has an ancestral effective population size of 31,800 (95% CI: 30,690—

32,582) (Table 2). While the bottleneck followed by exponential growth model and the three-

epochs models have similar fits, the three-epochs has the best fit; moreover, the model selection 

is robust when SNPs are thinned to 100kb. The first size change event occurred 969,000 years 

ago (95% CI: 764,074—1,221,403) and increased the effective population size to 44,200 (95% 

CI: 42,424—46,403) individuals. The second size change event occurred 22,800 years ago (95% 

CI: 16,457—30,178) and decreased the effective population size to 7,900 (95% CI: 6,433—

9,240) individuals (Figure 2).  

Nsubuga et al. (2010) and Fünfstück et al. (2014) found evidence for multiple population 

clusters within western lowland gorillas utilizing data from simple sequence repeats (SSR; 

microsatellite) variation. Though our ADMIXTURE results on our data find the lowest CV error 

with a one-population model, we also inferred demography separately for individuals on either 

side of the putative cline (Table S2). Both sample sets yield very similar demographic inferences 

compared to those obtained from the combined set of 14 individuals.  

 

Selection in Western Lowland Gorillas  

Identifying Selective Sweeps 

We employed a composite likelihood approach (SweeD, Pavlidis et al. 2013) to scan for genomic 

regions showing signs of recent selective sweeps (Nielsen et al. 2005). The method compares the 

regional SFS to the background SFS to calculate a composite likelihood ratio (CLR), which 

indicates the likelihood of a sweep at a specific genomic region (in 100kb windows). 

Significance was determined by comparisons to neutral regions (without selection) simulated in 

ms (Hudson 2002) with the inferred three-epoch demography. Genomic windows were compared 
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to simulated regions with similar estimated recombination rate and percent of sequence masked. 

For the autosomes, these analyses identified 273 windows of size 100kb with p < 10-3. With a 

more stringent p-value cut-off a subset of the windows are identified: 111  windows of size 

100kb with p < 10-4 (Table S3). A total of 50 windows had a p-value < 10-5, indicating that the 

CLR of these windows surpassed every CLR obtained from the simulated neutral distribution. As 

some of the 50 windows were adjacent to each other, these correspond to 43 distinct regions 

where the observed CLR value exceeded that obtained from 100,000 neutral simulations.  

The region with the largest CLR in the western lowland gorilla genome is located on 

chromosome 5 (Figure 3). This region consists of four adjacent 100kb windows with p-value < 

10-5 (chr5: 122,465,120 – 122,864,624). There are several genomic features in this top-scoring 

400 kb region, including the protein coding genes CTNNA1, SIL1, and MATR3 as well as other 

non-coding features, including 5S rRNA, U6 snRNA, and SNORA74. The region contains three 

non-synonymous SNPs which pass the quality filtering but do not have coverage to pass the 8x 

depth filter: one coding change in CTNNA1, a cadherin-associated protein, and two in SIL1, a 

nucleotide exchange factor which interacts with heat-shock protein-70. We also note that this 

region is directly upstream of SLC23A1, a vitamin C transporter and PAIP2, a repressor of 

polyadenylate-binding protein PABP1. PAIP2 acts as part of innate defense against 

cytomegalovirus (CMV) (McKinney et al. 2013), which has been detected in wild gorilla 

populations (Leendertz	
  et	
  al. 2009).  

Another region identified (at p-value <10-4) contains several genes involved in taste 

reception. While in the 8x dataset, there is one nonsynonymous SNP in TAS2R20, our full SNP 

data set contains segregating non-synonymous changes in three of the taste receptors, including 

one change in TAS2R50 (derived allele frequency (DAF) = 93%), three in TAS2R20 (DAFs = 

89%, 11% and 7%) and two in TAS2R19 (DAFs = 7% and 4%). 

We conducted a gene ontology enrichment analysis of all regions with p < 10-3 using the 

Bioconductor package, topGO (Alexa and Rahnenfuhrer 2010) to identify gene pathways 

subjected to recent selective sweeps in western lowland gorillas. Using the elimination method 

with Fisher’s exact test, we identified 16 enriched GO categories (p < 0.01) (Table S4). The term 

with the lowest p-value is sodium ion transmembrane transport (GO:0035725, p=0.00039) and 

terms related to taste, pancreatic and saliva secretion, cardiac muscle cell function, and several 

others were identified.   
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Distribution of Fitness Effects 

We estimated α, the fraction of non-synonymous mutations to reach fixation due to adaptive 

evolution, through the method outlined in Keightley and Eyre-Walker (2012). This method 

utilizes the synonymous and nonsynonymous SFS, as well as divergence relative to an outgroup, 

to simultaneously infer demography and the distribution of fitness effects assuming a gamma 

distribution. Using the human reference genome as an outgroup we estimate α for western 

lowland gorillas to be 1.4% (95% CI: -11.6% – 11.0%). The distribution of fitness effects has a 

shape parameter of 0.152 and mean Nes of 3076. This distribution is leptokurtic, with a strong 

peak near zero and a long negative tail that extends to lethality, indicating that the vast majority 

of fixed and segregating non-synonymous variants are nearly neutral.   

 

Discussion 

Relationship between western lowland, Cross River and eastern lowland gorillas  

Several groups have previously estimated split times and population sizes for western and 

eastern gorillas (Ackermann and Bishop 2010, Prado-Martinez et al. 2013, Scally et al. 2012, 

Thalmann et al. 2007, Thalmann et al. 2011) (Table S5). These studies make use of disparate 

data sets and modeling assumptions, particularly in terms of the treatment of gene flow 

subsequent to initial population separations. Based on 8 microsatellites, Thalmann et al. (2011) 

estimate that the separation of Cross River and western lowland gorilla populations occurred 

17.8 kya, followed by a comparatively high level of gene flow. On the other hand, Prado-

Martinez et al. (2013) estimated this population divergence time at 114 kya based on a modified 

PSMC approach (Note: the above mentioned values have been adjusted to match the mutation 

rate used in this manuscript where appropriate). The random phasing procedure applied in the 

modified PSMC approach may not be appropriate for such recent population split times (Prado-

Martinez et al. 2013). Our estimate of 68 kya for the Cross River–western lowland split is 

intermediate between the two above estimates; however, we do not find support for gene flow 

between these two groups in our G-PhoCS analysis. 

 We estimate that the separation of eastern gorillas from the western lowland/Cross River 

ancestor occurred 261 kya, with subsequent migration from both western lowland and Cross 

River populations to the eastern gorillas. This value is similar to the 214 ky split time inferred by 
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the modified PSMC approach. Scally et al. (2012), based on a model of symmetric migration, 

estimated a separation time of 429 kya. Mailund et al. (2012) arrives at a broadly similar estimate 

based on a coal-HMM, and estimates gene flow continuing until 150 kya. We note that our 

analysis indicates that the migration direction was from western lowland and Cross River to 

eastern gorillas, with more migrants coming from western lowland than from Cross River gorilla. 

However, Thalmann et al. (2007) find evidence for gene flow from eastern to western gorillas. 

Alternatively, Ackermann and Bishop (2010) find support for a western to eastern gene flow in 

morphological and molecular data. The D-statistics (Green et al. 2010; Durand et al. 2011) 

calculated in Prado-Martinez et al. (2013) suggest that Cross River gorillas are genetically closer 

to eastern gorillas than western lowland gorillas are to eastern gorillas, which would not be 

predicted by the migration rates we infer. We further explored this apparent contradiction by 

calculating D-statistics for additional samples from Prado-Martinez et al. (2013) and using 

variants identified by BSNP based on mapping to the gorilla reference genome (Table S6). The 

western lowland gorilla sample A934_Delphi is not included in this study since it contains low-

level contamination from a bonobo (Prado-Martinez et al. 2013). Consistent with this potential 

contamination, A934_Delphi shows an extreme value for the D-statistic relative to other western 

gorillas; however, significant statistics are also obtained when using other samples (Table S6A). 

We do not observe significant D-statistics for genotypes calculated from reads mapped to the 

gorilla reference genome using BSNP (Table S6B). Additional Cross River samples, as well as 

new analytic approaches that take advantage of the additional information contained in 

physically phased genome sequences (Schiffels and Durbin 2014) may shed further light on 

patterns of gene flow among extant gorilla species.  

  

Western Gorilla Demographic Inference 

Given the availability of 14 western lowland gorilla samples, we estimated a single-population 

demographic history using 𝜕𝛼𝜕𝑖. Due to limited sample size, our model does not incorporate 

other subspecies/species. Our 𝜕𝛼𝜕𝑖 analysis indicates that western lowland gorillas have 

undergone a small, ancient population size expansion event 970 kya followed by a drastic size 

reduction 23 kya. These results are broadly concordant with previous estimates of temporal 

population size change in gorillas based on the PSMC model (Prado-Martinez et al. 2013) 

(Figure S14), especially given that it is known that PSMC tends to smooth instantaneous size 
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changes. We note that the ancient increase predates our estimation for the separation of eastern 

and western gorillas, and the recent size decrease post-dates our estimation of Cross River – 

western lowland separation. The underlying causes of these effective population size changes are 

unclear. Previous studies note glacial and interglacial oscillations during the last two million 

years may have had an effect on gorilla population size and structure (Thalmann et al. 2007). For 

example, during the Last Glacial Maximum, rainforest cover was greatly diminished, especially 

in West Africa where a few refugia were surrounded by tropical grassland (Jolly et al. 1997). 

Previous studies suggest substructure within the western lowland gorilla species (Clifford 

et al. 2004; Fünfstück et al. 2014; Nsubuga et al. 2010, Scally et al. 2013), but our results support 

the use of a one-population model of western lowland gorillas (though there may be some subtle 

isolation-by-distance or demic structure). Earlier studies that involved analysis of SSR motifs 

(DNA microsatellites) provided some indications of substructure within western lowland gorillas 

(Fünfstück et al. 2014; Nsubuga et al. 2010). These results are not necessarily at odds with our 

analyses as the mutation rates vary significantly between genome-wide SNPs and microsatellites. 

While a slower evolving set of markers, such as SNPs, can identify expansion from a common 

ancestor and imply demographic changes over tens of thousands of generations, more rapidly 

evolving microsatellite loci can reveal more recent aspects of gene flow and population 

substructure. The gorillas utilized in this study have diverse origins; however, some origins 

cannot be precisely confirmed. PCA and ADMIXTURE analysis support grouping of samples 

into one population for 𝜕𝛼𝜕𝑖 analysis. Additionally, models inferred separately on subsets of the 

data yielded concordant results (Table S2).  

In addition to the inferred decline in gorilla effective population size, census estimates 

note that the gorilla population has declined by more than 60% in the past 20-25 years, 

prompting their “critically endangered” conservation status (IUCN 2013). This decrease is 

thought to be due predominantly to Ebola outbreaks and commercial hunting (Walsh et al. 2003, 

Le Gouar et al. 2009). This sharp decline is much too recent to be observed in our analysis given 

the dataset available.  

 

Natural Selection in Western Lowland Gorillas 

Identifying Recent Selective Sweeps 
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Few previous studies have analyzed broad patterns of natural selection in the gorilla genome. 

Scally et al. (2012) found that regions exhibiting accelerated evolution in gorillas, compared to 

humans and chimpanzees, were most enriched for developmental terms including: ear, hair 

follicle, gonad and brain development, and sensory perception of sound. Our analysis 

complements these results by inferring regions with significant recent signs of selective sweeps 

within population-level full-genome western lowland gorilla data. Gene ontology enrichment 

analysis identified sensory perception of taste (GO:0050909) as one of the most significantly 

enriched category in the genome. This term has also been identified as enriched in selected 

genomic regions in mammalian genomes (Kosiol et al. 2008). All identified genes (GOGO-

T2R14, TAS2R19, TAS2R20, TAS2R50) are type 2 taste receptors, which are thought to be 

responsible for bitter taste perception in humans (Adler et al. 2000; Chandrashekar et al. 2000; 

Matsunami et al. 2000). Bitter taste receptors are thought to be important to avoiding harmful 

substances, and have been predicted to have undergone an extensive gene expansion in 

mammalian evolution (Go 2006). Furthermore, among the top 16 most enriched GO terms are 

terms involving cardiac muscle function and fibroblast apoptosis. Interestingly, cardiomyopathy 

involving fibrotic proliferation is a prominent cause of death in captive gorillas, particularly in 

males (Schulman et al. 1995). 

 

Distribution of Fitness Effects 

We found the distribution of fitness effects and the rate of fixation of adaptive mutations to be 

similar, but lower than estimates in humans (Boyko et al. 2008). This result is counterintuitive 

given that western lowland gorillas have a larger effective population size than humans. Because 

the mean gamma (Nes) is lower in gorillas and Ne is higher, we infer the magnitude of E(s) to be 

quite a bit smaller in gorillas than humans. Hvilsom et al. (2012) estimated the proportion of 

adaptive mutations driven to fixation in chimpanzee autosomes to not be significantly different 

from zero (95% CI: -0.09 – 0.07), which strongly overlaps with our estimates in western lowland 

gorillas. Our best-fit demographic model is a three-epoch model. To estimate the proportion of 

adaptive non-synonymous substitutions in the genome, DFE-alpha utilizes a two epoch 

demographic model. Messer and Petrov (2013) have previously shown that while the approach 

invoked by DFE-alpha generally correctly recovers α, Veeramah and colleagues (2014) 

demonstrated that DFE-alpha can substantially underestimate the true Nes because of background 
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selection acting at linked sites. In addition the strength of any selection, gamma, acting at 

synonymous sites, which are taken as putatively neutral in this approach, is likely to be larger in 

gorillas due to their larger effective population size, potentially further distorting estimates of the 

DFE. As such while our estimate of α may be quite robust, the reliability of the DFE estimate is 

more uncertain.    

 

Conservation Implications 

Conservation of wild gorilla populations in their habitats will benefit from focused efforts to 

protect populations that collectively encompass the genetic diversity of each species and 

subspecies. Identification of gene flow that occurred in the past between populations provides 

impetus for landscape-level conservation plans to provide for migration corridors inferred from 

genetic data. The evidence for gene flow between western lowland gorillas and eastern lowland 

gorillas, which have also been shown to have relatively low levels of genetic diversity, suggests 

a role of rare migration events in population sustainability, as seen in other species (Grant and 

Grant 2011). Managed populations of gorillas in zoos benefit from veterinary care that, 

increasingly, may benefit from medical approaches based on genetic information. Cardiac 

disease is a major mortality factor in managed gorilla populations (McManamon and Lowenstine 

2011). The opportunities to provide supportive care based on an understanding of the 

evolutionary similarities and differences in cardiac development and physiology between gorillas 

and humans can contribute to the welfare of managed gorilla populations, while also providing 

insights into the evolution of loci associated with cardiac disease risk in humans.  
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Material and Methods 

 

Samples 

Samples without evidence of sequence read contamination from unrelated western lowland 

gorillas (n=14), eastern lowland gorillas (n=2) and a Cross River gorilla (n=1) were mostly 

obtained from blood from wild-caught zoo specimens (Table S1) (Prado-Martinez et al. 2013). 

All samples were sequenced on an Illumina sequencing platform (HiSeq 2000) with data 

production at three different sequencing centers; samples were sequenced to 12.7 - 42.1x 

coverage. Samples were collected under the supervision of ethical committees and CITES 

permissions were obtained as necessary. Sequence reads are available from the SRA under 

accession SRP018689.  

 

Mapping to Gorilla Reference Assembly 

Sequences were mapped to gorGor3 and filtered as detailed in Prado-Martinez et al. (2013). 

Variants were identified in three pools of samples: the 14 western lowland gorillas, the 2 eastern 

gorillas, and the 1 Cross River gorilla sample. To compare variant calls among sample sets, we 

generated genome masks that identified all sites that were callable across all samples. Filters 

were calibrated such that we captured 90% of sites that passed the VQSR procedure (Prado-

Martinez et al. 2013). For western lowland gorillas, the filters correspond to a total sample read 

depth (DP) >= 95 and <=307, mapping quality (MQ) >= 39 and percent of reads with mapping 

quality 0 (MQ0fraction) <= 3. For eastern lowland gorilla, the criteria were DP >= 12 and <=37, 

MQ >= 33, and MQ0fraction <=4. For the Cross River gorilla, the criteria were DP >= 5 and 

<=24, MQ >= 38 and MQ0fraction <=0. For each sample set, we additionally removed sites 

within 5 bp of called indels, and removed all positions overlapping with segmental duplications 

(Sudmant et al. 2013). For analysis of the site frequency spectrum, we additionally imposed a 

minimum depth criteria of eight to increase accuracy at singleton sites. For G-PhoCS analysis, 

variants were identified for each sample independently using BSNP to avoid bias induced by the 

reference genome and from population level genotype calling. The genotype coordinates were 

then converted from gorGor3 (Ensembl release 62) to gorGor3.1 (Ensembl release 64) using a 

custom script. 
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Recombination rate estimates 

Gorilla-specific recombination rates were estimated using western gorilla SNP data; 

described in detail in Stevison et al. (in prep). Briefly, using both the human-based mapping and 

the species-specific mapping described above, the data were filtered using a combination of 

vcftools (Danecek et al. 2011) and custom scripts. Sites with more than 80% missing data were 

removed. Then, variable sites within 15bp of each other were thinned to only retain a single site. 

Next, a reciprocal liftOver (minMatch=0.1) (Hinrichs et al. 2006) was performed to remove sites 

that did not map back to the original position. Finally, sites not in Hardy-Weinberg were 

removed (cutoff=0.001). After these initial filters were performed on the sites mapped to both 

reference genomes, the remaining sites were intersected between the two assemblies, with only 

the species-specific orientation used for subsequent phasing and rate estimation steps. Next, 

synteny blocks were defined based on the coordinates in both the human and non-human primate 

reference genomes. Then, within each syntenic region, phasing and imputation was performed 

using the software fastPHASE (Scheet and Stephens 2006), and an additional filter based on 

minor allele frequency was performed (cutoff=0.05). For improved phasing accuracy, the 

variants were re-phased using the software PHASE (Stephens and Donnelly 2003) similar to 

Auton et al. 2012. Rates were then estimated in 4000 SNP blocks using LDhat (Fearnhead and 

Donnelly 2001, The International HapMap Consortium 2005) (same run parameters as in Auton 

et al. 2012). The final number of sites used to estimate recombination rates was ~7.8 million, as 

compared to 5.3 and 1.6 million for western chimpanzee and HapMap, respectively.  

 

Summary Measures: PCA, Population structure, Heterozygosity 

Inference of population structure and principle components analysis, which require a set 

of independent SNPs, were conducted on 10% thinned data when comparing all three subspecies, 

using ADMIXTURE (Alexander et al. 2009) and smartpca (Patterson et al. 2006), respectively. 

PCA of three species was conducted on the intersect of the 8x data in western lowland, Cross 

River, and eastern lowland gorillas. When considering only the western lowland gorillas, data 

was pruned for linkage (plink –indep 50 5 2). We performed 10 independent ADMIXTURE runs 

for each tested value of K. Heterozygosity was estimated based on the number of heterozygous 

SNPs per individual in the unfiltered 8x data.  
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Evolutionary Relationship of Western Lowland, Cross River and Eastern Lowland Gorillas 

G-PhoCS utilizes input alignments from multiple independent “neutral loci” in which 

recombination within loci occurred at negligible rate but recombination between loci were 

sufficient to assume that genealogies are approximately uncorrelated (Gronau et al. 2011). 

Assuming that parameters of recombination are broadly consisted among primates, we adopted 

the 37,574 neutral loci previously identified by Gronau et al. (2011) for the human genome 

(build NCBI36), lifted-over these loci to the gorilla genome and then applied a series of filters to 

obtain a new set of “neutral loci” for the gorilla genome. Specifically, we removed regions 

without conserved synteny in human-gorilla alignments, recent transposable elements annotated 

by RepeatMasker with <=20% divergence, exons of protein-coding genes, conserved noncoding 

elements according to phastCons, and recent segmental duplications in Gorilla. This resulted in 

26,248 loci, with size of ~1 kb and interlocus distance of ~50 kb. We called genotypes from the 

whole genome data at these neutral loci using BSNP, setting –P flat, which assumes uniform 

prior distribution to determine genotype calls for each individual without bias introduced by the 

reference genome. For each locus, we also masked simple repeats, positions within 3 bp of an 

insertion/deletion, positions with less than 5 reads, and CpG sites. Finally we used MUSCLE 

(Edgar 2004) to make alignments of each inferred sequence. After removing loci with 

completely missing data (all Ns) in at least one individual, we obtained a final set of 25,573 

neutral loci for input to G-PhoCS.  

We applied G-PhoCS to different combinations of samples. These combinations always 

included both eastern lowland gorillas, the single Cross River gorilla but contained different 

combinations of two western lowland gorillas. An aligned human reference genome was 

included as an outgroup. We first evaluated four alternative scenarios: no migration between 

gorillas species and bi-directional migration between any two gorillas species. For each case, we 

ran G-PhoCS for 50,000 iterations and found that this was sufficient to establish convergence for 

the no migration and bi-directional migration models between western and Cross River gorilla. 

We reran the analysis with bi-directional migration between western and eastern gorilla, and 

allowed two migration band parameters, one from western lowland to eastern lowland gorilla and 

another from Cross River to eastern lowland gorilla. We found that 300,000 iterations were 

sufficient to establish convergence for parameters of interests and we set the burn-in as the first 

two-thirds of iterations (Figure S9). The raw estimates by G-PhoCS are ratios between model 
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parameters. Using humans as an outgroup, we calibrated the model based on the average 

genomic divergence time between human and gorilla, denoted Tdiv. We assume a range of 

Tdiv=8.0-12.0 Mya. An average mutation rate was calculated by µ=!!"#
!!"#

 . This mutation rate 

differs from the rate used in 𝜕𝛼𝜕𝑖 analyses because it ignores CpG mutations, which are excluded 

by our filters. Effective population sizes were calibrated by a factor of (4*19*µμ)-1, assuming an 

average gorilla generation time of 19 years (Langergraber et al. 2012). We also calculated 

estimates of expected number of migrants per generation, given by m!" ∗ 𝜃𝐵 and the total 

migration rate, given by m!" ∗ τ!". 

Demographic Inference of Western Lowland Gorilla 

The western lowland gorilla single population demographic model was inferred through a 

diffusion approximation approach implemented in the 𝜕𝛼𝜕𝑖 software (Gutenkunst et al. 2009). 

This approach calculates the log likelihood of the model fit based on a comparison between the 

observed and expected site frequency spectrum (SFS). Five demographic models were evaluated: 

a standard neutral model, an exponential growth model, a model of a bottleneck followed by 

exponential growth, a two epoch model and a three epoch model. We evaluated results with all 

SNPs that passed the filters and had at least 8x coverage, as well as a subset of these SNPs 

thinned to 100kb.  For each model, ten independent runs were performed and the model and 

associated parameters that maximized the likelihood were chosen. To convert 𝜕𝛼𝜕𝑖 parameter 

output to years and effective population sizes, we assumed a mutation rate of 1.1x10-8 per 

generation (Roach et al. 2010; The 1000 Genomes Project Consortium 2010) and a generation 

time of 19 years (Langergraber et al. 2012). Confidence intervals for each parameter were 

determined through bootstrapping the input SNPs in blocks of 500 kb 1000 times. 

For analysis of western lowland gorillas we used all sites from the genomic data with at 

least 8x coverage in all samples. The unfolded (polarized) SFS was determined using humans as 

an outgroup and ancestral misidentification was corrected using the method developed in 

Hernandez et al. (2007), which is implemented in 𝜕𝛼𝜕𝑖. Briefly, this approach infers the unfolded 

SFS through a context dependent mutation model. It considers the trinucleotide sequence context 

of each SNP in gorillas and the outgroup, the great ape transition rate matrix for each nucleotide 

(as in Hwang and Green 2004, provided by Hwang DG, unpublished), the proportion of each 

trinucleotide sequence in the gorilla sequence data, and the gorilla-outgroup divergence 
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(empirically estimated at 1.60 % and 1.51% from the complete and 8x filtered sequence data, 

respectively). 

 

Signals of recent selective sweeps in Western Lowland Gorillas 

Signals of recent selective sweeps were inferred using the SweepFinder method 

developed in Nielsen et al. (2005) implemented in SweeD (Pavlidis et al. 2013). The method 

uses a non-overlapping sliding window approach to calculate the composite likelihood of the 

data for two models: (1) a model of a recently completed selective sweep in the window and (2) 

a model that the window SFS is from the same distribution as the background SFS, where the 

background SFS is the SFS of the entire chromosome. This method outputs a composite 

likelihood ratio (CLR) of these two models. Non-overlapping windows of 100 kb along each 

chromosome were used to analyze the polarized 8x data. Windows that had less than 10% of the 

base pairs callable in the 8x dataset were excluded from analysis. 

The unfolded SFS was determined using a two outgroup approach. Nucleotides at each 

SNP in the gorilla genome were compared with the reference alleles for human (hg19) and 

rhesus macaque (rheMac2). At each SNP position, if one gorilla allele matched the reference 

allele in both humans and rhesus macaques, then that allele was assumed to be the ancestral 

allele. If the three species did not share an allele at a specific SNP, the site was excluded. The 

ancestral misidentification correction implemented in Hernandez et al. (2007) adjusts the overall 

SFS and not individual SNPs, and was therefore inappropriate for this analysis.  

To determine CLR significance, neutral genomic regions were simulated with ms 

(Hudson 2002). This test may be weakly dependent on demography, recombination rate, and 

“callable” sequence length (Nielsen et al. 2005, Williamson et al. 2008); therefore, all neutral 

simulations are based on the inferred three epoch demography, as well as conservative estimates 

of the recombination rate and “callable” sequence length. Though the CLR is rather robust to 

variable recombination rates, regions of low recombination may be more likely to look like 

selective sweeps (Nielsen et al. 2005). Furthermore, regions with less “callable” sequence have 

less data and thus may have lower power to recognize a selective sweep through the CLR. Due to 

this, 100,000 neutral regions were simulated for each of the following recombination rates (in 

cM/MB): 0, 0.25, 0.5, 1, and 2. In each region, base pairs were randomly masked at one of the 

following levels: 90%, 80%, 70%, 60%, 50%. A total of 2,500,000 regions were simulated; 
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100,000 for each combination of parameters. The average recombination rate in each gorilla 100 

kb genomic region was calculated from a gorilla specific recombination map (Stevison et al., in 

prep). For gorilla regions without an estimated recombination rate, the average recombination 

rate (0.6429 cM/Mb) was used (Stevison et al., in prep). The CLR significance of each gorilla 

100 kb region was determined through comparison with the closest set of neutral simulations. 

When gorilla windows were between parameters, simulations with lower recombination and 

higher masking were used, making the test more conservative.  

We utilized FDR methods outlined in Storey and Tibsirani (2003) and the tuning 

parameter selection method from Williamson et al. (2007) to estimate the percent of features we 

call “significant” that are actually null. The tuning parameter selection method was used because, 

as Williamson et al. (2007) points out, the CLR was designed to be conservative and thus there 

are many regions with p=1. This violates Storey and Tibsirani’s (2003) assumption that p-values 

of null features follow a uniform distribution. As we are testing many hypotheses 

simultaneously, we estimated the proportion of inferred selected genomic regions likely to be 

false positives at various p-values thresholds. We utilized the approach by outlined in Storey and 

Tishirani (2003) and the tuning parameter selection method from Williamson et al. (2007). Using 

the same parameters as Williamson et al. (2007), we found that the FDR at a p-value threshold of 

10-5 was 0.50%, at 10-4 was 3.4%, at 0.001 was 9.11%, and at 0.01 was 34.04%. 

Genomic features, including genes and their corresponding GO terms, in regions with 

significant signs of selective sweeps were identified through the Ensembl database (Flicek et al. 

2011). All genes reported are verified human genes that are computationally predicted to have an 

orthologous gene in the gorilla genome. The Bioconductor package, topGO, was used for gene 

ontology enrichment analysis (Alexa and Rahnenfuhrer 2010). The set of significant genes tested 

has p < 0.001 and the background distribution of genes were those that overlapped with windows 

tested in SweeD (regions with > 10% of their sequence in the callable genome). The elimination 

method with Fisher’s exact test was used to infer significantly enriched GO terms. 

 

Distribution of fitness effects  

The distribution of fitness effects was inferred through the DFE (distribution of fitness 

effects)-alpha server (Keightley and Eyre-Walker 2012). This method attempts to correct for the 

biases in the McDonald-Kreitman test due to slightly deleterious mutations. Briefly, this method 
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simultaneously infers demography and the distribution of fitness effects, based on transition 

matrix methods. Adaptive substitutions are inferred through the difference between the observed 

divergence and the predicted divergence, based on a gamma distribution and a two epoch 

demographic model. Input data was the folded nonsynonymous and synonymous frequency 

spectra, as annotated by SNPEff (Cingolani et al. 2012). To calculate the number of divergent 

sites, we utilized the UCSC multiz alignment of the human (hg19), chimpanzee (panTro3), and 

rhesus macaque (rheMac2) genomes to the gorilla (gorGor3) genome coding region and 

restricted to sites with no missing data. The number of divergence sites was then calculated from 

the sites where the human, chimpanzee, and rhesus macaque shared the same allele, and the 

gorilla genome allele differed. Confidence intervals were determined through bootstrapping the 

input synonymous and nonsynonymous SNPs 1000 times. 

 

Supplementary Material 

Supplementary tables S1-S5 and figures S1-S13.  
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Tables 
 
 Human-Gorilla Divergence Time (Mya) 
 8 10 12 
Mutation rate per generation without 
CpG (×10-8) 

1.461 
(1.456-1.466) 

1.169 
(1.165-1.173) 

0.974 
(0.970-0.978) 

Eastern Gorilla population size (×103) 2.853 
(2.755-2.956) 

3.566 
(3.443 -3.696) 

4.280 
(4.132-4.435) 

Western Gorilla population size (×103) 16.774 
(13.114 -21.439) 

20.967 
(16.393-26.798) 

25.161 
(19.672-32.158) 

Cross River Gorilla population size 
(×103) 

2.054 
(2.352-2.755) 

2.567 
(2.940-3.443) 

3.080 
(3.529-4.132) 

Western – Cross River ancestral 
population size (×103) 

20.462 
(17.294-24.191) 

25.578 
(21.617-30239) 

30.693 
(25.940-36.287) 

Gorilla ancestral population size 
(×103) 

26.500 
(25.829-26.965) 

33.126 
(32.286-33.706) 

39.751 
(38.743-40.447) 

Human-Gorilla ancestral population 
size (×103) 

45.472 
(44.349-46.608) 

56.840 
(55.437-58.259) 

68.208 
(66.524-69.911) 

Western – Cross River split time 
(Mya) 

0.046  
(0.038-0.056) 

0.057 
(0.048-0.070) 

0.068  
(0.057-0.084) 

Eastern – Western-Cross River 
ancestral split time (Mya) 

0.174 
(0.161-0.194) 

0.218 
(0.201-0.243) 

0.261 
(0.242-0.292) 

 
Table 1. Gorilla population history estimates. 
Population history estimates by using G-PhoCS when assuming a range of human-gorilla 
divergence time (8, 10, and 12 Mya). We assumed migration events from western lowland to 
eastern lowland gorilla and from Cross River to eastern lowland gorilla (Figure 1 scenario 5). 
Values in parentheses correspond to 95% credible intervals. 
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Demographic	
  
Model	
  

Theta	
  /	
  	
  
Ancestral	
  
Pop	
  Size	
  

P1	
   T1	
   P2	
   T2	
   Log-­‐
likelihood	
  

	
  AIC	
  

Standard	
  
Neutral	
  

1,167,204	
   	
   	
   	
   	
   -­‐60,420	
   120,840	
  

	
   32,643	
   	
   	
   	
   	
   	
   	
  
Exponential	
  
Growth	
  

1,299,805	
   0.09	
   0.009	
   	
   	
   -­‐6,222	
   12,448	
  

	
   36,352	
   3,272	
   12,432	
   	
   	
   	
   	
  
Bottleneck,	
  
then	
  
Exponential	
  
Growth	
  

1,181,405	
   39.54	
   0.33	
   0.32	
   	
   -­‐578	
   1,162	
  

	
   33,040	
   1,306,416	
   10,903	
   401,771	
   	
   	
   	
  
Two	
  Epochs	
   1,297,300	
   3.4e-­‐13	
   1.2e-­‐14	
   	
   	
   -­‐5,654	
   11,312	
  
	
   36,282	
   0	
   0	
   	
   	
   	
   	
  
Three	
  Epochs	
   1,136,249	
   1.391	
   0.785	
   0.249	
   0.019	
   -­‐473	
   954	
  
	
   31,777	
   44,190	
   946,129	
   7,905	
   22,842	
   	
   	
  
Table 2. Demographic model inference results from the five demographic models tested in 
𝝏𝒂𝝏𝒊 to fit the 8x unfolded SFS for western lowland gorillas. Gray line contains program 
parameter output, and white line contains conversion into years. With P1 first population size 
change, T1 length of bottleneck, P2 second size change, and T2 time of second size change. For 
the conversion, a mutation rate of 1.1e-8 mutations per base pair per generation and a 19-year 
generation time were used. The total number of callable sites is 812,645,853.  
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Figures 
 

 
 
Figure 1. Phylogeny and explored migration bands for G-PhoCS analysis.  
We used the indicated phylogeny for eastern lowland (E), western lowland (W), Cross River (R) 
gorilla species and human (H), and tested the indicated migration scenarios. Scenario 1: no 
migration. Scenario 2: bi-directional migration between western and Cross River gorilla. 
Scenario 3: bi-directional migration between Cross River and eastern gorilla. Scenario 4: bi-
directional migration between western and eastern gorilla. Scenario 5: migration from western to 
eastern gorilla and from Cross River to eastern gorilla.  
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Figure 2. Inferred best-fit demographic model of western lowland gorillas. 
Shading represents confidence intervals determined by bootstrapping. Fitted parameters are 
depicted assuming a mutation rate of 1.1x10-8 per base pair per generation and a generation time 
of 19 years. 
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Figure 3.  Signatures of selective sweeps in western lowland gorillas.  
Sequence diversity (pi) and the composite likelihood ratio (CLR) from the test for selective 
sweeps plotted for chromosome 5. The red line indicates the genome-wide average value for pi 
from 14 western lowland gorillas. Only windows with at least 10 kb of passing the 8x mask 
criteria are shown. 
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