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ABSTRACT 

Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually 

evoked responses in animal models. Understanding their function in the context of sensory 

processing and representation is a major current challenge. Here we report that intrinsic 

cortical dynamics strongly affect the representational geometry of a brain region, as 

reflected in response-pattern dissimilarities, and exaggerate the similarity of 

representations between brain regions. We characterized the representations in several 

human visual areas by representational dissimilarity matrices (RDMs) constructed from 

fMRI response-patterns for natural image stimuli. The RDMs of different visual areas 

were highly similar when the response-patterns were estimated on the basis of the same 

trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated 

on the basis of separate trials (sharing only the stimulus-driven component). We show that 

the greater similarity of the representational geometries can be explained by the coherent 

fluctuations of regional-mean activation within visual cortex, reflecting intrinsic 

dynamics. Using separate trials to study stimulus-driven representations revealed clearer 

distinctions between the representational geometries: a Gabor wavelet pyramid model 

explained representational geometry in visual areas V1–3 and a categorical animate–

inanimate model in the object-responsive lateral occipital cortex.  
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INTRODUCTION 

Visual stimulation has been shown in animal models to only slightly modulate 

ongoing cortical dynamics in the visual cortex (Arieli et al. 1996; Fiser et al. 2004). Trial-

to-trial variability of evoked fMRI responses in human cortex has also been related to 

coherent intrinsic fluctuations of activity (Fox et al. 2006; Becker et al. 2011). However, 

the effect of intrinsic dynamics on visual representations and their functional role is not 

well understood. 

The representational content of neuronal population codes is increasingly being 

investigated with pattern-information techniques (Kriegeskorte and Kreiman 2011). In this 

approach, stimulus-related activity patterns are interpreted as distributed representations of 

the stimuli. Functional magnetic resonance imaging (fMRI) enables us to image many 

areas simultaneously and to investigate the transformation of the representational space 

across stages of processing. However, previous studies have ignored the effect of intrinsic 

dynamics on comparisons of representations between different areas. That is, visual areas 

show prominent coherent fluctuations in spontaneous activity  between the areas in the 

absence of visual stimulation (Shmuel and Leopold 2008), a phenomenon typically 

referred to in human brain imaging as functional connectivity (Nir et al. 2006; Fox and 

Raichle 2007). Resting-state functional connectivity between brain regions has also been 

shown to be highly similar to connectivity estimated based on fMRI response-pattern 

dissimilarities during task-performance (Ritchey et al. 2014). This has been interpreted as 

evidence for sub-networks of brain regions contributing to specific tasks. Resting-state 

functional connectivity measures and stimulus-related response-pattern dissimilarities 
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may, however, have a common underlying component that has remained unrecognized. 

Here we show that estimates of stimulus-related response-pattern dissimilarities can be 

strongly affected by ongoing cortical dynamics. 

The representational geometry of a visual area can be characterized by a 

representational dissimilarity matrix (RDM), which contains a representational distance 

for each pair of stimulus-related fMRI response patterns (Kriegeskorte, Mur and 

Bandettini 2008; Kriegeskorte and Kievit 2013). Representations in two brain regions can 

be compared by computing the correlation between their RDMs (Kriegeskorte 2009; Nili 

et al. 2014). Likewise, a brain RDM can be directly compared to a model RDM that 

captures the response-pattern dissimilarities in the internal representation of a 

computational model that processes the stimuli (Kriegeskorte 2009). Comparing visual 

representations between brain areas and processing stages in computational models can 

help us better understand the functional organization of the human visual cortex. The goal 

is to understand how the representational space is transformed across stages of processing. 

However, as shown here, coherent fluctuations of overall activation between two regions 

can make the apparent representational geometries of visual areas much more similar than 

the true underlying visual representations. 

Figure 1 shows simulation results on the effect of coherent intrinsic response 

fluctuations on RDMs. In this simple simulation, primary visual cortex (V1) responded 

equally to three categories of stimuli (Bodies, Faces, Objects) whereas face-responsive 

fusiform face area (FFA) showed preference for Faces. The difference between the 

response profiles is reflected in their RDMs shown in Figure 1A. In Figure 1B, a coherent 

fluctuation component was added to the responses. The underlying stimulus-driven pattern 
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variances remained the same but the visual areas now shared the fluctuation in the overall 

responsiveness across time. As a result, the RDMs of the two visual areas are highly 

similar (Fig. 1B), thus challenging the interpretation of the differences between the 

stimulus representations and highlighting the contribution of shared intrinsic response 

fluctuations on representational geometries. 

Figure 1 

In this study, we explored fMRI responses in human visual cortex to a large set 

(1750) of natural images (Kay et al. 2008). Figure 2 shows results illustrating coherent 

response fluctuations between visual areas in this data. Areas closer in cortex, and in the 

visual hierarchy, tended to exhibit greater functional connectivity. These fluctuations were 

unrelated to the stimuli and thus likely reflected intrinsic cortical dynamics. We will show 

that the coherent fluctuations have a strong effect on the representational similarity 

between visual areas, and that the true stimulus-driven component can be revealed by 

comparing RDMs constructed from response-patterns estimated on the basis of separate 

trials.  

Figure 2 
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MATERIALS AND METHODS 

Visual stimuli and fMRI data 

The current study used fMRI data from a previously published study; for details on 

the visual stimuli, data acquisition and data pre-processing, please see Kay et al. (Kay et 

al. 2008) and Naselaris et al. (Naselaris et al. 2009). This data had been used as training 

data for voxel-receptive-field modelling. In short, the stimuli were 1750 gray-scale natural 

photographs that were masked with a 20°-diameter circle (for an example, see Figure 1A) 

and were presented for 1 s (flashed three times ON (200 ms)–OFF (200ms)–ON (200 

ms)–OFF (200 ms)–ON (200ms)) with a 3-s fixation-only period between successive 

photographs and every eight trial being a null trial. Data from three subjects were analyzed 

(S1–S3). For each subject, the data had been collected in five separate scanning sessions 

with five experimental runs in each. Each experimental run consisted of 70 different 

natural images, each presented two times.  

Figure 3 

The data were pre-processed using an updated protocol which included slice-timing 

correction, motion correction, upsampling to (1.5 mm)^3 resolution and improved co-

registration between the functional data sets.  The data were modelled with a variant of the 

general linear model including discrete cosine basis set for the hemodynamic response 

function (HRF) estimation. Low-frequency noise fluctuations were accounted for by 

polynomials (for details, please see (Kay et al. 2008)). The beta weights characterizing the 

amplitude of the BOLD response to each stimulus were transformed to Z scores.  
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The regions-of-interests V1, V2, V3, V4, LO, V3A and V3B were based on 

independent localizer data based on retinotopic criteria (Naselaris et al. 2009). The 

analysis was restricted to voxels with signal-to-noise ratio greater than 1.5 (median value 

observed across all images). The regions-of-interest contained no overlapping voxels. 

Representational similarity analysis 

The fMRI response patterns evoked by the different natural images were compared 

to each other using correlation distance, and all pairwise comparisons were assembled in a 

representational dissimilarity matrix (RDM) for each region (Kriegeskorte, Mur and 

Bandettini 2008; Nili et al. 2014). Figure 3B shows an example RDM. The RDMs were 

calculated separately for each experimental run with 70 different natural images in each. 

The measure for dissimilarity was correlation distance (1- Pearson linear correlation) 

between the response patterns. 

To study the ability to discriminate the natural images from the fMRI response 

patterns, we used split-data RDMs, where the pair-wise dissimilarities were computed 

between the two response patterns that were measured on different trials. Figure 3C shows 

an example of such RDM, where the diagonal reflects the dissimilarity of the response 

patterns between the first and second presentations of the same natural image. An index 

for the natural image discriminability was calculated as the subtraction of the mean of the 

diagonal values from the mean of the off-diagonal values. Exemplar discrimination index 

greater than zero indicates distinguishable response patterns for the natural images. 

The replicability of the similarity structure captured by an RDM was assessed by 

comparing single-trial RDMs based on the two separate presentations of the same set of 
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images. The RDMs were compared using Kendall’s tau-a rank correlation distances of the 

values in the upper (or equivalently the lower) triangle of the RDMs (for details on the 

different correlation-distance measures, please see (Nili et al. 2014)).  

Computational models 

The visual area RDMs were compared to four different model predictions on the 

representational similarity structure: image correlation similarity, Gabor wavelet pyramid 

model, Gist and animate–inanimate distinction. In a model RDM, each cell reflects the 

dissimilarity of an image pair predicted by the computational model. Examples of the 

model RDMs are shown in Figure 3D. The comparison between a brain RDM and a model 

RDM was based on Kendall’s tau-a rank correlation distance of the values in the upper 

triangles of the RDMs.  

Image correlation similarity 

Each gray-scale image was converted to a vector and compared to each other image 

using correlation distance (1-correlation).  

Gabor wavelet pyramid 

The Gabor wavelet pyramid model was adopted from Kay et al. (Kay et al. 2008). 

Each image was represented by a set of Gabor wavelets of six spatial frequencies, eight 

orientations and two phases (quadrature pair) at a regular grid of positions over the image. 

To control gain differences across wavelets at different spatial scales, the gain of each 

wavelet was scaled such that the response of that wavelet to an optimal full-contrast 

sinusoidal grating is equal to 1. The response of each quadrature pair of wavelets was 
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combined to reflect the contrast energy of that wavelet pair. The outputs of all wavelet 

pairs were concatenated to have a representational vector for each image. The pair-wise 

dissimilarities (1-correlation) of these vectors were computed to obtain the Gabor wavelet 

model RDMs for the natural images. 

Gist 

The spatial envelope or gist model aims to characterize the global similarity of 

natural scenes (Oliva and Torralba 2001). The gist descriptor is obtained by dividing the 

input image into 16 bins, and applying oriented Gabor filters in 8 orientations over 

different scales in each bin, and finally calculating the average filter energy in each bin. 

The gist descriptors for each natural image were compared to each other to obtain the Gist 

RDMs. 

Animate–inanimate distinction 

The natural images were labelled as animate if they contained one or several humans 

or animals, bodies of humans or animals, or human or animal faces. In the animate–

inanimate model RDM, the dissimilarities are either 0 (identical responses) if both images 

are of the same category (animate or inanimate) or 1 (different responses) if one image is 

animate and the other is inanimate.  

Searchlight analysis 

The main analyses were performed using pre-defined ROIs. To explore the effects 

more generally within the whole scanned brain volume, we performed searchlight analysis 

(Kriegeskorte et al. 2006). A spherical searchlight of 4.5-voxel radius was positioned at 

each location of the scanned brain volume. Within each location, the response-pattern-
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means and RDMs were extracted and correlated with the corresponding metrics from a 

reference ROI. Correlation maps were constructed from the results. This was repeated for 

the 25 experimental runs. The results were FDR corrected for multiple comparisons. 

Trial averaging 

The effect of the number of fMRI response trials averaged was studied using a 

second set of fMRI data from the same subjects, where we had 13 trials for 120 natural 

images (for details, see the image identification data in (Kay et al. 2008)). The 

representational similarity analysis was applied separately for data from each experimental 

run with 12 different natural images. The trials were divided to two independent data sets 

(odd and even trials, the 13th trial excluded from the analysis), and the number of 

response patterns averaged was varied between 1 and 6. The averaged response patterns 

were used for representational similarity analysis. 

RESULTS 

Visual areas contain image information and exhibit replicable representational 

geometries 

We studied fMRI response patterns for 1750 natural images in visual areas V1, V2, 

V3, V4, V3A, V3B, and LO. A portion of this data set has previously been analyzed with 

voxel-receptive-field modeling (Kay et al. 2008). The previous analysis showed that fMRI 

signals from the human visual cortex can be modeled by a Gabor wavelet pyramid. The 

distinct response patterns for the natural images were captured here by RDMs. Figure 3B 

shows, as an example, a V1 RDM in which each cell compares the V1 response-patterns 

elicited by two different natural images. An RDM captures the pairwise dissimilarities of 

the response patterns and can thus be directly compared to an RDM of a different brain 
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region (without any need for voxel-to-voxel matching of the response patterns) or to an 

RDM describing the representational geometry of a computational model (Kriegeskorte, 

Mur and Bandettini 2008).  

First to confirm the suitability of the data for representational similarity analysis, the 

distinctness of the response patterns for the natural images was studied using split-data 

RDMs in which each cell compares the response patterns between different trials for the 

same images (for an example, see Fig. 1C). The diagonal of the split-data RDM reflects 

the replicability of the response patterns for the repeated presentation of the same stimulus 

images. An exemplar-discriminability index was calculated by subtracting the mean of the 

diagonal values from the mean of the off-diagonal values. Figure 4A shows the results on 

exemplar discriminability. For all three subjects, the most distinct response patterns were 

found in V1. The exemplar discriminability indices were greater than zero in all studied 

visual areas (p < 0.05, one-sample t-test, for each visual area in each subject). This 

indicates that response patterns contain information about the stimuli. 

Beyond the mere presence of information about the image presented, we asked 

whether the RDMs were replicable. RDM replicability was assessed by rank correlation. 

RDM replicability would indicate that pairs of images are not all equally distinctly 

represented, but that some pairs are reliably represented as more similar than others. 

Figure 4B shows results on the replicability of the response-pattern dissimilarity structure. 

Here we compared single-trial RDMs based on two separate presentations of the stimuli. 

In all subjects, the RDM was best replicated in V1. For subject S1, the RDMs showed 

replicable structure in all studied visual areas (p < 0.05, one-sample t-test, n = 25). For 
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subject S2, the single-trial RDMs did not show replicable structure in areas LO and V3A 

(p > 0.05). For subject S3, the RDMs did not show replicable structure in LO (p > 0.05) 

but the results for all other studied areas were significant (p < 0.05).  

Taken together, these results confirmed that this data set with its rich sample of 

stimuli is suitable for representational similarity analysis. 

Figure 4 

Gabor model explains early visual representation, LO exhibits categorical clusters  

We compared the visual-area RDMs to RDMs constructed based on four different 

models:  image correlation similarity, Gabor wavelet pyramid model (GWP), Gist and 

categorical animate–inanimate distinction. Examples of the model RDMs are shown in 

Figure 1D. The image correlation distance was chosen as the simplest model that could 

explain variance in the response patterns elicited by the natural images. The Gabor 

wavelet pyramid is considered as the standard model of visual area V1 (Carandini et al. 

2005). The Gist model has been suggested to capture the global features of natural scenes 

relevant for scene categorization (Oliva and Torralba 2001). The categorical animate–

inanimate model was chosen based on previous studies suggesting this as a fundamental 

organizing principle of higher-level object responsive areas (Kiani et al. 2007; 

Kriegeskorte, Mur, Ruff, et al. 2008; Naselaris et al. 2012).  

Figure 5 shows the results on the model fits to the empirical RDMs of different 

visual areas. The model fit was assessed using Kendall’s tau-a rank correlation between a 
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visual-area RDM and a model RDM. This measure reflects how well the ranking of the 

response-pattern dissimilarities for a visual area was explained by the ranking of the 

dissimilarities of the model’s response patterns. In contrast to the voxel-receptive-field 

modeling approach (Kay et al. 2008), where each voxel response is predicted as a linear 

combination of model responses, the RSA approach obviates the need to estimate any 

parameters from the data here. In all subjects (Fig. 5), the V1 RDM was best explained by 

the Gabor wavelet pyramid model. The Gist model also captured some of the response 

variance but was not as good fit as the GWP. The GWP was also the best model for the 

response profiles of visual areas V2 and V3. In V4, all models, except the simple image 

correlation model, produced comparable model fits. The animate–inanimate model was 

the best-fitting model for area LO, especially for subject S1 (Fig. 5A). For subjects S2 and 

S3, the results on the RDM replicability (Fig. 4B) already suggested noisy LO data.  

Figure 5 

Visualizations of the response-pattern dissimilarities for all 1750 natural images for 

visual areas V1 and LO from subject S1 are shown in Figures 5D-E. The stimuli were 

color-coded based on the animate–inanimate distinction. Each dot represents an individual 

stimulus. The distances between the dots reflect response-pattern dissimilarities. This 

multidimensional scaling visualization of the response-pattern dissimilarities is 

unsupervised (i.e., without any assumptions of a categorical structure), and hence any 

observed distinctions are data-driven. The results show no categorical clustering of the 

animate and inanimate stimuli in V1. In contrast, a global grouping of the stimuli 

reflecting the categorical clustering between animate (red dots) and inanimate (blue dots) 

natural images is evident in area LO. This is consistent with a previous RSA study using 
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92 images of isolated objects (Kriegeskorte, Mur, Ruff, et al. 2008) and extends that 

finding by using a much larger stimulus set with the animate and inanimate objects 

embedded in natural scenes. Our results also show that the animate/inanimate distinction 

emerges at a later processing stage and is not due to low-level visual-similarity effect 

between the categories that would be present already at the level of V1.  

The shift from the GWP to the categorical animate–inanimate distinction appears a 

plausible characterization of the changes in the representations of natural images across 

hierarchy of visual areas. Next we address how much of the response variance the selected 

models explain. Do the best-fitting models explain all replicable variance in the data, or is 

a replicable component left unexplained? This leads us to the question of the relative 

contributions of the intrinsic response fluctuations and stimulus-driven effects on 

response-pattern similarity. 

RDMs are highly similar among visual areas when estimated from the same trials 

The transformation of representational similarity structure along the ventral visual 

stream can be investigated by comparing RDMs between visual areas. Figure 6 shows 

second-order dissimilarity matrices, where the RDMs of visual areas were compared to 

each other both within and between subjects, and to the two best-fitting model RDMs 

(GWP and animate–inanimate). In Figure 6A the visual area comparisons were done 

between RDMs constructed from response patterns that were estimated on the basis of the 

same (first) trials. Figure 6B shows the corresponding multidimensional scaling (MDS) 

arrangement where the RDMs of different subjects and of the two models are shown with 

different colours (S1 = blue, S2 = green, S3 = purple, Gabor wavelet pyramid model = 
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black, categorical animate–inanimate model = red). The structure in the RDM as well as 

the MDS visualization show grouping of the visual areas based on the subject, not visual 

hierarchy. That is, the visual area RDMs were always most similar to the RDMs of other 

visual areas of the same subject. This would suggest that the models do not explain the 

stimulus representations in the visual areas very well. However, the following analyses 

show that the within-subject similarity of the RDMs was driven by the intrinsic dynamics 

(which are shared among areas within, but not between, subjects). 

Figure 6 

RDMs are distinct among visual areas when estimated from separate trials 

Next we compared the visual area RDMs constructed from response patterns that 

were estimated on the basis of separate trials. That is, the compared RDMs only shared the 

stimulus-driven component. Figure 6C shows the second-order dissimilarity matrix and 

Figure 6D the corresponding MDS arrangement of the RDM relationships. The results are 

very different from the same-trial results shown in Figures 6A–B. The use of separate 

trials to compare the RDMs revealed clearer distinctions between the visual areas and 

broke the grouping based on individual subjects. This shows that the clustering of the 

RDMs by subject in the previous analysis (Fig. 6B) did not result from each subject 

having an idiosyncratic stimulus-driven representation that is similar across his or her 

visual areas. Instead intrinsic dynamics unrelated to the stimuli (which are not shared 

between repeated presentations of the same stimulus or between subjects) account for the 

RDM clusters. 
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When the effect of intrinsic dynamics is controlled for by comparing only RDM 

estimates based on separate sets of trials between cortical areas, the transformation of the 

stimulus-driven representations can be accurately assessed. Figure 6D shows a 

multidimensional scaling arrangement that reveals the relationships among areas and 

models. RDMs now cluster by visual area, instead of by subject. The V1 RDMs of all 

subjects cluster around the GWP-model RDM. The LO RDMs of all subjects cluster 

around the animate–inanimate model RDM. With the similarities among visual-area 

RDMs no longer inflated by intrinsic dynamics, the arrangement reflects the stimulus-

driven representations and accurately depicts the relationships among visual areas and 

models. 

The Gabor model explains the stimulus-driven component of the V1 representation 

Figure 7 shows results of quantitative analyses of how well the V1 RDM was 

explained by the GWP model, by the V2 of the same subject, and by the V1 of the other 

subjects. The within-subject replicability of the V1 RDM (cf. Fig. 4B) provides a noise 

ceiling, which reflects the amount of explainable RDM variance. When the RDMs were 

estimated on the basis of the same trials (Fig. 7A), the response dissimilarity structure of 

area V2 (same subject) explained the V1 RDM results far better than the GWP model or 

the V1 results from other subjects (same trial here implies trials with the same stimulus 

presentation order; we will come back to this later). However, the low correlation between 

the V1 RDM with its replication suggests that most of the similarity between the V1 and 

V2 RDMs in the same subject was not driven by similar stimulus representations, but by 
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the intrinsic dynamics and possibly other artefactual factors shared by the RDMs when 

same trials were used for estimating the RDMs. 

Figure 7B shows results from the cross-trial comparisons, that is, the comparisons of 

RDMs constructed on the basis of separate trials. The GWP model bar is the same as in 

Figure 7A (note the change of the vertical axis scaling). When the same-trial effects were 

removed, the V1 RDM was best explained by the GWP model. The same-subject V2 

RDM and the between-subject V1 RDM (separate trial here implies trials with different 

stimulus presentation order; we will come back to this later) results are now below the 

ceiling-level as defined by the V1 replication (solid black line; same as in Fig. 7A). The 

GWP model outperformed the replication of the V1 RDM, reflecting the fact that both 

estimates of the V1 RDMs are noisy, whereas the GWP model is noise-free.  

Figure 7 

Coherent response fluctuations within visual cortex 

Correlated fMRI response fluctuations in the absence sensory stimulation are 

assumed to reflect intrinsic activity fluctuations within connected brain regions. We 

performed a searchlight analysis to explore the extent and specificity of the coherent 

response-pattern fluctuations and RDM correlations in our data. A spherical searchlight 

was positioned at each location of the scanned brain volume (Kriegeskorte et al. 2006). 

Within each location, the trial-to-trial response-pattern-mean as well as the RDM were 

extracted and correlated with the corresponding metrics from a reference ROI. The right 

LO was selected as the reference ROI, i.e., the “seed region”. High correlation of response 

fluctuations were expected within visual cortex and especially with the corresponding 
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region in the left hemisphere. In addition, left and right LO were expected to show similar 

stimulus-driven representations as reflected in similar RDMs estimated on the basis of 

separate trials. Similar visual representations cannot be assumed for low-level visual areas, 

where left and right visual fields are represented in opposite hemispheres.  

Figure 8A shows the results on trial-to-trial response-pattern-mean correlations 

(Pearson’s linear correlation). The upper panel is equivalent to a functional connectivity 

analysis, where the seed “time course” is the trial-to-trial pattern mean from the right LO 

and this is correlated with trial-to-trial pattern mean of a spherical searchlight at each 

location. The correlations were high especially within the visual cortex. When the analysis 

was done between trial-to-trial mean signals for the same stimuli from different trials 

(lower panel in Figure 8A), the correlations were significant only around the location of 

the reference ROI. This suggests that there is a small stimulus-driven component also in 

response-pattern-means, but most of the same-trial response-mean correlations are not 

stimulus-driven. This finding is consistent with the presence of coherent intrinsic response 

fluctuations within the visual cortex. 

Figure 8 

Figure 8B shows the searchlight analysis for RDM similarity. The RDM of the right 

LO was correlated (Spearman’s rank correlation) with RDM of a spherical searchlight at 

each location. The results for the same-trial RDM correlations (upper panel) resemble the 

results on the same-trial response-pattern-mean correlations shown in the upper panel of 

Figure 8A. The lower panel of the Figure 8B shows the results when the reference RDM 

from the right LO was correlated with RDMs constructed from response patterns within 
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the spherical searchlights estimated on the basis of different trials for the same stimuli. 

This searchlight analysis picked up the right LO and the corresponding region in the 

opposite hemisphere, suggesting similar stimulus representations in these regions. These 

results support the conclusion that intrinsic cortical dynamics inflate the similarity of 

visual area RDMs and that the stimulus-driven similarity between the representations in 

different areas can be revealed by studying separate trials for the same stimuli. 

More dissimilar response patterns for trials more separated in time 

In addition to the coherent fluctuations of the overall activity within the visual 

cortex, are there other non-stimulus related factors affecting the RDM similarity? We did 

find that the temporal sequence of stimulus presentation also had an effect on RDM 

similarity. In this data, the stimulus images in all experimental runs were different but they 

were presented using the same sequence (including timing of null trials and timing of the 

repetitions of the same stimuli). The correlation between V1 RDMs estimated on the basis 

of response patterns from different experimental runs is shown in Figure 7A (white bar). 

The correlation cannot be explained by stimulus-driven representation in V1 as the 

stimulus images in all runs were different. Moreover, the contribution of stimulus 

presentation sequence on RDM similarity likely explains also the difference in Figures 7A 

and Figure 7B for the between-subject comparison of V1 RDM similarity (light gray 

bars). Next we look more closely to the temporal effects on response-pattern 

dissimilarities. 

The appearance of an RDM depends on the chosen stimulus order. If an RDM is 

ordered to follow the presentation sequence of the stimuli, do the temporal effects on the 
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response-pattern dissimilarity become visible? Figure 9A shows a V1 RDM where the two 

trials for the 70 natural images within an experimental run were treated as separate 

conditions (RDM dimensions: 140 x 140). Here the ordering of the conditions in the RDM 

follows the numbering of the stimulus images (1-70). The first half corresponds to the first 

presentations of the images, the second half to the second presentations. In Figure 9B, the 

condition labels were reordered based on the temporal sequence of the stimulus 

presentation. In Figure 9C, these reordered RDMs were averaged across experimental 

runs. Because different natural images were shown using the same temporal sequence in 

all runs, the result should resemble an RDM, where the response patterns are similar for 

repeated presentations of the stimuli and dissimilar for all other comparisons (Figure 9D). 

This is indeed observed (detail 1 in Figures 9C, 9D). However, the RDM also exhibits a 

prominent structure of low dissimilarities around the diagonal, which indicates that 

response patterns for stimuli presented close in time evoked more similar response 

patterns than stimuli presented further apart. The similarity of response patterns acquired 

close together in time is consistent with a slow drift in pattern space that could be related 

to head motion and/or drifts of the state of the scanner and the subject’s physiological 

state. A similar drift was also seen in RDMs from other visual areas (Supplementary 

Figure 1; and for more detailed analysis of the drifts, Supplementary Figure 2). These 

global pattern drifts most likely contribute to the high correlation between RDMs of 

neighbouring visual areas (Figures 6A, 7A-B) when same-trial RDMs are compared. That 

is, same-trial RDM comparisons between brain regions are confounded by both the 

correlated response fluctuations and the temporal sequence-related pattern dissimilarity 

structure. This further reinforces the importance of using independent trials when drawing 

conclusions from exploratory analysis of RDM similarity between brain regions. 
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Figure 9 

Higher similarity of same-trial RDMs is not eliminated by averaging more trials  

Thus far, our conclusions are based on single-trial RDM comparisons. Could the 

contribution of the coherent response fluctuations on RDM similarity between 

neighboring brain regions be eliminated by averaging more trials? We addressed this 

question with a data set where we had 12 responses for 120 natural images (Kay et al. 

2008). The results are shown in Figure 10. The similarity of the same-trial RDMs was 

decreased when more trials were averaged (first column in Fig. 10). This is consistent with 

a contribution from correlated intrinsic fluctuations, which is expected to be reduced by 

averaging. At the same time, the similarity of RDMs estimated on the basis of separate 

trials was increased when more trials were averaged (second column in Fig. 10). 

Nevertheless, the correlation between the same-trial V1 and V2 RDMs remained much 

higher than the correlation between the RDMs estimated from separate trials. Hence, trial 

averaging appears insufficient to remove the non-stimulus-driven same-trial effects on 

RDM similarity. 

Representational dissimilarities in V1 are distinct from V2, and not fully explained 

by the Gabor model 

Trial-averaging revealed a clear ordering of the RDM correlations (Fig. 10). The 

cross-trial RDM correlations are interpretable in terms of stimulus representational 

geometry. The V1 RDM was best explained by its replication in the same subject, 

followed by the same-subject V2 RDM and the other-subject V1 RDM. This suggests that 

the representational geometries are individually unique in V1. Finally, the basic GWP 

model’s representational geometry could not fully explain the V1 representation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2014. ; https://doi.org/10.1101/008961doi: bioRxiv preprint 

https://doi.org/10.1101/008961
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

In summary, although trial averaging reduced non-stimulus-driven effects on the 

response patterns, it did not remove the effect of the same-trial coherent response 

fluctuations on the representational similarity between neighboring visual areas of the 

same subject. Using RDMs constructed from response patterns estimated on the basis of 

different trials, we were able to reveal subject-unique representational geometries, 

differences in representation between different visual areas, and the limits of the Gabor 

model for explaining V1.  

Figure 10 

DISCUSSION 

Intrinsic cortical dynamics are a major feature of cortical activity. Our results 

suggest five main conclusions: (1) Intrinsic dynamics exert a major influence on estimates 

of stimulus-related activity patterns and their dissimilarity structure. (2) The influence is 

such that representational dissimilarity matrices appear much more similar between two 

brain areas when estimated on the basis of the same trials than when estimated on the basis 

of a separate set of trials for each area. (3) A particular variant of intrinsic dynamics 

described in the literature, coherent fluctuations of activity across multiple areas, can 

account for this assimilation of the apparent representational geometries of two areas. 

Future studies will be needed to assess the intrinsic dimensionality of the intrinsic 

fluctuations and their functional role. (4) Response pattern estimates are also affected by 

substantial pattern drifts, which might be related to head motion, scanner state, or the 

subject’s physiological, emotional, or cognitive state. As a result of the pattern drift, two 

stimuli presented further apart in time will tend to be associated with more dissimilar 

pattern estimates. Single-trial-based RDM estimates therefore exhibit a stimulus-
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sequence-related component, which also creates spurious RDM correlations between 

different areas, when the same sequences have been used to estimate the RDMs. (5) The 

stimulus-driven component of the representation of a set of stimuli in two brain areas can 

be compared using a separate set of trials, which have been presented in independent 

random orders, to estimate the response patterns for each area. This approach avoids both 

the confound of correlated intrinsic fluctuations and the confound of sequence-related 

pattern similarity structure. 

Coherent response-pattern fluctuations between visual areas 

From our data, we can only speculate the source of the coherent response-pattern 

fluctuations between the visual areas. A likely interpretation is the trial-to-trial variability 

in fMRI signal correlations that reflects underlying intrinsic spontaneous neural activity 

(Nir et al. 2008). The simulation and the observed coherent response-pattern fluctuations 

within the visual cortex support this conclusion.  

We proposed that the contribution of the intrinsic fluctuations can be removed by 

comparing RDMs constructed of separate trials. Another approach would be to try to 

remove the widespread signal fluctuations from the data (Kay, Rokem, et al. 2013); this 

approach requires, however, multiple repetitions of the stimulus, and thus is not well-

suited for the present data. Similarities between RDMs of the same visual area in different 

subjects can also reveal the amount of stimulus-related effects in the RDM. In between-

subject RDM comparisons, each subject should have different random stimulus 

presentation order. This will prevent the temporal proximities of the stimuli from causing 

artefactual correlation of the pattern dissimilarities between the subjects. 
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We have emphasized that the intrinsic trial-to-trial variability in the response-pattern 

similarity can obscure the underlying stimulus-driven effects and thus confound results on 

representational similarities between brain regions. However, the trial-to-trial response 

fluctuations most likely have functional significance. Presumably the fluctuations are 

related to changes in the subject’s instantaneous state, such as attention and vigilance, and 

affect also the perception of the stimuli. Better reproducibility of fMRI response patterns 

has been previously associated with conscious perception (Schurger et al. 2010) and better 

memory (Xue et al. 2010) of visual stimuli. Furthermore, the effects of the temporal 

context of the stimuli on the response-pattern similarity could also be addressed in more 

detail in future studies. Visual cortex has been shown to show rapid adaptation effects to 

the structure of image stimuli at the single-neuron level (Muller et al. 1999) and at the 

level of neural populations (Benucci et al. 2013). This is likely also reflected in the pattern 

representations as measured with fMRI. Future work is needed to characterize the non-

stimulus driven component of the response-patterns in more detail and to study its 

functional significance. The present experimental design of passive viewing of natural 

images is not suited to characterize for example the effects of attention (see, e.g., Ress et 

al. 2000) on the response-pattern similarity structure between visual areas.  

Relating fMRI results to computational model predictions of the underlying visual 

representations across stages of processing 

RSA (Kriegeskorte, Mur and Bandettini 2008; Kriegeskorte 2009; Nili et al. 2014) 

and voxel-receptive-field modeling (Kay et al. 2008; Kay, Winawer, et al. 2013) are two 

complementary approaches to directly relate computational models with fMRI data. 

Voxel-receptive-field modeling aims to construct a computational model for each fMRI 

voxel and predict the responses for new stimuli, whereas RSA aims to predict the 
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response-pattern similarity for a set of stimuli. We employed data that had been previously 

used as training data in voxel-receptive-field modeling. RSA does not require separate 

training data when the models have no free parameters to be estimated from the data. The 

model fit is determined by the correlation between the model RDM and a brain RDM. 

Here the stimulus set differed from previous RSA studies in that it was richer (>1000 

images, as opposed to 96 in (Kriegeskorte, Mur, Ruff, et al. 2008); for a review, see 

(Kriegeskorte and Kievit 2013)). Our results confirm that this type of stimuli can be used 

with RSA to address questions on how representation of visual information is transformed 

along stages of the visual system and to test alternative computational models. 

Our results on the model fits are consistent with previous studies showing that the 

representation of natural images in V1 can be explained by a Gabor wavelet model at the 

level of neural population codes (Weliky et al. 2003) and fMRI response patterns (Kay et 

al. 2008; Naselaris et al. 2009). The categorical clustering of responses for animate and 

inanimate objects in higher-level visual area is also consistent with previous work (Kiani 

et al. 2007; Kriegeskorte, Mur, Ruff, et al. 2008; Naselaris et al. 2012). Our results extend 

the previous studies by showing the shift in the best-fitting computational model across 

the hierarchy of visual areas as well as testing two other models (image correlation 

similarity and Gist) that did not perform better than the GWP or categorical animate–

inanimate distinction in any studied visual area. Our results also confirm that low-level 

image similarity effects do not account for the categorical animate–inanimate distinction 

but this representation emerges in a higher-level visual area. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2014. ; https://doi.org/10.1101/008961doi: bioRxiv preprint 

https://doi.org/10.1101/008961
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

The present implementation of the GWP model is a simplification of what we 

already know about V1; the model does not include properties such as surround 

suppression (Cavanaugh et al. 2002) or cortical magnification (Duncan and Boynton 

2003). However, taking into account the noise level in the data, it does a fairly good job at 

explaining the response dissimilarity in V1. However, when more trials were averaged for 

the RDMs, the limits of the GWP model in explaining the response variance became 

evident. Future studies should seek a computational account of both the prominent 

category divisions and the within-category representational geometry of LO. This might 

be achieved by testing a wider range of computational models (including newer models 

such as (Freeman et al. 2013; Kay, Winawer, et al. 2013)), with the aim also of 

characterizing the representational organizing principles of the intermediate-level visual 

areas (V2–4), in more detail. This would lead to a better understanding of the processing 

steps between the local, low-level image processing in V1 and the more global, category-

selective representations in the higher-level visual areas. 

Conclusion 

We found that coherent fMRI response-pattern fluctuations between visual areas can 

dominate representational similarities over stimulus-driven effects. Hence we suggest that 

representational similarity of brain regions should be addressed using response patterns 

estimated on the basis of separate fMRI trials. Here this approach revealed clear 

distinctions between the regions. More generally, our findings indicate that intrinsic 

cortical dynamics may have a significant contribution to representations as studied using 

multi-voxel fMRI pattern analysis.  
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FIGURE LEGENDS 

Figure 1. Simulation on the effects of coherent response fluctuations on RDM 

similarity. A) Simulated primary visual cortex (V1; 150 voxels) responds equally 

strongly to three categories of stimuli (B = Bodies, F = Faces, O = objects). The 

representational similarity matrix (RDM) captures the pair-wise representational 

distance between the response patterns for each stimulus with the V1 RDM 

showing no interesting structure. The simulated fusiform face area (FFA; 100 

voxels) shows preference for Face-stimuli (F) and responds slightly more strongly 

also to the Bodies (B) than to Objects (O). This is reflected in the FFA RDM 

showing most similar response-patterns for the Faces. The V1 RDM and the FFA 

RDM are clearly different (Spearman’s rank correlation r = 0.07, not significant; 

condition-label randomization test (Kriegeskorte, Mur and Bandettini 2008)). B) A 

coherent response fluctuation component was added to V1 and FFA responses. 

The stimulus-driven patterns remained the same but the visual areas now shared 

the fluctuation in the overall responsiveness across time. As a result, the RDMs of 

the two visual areas are highly similar (Spearman’s rank correlation r = 0.69, p < 

0.001; condition-label randomization test (Kriegeskorte, Mur and Bandettini 

2008)). This shows that coherent response-pattern fluctuations can have a 

significant effect on visual representations as reflected in response-pattern 

dissimilarities. 

Figure 2. Coherent response-pattern fluctuations in natural image data. A) The 

response amplitudes for 5 natural images are shown for a subset of voxels in 

visual areas V1 and V2 of subject S1. The visual areas showed coherent 

dynamics in their response patterns. That is, the responses in all voxels in both 

V1 and V2 were low for the first stimulus, stronger for the second stimulus and 

again lower for the fourth stimulus. B) The mean and variance of the response 

pattern amplitudes for 70 natural stimuli are shown for visual areas V1 and V2. 

Both showed highly coherent dynamics between the visual areas. C) The matrices 

show the mean correlations between response pattern means (top row) and 

variances (bottom row) between all pair-wise comparisons of the visual areas. 

The matrices are also visualized using multidimensional-scaling arrangement. 

What emerged from the coherence of the response-pattern fluctuations is the 
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hierarchy of visual areas. D–F) When the comparisons were done between 

repeated presentations of the same stimuli (separate trials), the correlations in the 

response-pattern-mean and variance were much lower. This suggests a 

significant contribution of the coherent response fluctuations on the similarity of 

RDMs from different visual areas in this data. 

Figure 3. Representational similarity analysis and computational model 

predictions of natural image representations. A) An example stimulus image is 

shown. B) An example representational similarity matrix (RDM) is shown for visual 

area V1 of subject S1. The RDM captures the pair-wise dissimilarities between 

the response patterns elicited by the stimuli, here 70 different natural images. By 

definition, the RDM is symmetric and has a zero diagonal. C) In a split-data RDM, 

the dissimilarities are computed between separate presentations of the same set 

of stimuli. The diagonal of the split-data RDM reflects the replicability of the 

response patterns between the first and second stimulus presentation. D) 

Example RDMs for the four different models are shown for a set of 70 natural 

images (GWP = Gabor Wavelet Pyramid). 

Figure 4. Distinct fMRI response patterns and replicable similarity structures for 

natural image stimuli. A) Results on the distinctiveness of the response patterns 

for the natural images are shown separately for the seven visual areas in each of 

the three subjects (S1, S2, S3). The error-bars indicate SEMs across the 25 

experimental runs. The black dots below the bars indicate statistically significant 

results (t-test, p<0.05). B) Results on the replicability of the representational 

similarity structure for the natural image stimuli are shown separately for the visual 

areas and subjects. The error-bars indicate SEMs across the 25 experimental 

runs. The black dots below the bars indicate statistically significant results (t-test, 

p<0.05).  

Figure 5. Relating computational models to cortical representations. A-C) Results 

on the comparisons between computational model predictions on the response 

pattern dissimilarities and the empirical results of different visual areas are shown 

separately for the three subjects. Each bar indicates the mean rank correlation 

between a model RDM (Gr = image correlation similarity, GWP = Gabor wavelet 
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pyramid, Gist = spatial envelope model, Anim = categorical animate–inanimate 

distinction) and a brain RDM. The error-bars indicate SEMs across the 25 

experimental runs. The black dots below the bars indicate statistically significant 

results (t-test, p<0.05). D-E) A multidimensional-scaling arrangement reflects the 

response-pattern dissimilarities in V1 and LO for the 1750 natural images 

(dissimilarity: 1 - Pearson’s linear correlation, criterion: metric stress) labelled as 

animate (red) or inanimate (blue). A clear categorical clustering is evident in LO 

(E), but not in V1 (D). 

Figure 6. Relating natural image representations between different visual areas, 

subjects and model predictions. A) A second-order similarity matrix of RDMs of 

visual areas (V1, V2, V3, V4, LO) in all three subjects (S1, S2, S3) and the two 

best-fitting models (GWP = Gabor wavelet pyramid, Anim = categorical animate–

inanimate model) is shown, and B) the corresponding multidimensional-scaling 

arrangement (metric-stress) of the representational dissimilarities. The distances 

reflect the representational distance between the representations. The visual 

areas in the three subjects are color-coded in different colors. C) A second-order 

similarity matrix of RDMs, where the effects of coherent trial-to-trial fluctuations 

were removed by comparing RDMs from separate trials, and D) the corresponding 

multidimensional-scaling visualization (metric-stress) of the representational 

relationships. Note that when the comparison was made between the visual-area 

RMDs constructed form the same trials (sharing intrinsic dynamics; A–B), the 

representations were most similar between the visual areas within the same 

subject. Whereas, when the comparison was made between visual-area RDMs 

constructed from separate trials (sharing only stimulus-driven effects; C–D), the 

V1 representations of all subjects, for example, were more similar to the GWP 

model than to the representations in the higher-level visual areas.   

Figure 7. Same-trial RDM similarity is mostly driven by effects unrelated to the 

stimuli. A) Results are shown for same-trial RDM comparisons. The black bar 

shows the mean rank-correlation distance between single-trial V1 RDM and GWP 

model. The black line shows results on V1 RDM replicability, that is, the 

correlation between V1 RDMs constructed from separate trials and thus the 
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stimulus-driven effects. The second bar shows the mean rank correlation between 

V1 RDM and V2 RDM of the same subject estimated from the same single-trial 

responses. The third bar shows the mean rank correlation of V1 RDMs from 

different subjects (“same trials”, denotes here the same stimulus presentation 

sequence). The fourth bar shows the mean rank correlation between V1 RDM and 

V1 RDMs of other experimental runs where different stimulus images were shown 

in the same temporal sequence. The last column thus reflects the contribution of 

the stimulus temporal sequence effects on the response-pattern similarity 

structures. The error-bars indicate SEMs across the 25 experimental runs. The 

black dots below the bars indicate statistically significant results (t-test, p<0.05). 

B) Results are shown for cross-trial RDM comparisons, that is, RDMs constructed 

based on separate trials (or different stimulus presentation order for the last two 

bars). Results on the GWP model (black bar) fit and V1-replicability (black line) 

are the same as in (A), note the different y-axis. 

Figure 8. Searchlight analysis of the response-pattern fluctuations and RDM 

correlations across the visual cortex. A) The trial-to-trial response-pattern-mean 

signals from the right LO (subject S1) were correlated with trial-to-trial response-

pattern-mean signals within a spherical searchlight at each location. The expected 

false-discovery rate maps show the significance of the correlations as evaluated 

from the 25 experimental runs and FDR corrected for multiple comparisons. The 

upper row shows the results for same-trial pattern mean correlations and the 

bottom row for different-trial pattern-mean correlations. Note the widespread 

response-pattern fluctuations in the same-trial responses across the visual cortex, 

and especially between the corresponding regions in the two hemispheres. B) The 

RDM of the right LO was correlated with RDMs within a spherical searchlight at 

each location. The upper row shows the results for same-trial RDM correlations 

and the bottom row for different-trial RDM correlations. When the reference-RDM 

was constructed from separate trials (bottom row), the searchlight analysis 

identified similar representations only in corresponding regions in the two 

hemispheres. Note the similarity of the same-trial RDM and same-trial response-

pattern fluctuations across the visual cortex (upper rows A–B), likely reflecting the 

contribution from intrinsic cortical dynamics.  
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Figure 9. Trial-to-trial variability in response-patterns: more dissimilar response-

patterns for trials more separated in time. A) A V1 RDM of subject S1 is shown for 

the first experimental run, where the two trials for each of the 70 stimuli were 

treated as separate conditions. The ordering of the condition labels in the RDM 

follows the original stimulus image numbering (1…70) with the second 

presentations of the same image set following the first presentation. B) The RDM 

shown in (A) is reordered to follow the temporal sequence of the presentation 

order of the 140 natural image stimuli. C) The reordered RDMs (as in B) were 

averaged across experimental runs. In each run, the stimuli were different, but the 

temporal sequence of the presentation order was same (see Supplementary Fig. 

1 for other visual areas and subjects). The two black rectangles represent the two 

zoom-in regions. D) The reference RDM predicts identical response patterns for 

the repeated presentation of the same stimuli and different response patterns for 

other stimulus comparisons. The two black rectangles represent the two zoom-in 

regions. The arrows in the zoom-in regions point to one of the repeated 

presentations of the same stimulus (similar response patterns). 

Figure 10. Trial averaging weakens non-stimulus-related effects and strengthens 

stimulus-related effects. Results on the representational similarity of V1 to other 

visual areas are shown for different numbers of trials averaged for the RDMs. 

Results for the three subjects are shown separately (three rows).The first column 

compares the V1 to other visual areas when the RDMs were constructed from the 

same trials (sharing intrinsic cortical dynamics). The x-axis shows the number of 

trials averaged for the RDMs. The second column compares the V1 to other visual 

areas when the RDMs were constructed from separate trials (only stimulus-driven 

effects shared among visual areas). Note the opposite effects of the trial 

averaging on the results shown in the first (same-trial) and second (cross-trial) 

columns. The third column compares the V1 representation in one subject to the 

representations in the other subjects (different temporal sequence for stimulus 

presentation; only stimulus driven effects shared). The last column compares the 

V1 representation to the representational similarity predicted by the GWP model. 
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