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Abstract

Tumorigenesis involves, among other factors, the alteration of metabolic gene expression to support
malignant, unrestrained proliferation. Here, we examine how the altered metabolism of cancer cells is
reflected in changes in co-expression patterns of metabolic genes between normal and tumor tissues.
Our emphasis on changes in the interactions of pairs of genes, rather than on the expression levels of
individual genes, exposes changes in the activity of metabolic pathways which do not necessarily show
clear patterns of over- or under-expression. We report the existence of key metabolic genes which act as
hubs of differential co-expression, showing significantly different co-regulation patterns between normal
and tumor states. Notably, we find that the extent of differential co-expression of a gene is only weakly
correlated with its differential expression, suggesting that the two measures probe different features
of metabolism. By leveraging our findings against existing pathway knowledge, we extract networks of
functionally connected differentially co-expressed genes and the transcription factors which regulate them.
Doing so, we identify a previously unreported network of dysregulated metabolic genes in clear cell renal
cell carcinoma transcriptionally controlled by the transcription factor HNF4A. While HNF4A shows no
significant differential expression, the co-expression HNF4A and several of its regulated target genes in
normal tissue is completely abrogated in tumor tissue. Finally, we aggregate the results of differential
co-expression analysis across seven distinct cancer types to identify pairs of metabolic genes which may
be recurrently dysregulated. Among our results is a cluster of four genes, all located in the mitochondrial
electron transport chain, which show significant loss of co-expression in tumor tissue, pointing to potential
mitochondrial dysfunction in these tumor types.
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Introduction

All cellular events, from the transduction of signals to the translation of nucleic acids, rely on the inter-
action of molecular entities. Indeed, one may argue that the fundamental unit of a biological network is
not its constituent components (e.g. proteins or genes), but rather the edges representing the interac-
tions between them. Then, it follows that the manifestation of disease, of a deranged phenotype of this
network, should be evident by observing changes in the wiring and activity of these edges.

Here, we study the interactions between pairs of genes encoding metabolic enzymes, and how these
interactions change in the course of transformation of normal cells to malignant tumor. This notion of
studying “interactions” is particularly important for understanding the network of coupled enzymatic
reactions which constitute metabolism. It is well-known that tumors, which are under strong selection
for proliferative capacity, must re-organize their metabolism in order to deliver the precursors and energy
needed to grow as quickly as possible. Otto Warburg published a series of key findings highlighting a
fundamental dysregulation in glycolytic metabolism in cancer, whereby cancer cells metabolized high
levels of glucose to lactate [28]. Some of the earliest chemotherapies (e.g. methotrexate) targeted a
metabolic phenotype which distinguished tumor from normal tissue. In recent years, an invigorated field
has identified a number of distinct “metabolic lesions” in various tumors, including, for example, the
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preferential expression of PKM2 [48] and the presence of an oncometabolite, 2-hydroxyglutarate, in cells
with activating IDH1 and IDH2 mutations [34].

Our use of the term “interaction” above is loose: for the purposes of our study, which focuses on the
analysis of gene expression data, we say that two metabolic genes putatively interact if we observe they are
co-expressed. This co-expression may occur by chance, or as a result of co-regulation by a set of common
factors. Furthermore, while strong co-expression is more likely to occur between proteins which physically
interact with each other, the highly networked structure of the metabolic network suggests that even genes
residing in opposing corners of metabolism may be fundamentally coupled to each other. Regardless of
the source of co-expression, our goal is to identify regions of the metabolic network whose co-expression
patterns appear fundamentally different between normal and cancerous tissue samples. Put another way,
we intentionally search for cases where two genes are co-expressed in one manner in normal tissue, and
then co-expressed in an entirely different manner in the tumor tissue. Our approach follows other studies
employing techniques to detect so-called “differential co-expression” of genes [9, 10,17,25,26,33,41,46].

Differential expression analysis is the standard method for identifying comparing the expression pat-
terns of genes across conditions. Aside from its ubiquitous use in research, several large-scale surveys of
differential expression focusing exclusively on metabolic genes in cancer have been completed [23,36]. In
contrast, while a handful of publications have examined differential co-expression in various cancer set-
tings (for example, [2,6,7,10,29]), differential co-expression analysis remains largely absent in most studies
of gene expression and (to our knowledge), no survey of differential co-expression among metabolic genes
in cancer ahs been undertaken. This is, at least in part, due to the requirement for large sample sizes
in order to detect statistically significant differential co-expression patterns. Here, we embark on such a
large-scale analysis of RNA-Seq data from 3000 samples of primary tumor and adjacent normal samples
from seven distinct tissues, and focus our attention squarely on the expression patterns of 1789 metabolic
genes. Among our main findings is the (previously known, see [24], but potentially under-appreciated)
observation that genes with strong differential co-expression patterns are not necessarily differential ex-
pressed. A relatively large fraction of the genes we identify in our study show no substantial difference in
their absolute expression between tumor and normal tissue, but nevertheless exhibit recurrent differential
co-expression.

The orthogonality of differential expression and differential co-expression described above suggests
that, to detect changes in the activity of a pathway, one must separately investigate the unilateral
increase/decrease of enzyme levels, as well changes in their coordinated co-expression. In the first case,
the expression of a large set of genes (for example, those in a long, linear metabolic pathway) may be
synchronously upregulated. This coordinated up-regulation of transcription may, for example, enable
the pathway to carry substantially more metabolic flux. In the second, perhaps more subtle case, the
characteristic pattern of flux through a pathway may be re-wired (as illustrated in Figure 1 ). In Figure 1,
the mechanism for this re-wiring is transcriptional, but in principle this type of coupling may arise through
a variety of distinct mechanisms (such, as, for example, post-translational modification). In both cases,
changes in intra- or extra-cellular conditions across a set of samples induces variation in the expression
of genes. However, the manifestation of these changes may be hidden from either differential expression
or differential co-expression analysis. Thus, we will repeatedly argue that both differential expression
and differential co-expression analysis should play central, complementary roles in the analysis of gene
expression data [25].

The results to be presented will encompass a variety of analyses, studying differential co-expression
patterns first across two cancer types for which we have the most data available (breast and clear cell
renal cell carcinomas, KIRC), and then expanding to include five other cancer types (lung, thyroid,
prostate, liver, and head and neck), as described in Table 1. In the course of doing so, we propose
two simple, but novel, analyses which integrate pathway information to assess the functional role of
differentially co-expressed gene pairs. We examine the association between differential co-expression
and differential expression, and identify genes which are strongly enriched for one measure but not
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the other. By leveraging our findings against regulatory (i.e. transcription factor binding) data, we
identify transcription factors whose targets are highly enriched for differential co-expression. Among our
findings is a previously unreported loss of co-expression between HNF4A, a transcription factor, and
its regulatory targets in KIRC. Finally, we leverage the scale of our study to complete a “Pan-Cancer”
analysis of differential co-expression, searching for those pairs of metabolic genes which are recurrently
differentially co-expressed across multiple cancer types. Our results highlight a small group of four
mitochondrial electron transport chain (ETC) genes which are recurrently differentially co-expressed,
hinting at a fundamental alteration in the function of the ETC in tumors.

Study Number Tu-
mor Samples

Number
Normal
Samples

Individual
Analysis

PanCan
Analysis

Breast Cancer 914 106 X X
Clear Cell Renal Cell Car-
cinoma

480 71 X X

Head and Neck Squamous
Cell Carcinoma

303 37 X

Liver Cancer 103 49 X
Lung Adenocarcinoma 446 57 X
Prostate Adenocarcinoma 176 44 X
Thyroid Cancer 482 58 X
Total 2904 422

Table 1. Cancer data used in this study.

Results

Calculation of Changes in Gene Co-Expression

We begin by describing the methodology, broadly illustrated in Figure 2, to detect changes in co-expression
patterns between normal and tumor samples. After obtaining RNA-Seq data, we calculate the Spearman
correlation (a non-parametric measure of the correlation of two random variables employing ranks) of
each pair of genes i, j, and record the p-value pij associated with this correlation. These calculations
are performed separately for tumor and normal samples. To account for multiple hypothesis testing,
we apply the conservative Bonferonni correction [16], yielding corresponding adjusted p-values p̂. The
results of these correlation calculations are stored in two matrices, CT and CN (corresponding to tumor
and normal samples, respectively), with entries

Cij =

{
rij , if p̂ij < τ

0, otherwise
(1)

Here, τ is a significance threshold for our Bonferroni-corrected p-values. Throughout the manuscript
unless otherwise stated, we employ a threshold τ = 1× 10−2.

Our goal is to identify significant differences between the strength of co-expression (as quantified
by the correlation coefficients) in tumor and normal samples. Such a comparison of sample correlation
coefficients must be done with care. In fact, the difference between two correlation coefficients is not
sufficient information to determine how often such a difference would appear by chance. We offer an
example to illustrate this phenomenon. Very small correlation coefficients (say, r1 = 0.1, r2 = −0.1)
may appear in random, uncorrelated data simply by chance. In this case, the difference between the two
correlation coefficients (r1 − r2 = 0.2) should be categorized as statistically insignificant because it is
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quite likely to happen by chance. On the other hand, the same difference for two very large correlation
coefficients (say, r1 = 0.99, r2 = 0.79) appears less likely to happen by chance; instead, this difference is
more likely to arise via the corruption of a nearly perfect correlation by a confounding factor or noise.

The basis of this intuition is that very large correlation coefficients are observed quite rarely by
chance. More importantly, the variance of the correlation coefficient estimated from the data (referred to
as the sample correlation coefficient, r) depends on the value of the true correlation coefficient underlying
the data (referred to as the population correlation coefficient, ρ). In particular, the variance of sample
correlation coefficient is approximately

Var(r) ∝ (1− ρ2)2

Thus, as the population correlation coefficient tends to ±1, the variance of the sample correlation coef-
ficient asymptotically approaches zero. This dependence of the variance of r on ρ itself makes it very
difficult to carry out hypothesis tests comparing two sample correlation coefficients. A standard method
for testing for a difference between correlation coefficients is to employ a transformation to stabilize the
variances, making them independent of ρ. Here, we use the Fisher r to z transformation:

z =
1

2

(
1 + r

1− r

)
. (2)

The change of variables in Eq. (2) is well-known, and has been used in prior work on differential
co-expression [9]. When applied to data drawn from a bivariate normal distribution, this transformation
yields a quantity which is approximately normally distributed with variance σ2 = 1√

N−3 independent of

the population mean, with N equal to the size of the population. By applying this transformation to our
measured correlation coefficients in normal tissue and tumor samples, we are able to apply a Z-test to
determine if the correlation coefficients rTij and rNij are significantly different. In particular, the quantity
(3), which measures the difference between the two transformed correlation coefficients, is approximately
normally distributed with mean zero and variance one:

∆zij =
zT − zN√
1

NT−3 + 1
NN−3

, (3)

where NT is the number of tumor samples, NN is the number of normal samples, zT is the Fisher-
transformed tumor sample correlation coefficient, and zN is the Fisher-transformed normal sample cor-
relation coefficient. Thus, we can associate p-values pzi,j with the Z-test in (3) for each pair of genes i, j.
After again correcting pz for multiple hypothesis testing using the Bonferonni correction, we stored the
results of our calculations in a matrix D with entries

Dij =

{
∆rij , if p̂zij < τ and (p̂Tij < τ or p̂Nij < τ)

0, otherwise
(4)

where p̂zij is the Bonferonni adjusted value of pzij . The entries of the matrix D correspond to the change
in gene co-expression between tumor and normal samples, and will be our main object of study. We
emphasize one final, but important, feature of Equation 4: an entry of D is nonzero if and only if
that gene pair shows both (1) a significant change in co-expression between tumor and normal samples,
and (2) the genes were co-expressed at a statistically significant level in tumor or normal samples (or
both).This ensures that those gene pairs which we call differentially co-expressed are also co-expressed
at a statistically significant level in at least one group of samples.
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Differential Co-Expression in Tumor vs. Normal Tissues is Not Random

With our analytical framework established, our first aim was to assess how pervasive differential co-
expression was among metabolic genes in cancer samples. To do so, we applied the differential co-
expression analysis described above to two TCGA studies (breast, BRCA; and clear cell renal cell car-
cinoma, KIRC) with large numbers of both tumor and normal RNA-Seq samples (106 and 71 normal
samples, 914 and 480 primary tumor samples, respectively). We used a strict Bonferonni corrected p-
value threshold of 1× 10−2 to identify pairs of genes which we called differentially co-expressed. Across
the total number of pairs of metabolic genes in our dataset (approximately (2×103)2/2 = 2×106 distinct
pairs), we calculated (for each of the two studies) that approximately 2.5 percent of gene pairs were
differentially co-expressed.

To independently test the extent of differential co-expression in our data, we followed the protocol
presented in [2] and completed a permutation test to assess how frequently we would expect the observed
changes in correlation coefficients by chance (Figure S1). In this analysis, we shuffled the labels (e.g.
tumor or normal) of all samples, and calculated the difference in correlation coefficients and transformed
correlation coefficients in the new, permuted data. This process was repeated 100 times, and the results
aggregated to form a distribution. Visual inspection of the results confirmed that for a large number of
gene pairs, the differences in correlation coefficients were larger in the real data than in the permuted
data (Figure S1). Although it was computationally intractable to complete enough permutations of the
data to generate robust p-values, we nevertheless found that 31% of gene pairs showed a higher difference
in both (1) tumor and normal correlation coefficients and (2) transformed correlation coefficients than
in any of the 100 permuted data sets. These findings supported our observation of extensive differential
co-expression in metabolic genes.

Naturally, we were interested in identifying those genes which were enriched for membership in dif-
ferentially co-expressed gene pairs. To find these genes, we calculated two “scores” for each gene:

1. S0
i , the number of differentially co-expressed gene pairs which gene i participates in

2. Si = −∑j:p̂zij<τ
ln
(
p̂zij
)
, a weighted sum of the number of differentially co-expressed pairs gene i

participates in

The score S, based on Fisher’s method for combining p-values from independent statistical tests [47],
accounted for both the frequency of a gene’s membership in differentially co-expressed pairs, as well
as the confidence with which we could claim the gene pair was differentially co-expressed (i.e. by the
magnitude of p̂zi−). It is important to note that each test of differential co-expression in our dataset is
not independent, so we cannot use S as a formal test statistic. However, its use as a measure of the
recurrence and magnitude of a gene’s overall differential co-expression is nevertheless useful.

In addition to to the two metrics described above, we also wanted to make special note of those pairs
of differentially co-expressed genes which took part in a known, previously reported biological interaction.
To do so, we extracted from the Pathway Commons database [8] a list of pairs of genes known to interact
in either of two ways: 1) through the formation of a complex with each other (“In-Complex-With”
interactions), and 2) through the production of a metabolite by the enzyme encoded by one gene in
the pair, and subsequent use of that metabolite as a substrate for the enzyme encoded by the other
gene in the pair (“Catalysis-Precedes” interactions) [5]. We then identified which pairs of differentially
co-expressed genes participated in either of these kinds of interactions. These results were summarized in
two additional gene-level statistics, SCompi and SCati , indicating the number of differentially co-expressed
catalysis-precedes and in-complex-with interactions, respectively, a gene i participates in.

Our metrics highlighted a common feature of differential co-expression patterns in both BRCA and
KIRC: differential co-expression was not randomly distributed throughout the metabolic network. In-
stead, most genes participated in relatively few differential co-expression interactions, while a small subset
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of “hub” genes participated in hundreds (Figure 2C, histograms). In Tables 2 and 3, we report the top
ten scoring genes (sorted by the metric S0

i ) for the breast and kidney TCGA studies. The lists include a
number of genes known to be associated with cancer, as well as a number of previously unreported genes.
In the supplementary material, we provide a complete list of the scores for each metabolic gene in our
study.

In breast cancer, the top-ranked gene was ACAT1 (Acetyl-CoA acetyltransferase, not be confused
with the enzyme acyl-Coenzyme A: cholesterol acyltransferase 1, which is encoded by the gene SOAT1).
The enzyme translated from ACAT1 catalyzes the formation of acetoacetyl-COA, and along with acetyl-
CoA is the precursor to 3-hydroxy-3-methylglutaryl-CoA. These two metabolites lie at the beginning of
the mevalonate pathway, which generates precusors for cholesterol and steroid biosynthesis. Intriguingly,
Freed-Pastor and colleagues [19] recently reported that upregulation of the mevalonate pathway is suf-
ficient and necessary for mutant p53 to have phenotypic effects on cell architecture in mammary tissue.
Overexpression of various genes in the mevalonate pathway has also been shown to associate with poor
prognosis in breast cancer [13]. Interestingly, ACAT1 has a very high SCat, indicating it is differentially
coexpressed with 11 genes for which it is a catalytic partner: ACAA2, DLD, MLYCD, HADHB, HADH,
OXCT1, PCCA, PDHA1, PDHB, and ACSS1. A plot of the differences in the correlation of these genes
with ACAT1 is in Figure S4. In many cases, the co-expression patterns show remarkably tight correla-
tions in normal tissue, and these correlations are partially or completely eroded in the tumor samples.
Functionally, many of these genes are part of the terminal reactions in glycolysis, lipid biosynthesis and
fatty acid oxidation. This loss of co-expression suggests that the flux generated by these pathways is no
longer coupled to the flux through ACAT1 in tumor cells.

For KIRC, the highest-scoring differentially co-expressed gene was PSAT1 (phosphoserine aminotrans-
ferase 1), a key enzyme in the serine biosynthesis pathway which has already been associated with breast
and colorectal cancers before [38, 45], but has not yet been associated with kidney cancer. PSAT1 was
differentially co-expressed with 4̃92 other metabolic genes in the dataset, with the strongest signals com-
ing from genes like GATM (glycine aminotransferase), GBA3 (a beta-glucosidase), and SLC10A2 (a bile
transporter) (Figure S2). Because nearly all of the strongest signals came from loss of positive correlation
in normal samples, we further identified those genes with which PSAT1 was more strongly co-expressed in
tumor samples qthan in normal samples (Figure S3). These genes included several galactosidases (GLA,
GLB1), glycogen phosphorylase (PYGB), and SLC35A2, which transfers nucleotide sugars into the Golgi
body for the purposes of glcosylation. Neither the substrates (3-phosphonoxypyruvate,2-oxoglutarate)
nor the products (phosphoserine, glutamate) of PSAT1 participate in the glycogenolysis pathway, sug-
gesting that the positive correlation between PSAT1 and glycogen breakdown in tumors may be the result
of indirect couplings. In particular, it is possible that the overexpression of glycogen phosphorylase may
liberate carbon units to be shunted from glycolysis into the serine biosynthesis pathway through PSAT1,
as well as into the Golgi body for glycosylation in tumor cells.

Entrez HUGO Si S0
i SCati SCompi

38 ACAT1 11731.9 516 11 0
5264 PHYH 13080.2 512 3 0

10449 ACAA2 10819.4 508 12 0
9588 PRDX6 10983.9 506 2 0
4259 MGST3 9211.37 494 1 0
7360 UGP2 9882.05 492 0 0
847 CAT 9462.16 490 3 1
48 ACO1 11005.9 484 3 0

7371 UCK2 6024.4 483 0 0

Table 2. Top differentially co-expressed genes in BRCA.
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Entrez HUGO Si S0
i SCati SCompi

29968 PSAT1 13719.8 492 0 0
10846 PDE10A 11676.9 474 3 0
6482 ST3GAL1 13591.9 466 0 0
1594 CYP27B1 12064.4 465 0 0

65010 SLC26A6 10902.9 451 0 0
64849 SLC13A3 15016.4 445 0 0
64077 LHPP 7200.28 444 2 0

205 AK4 9709.72 443 0 0
54682 MANSC1 9081.81 440 0 0

Table 3. Top differentially co-expressed genes in KIRC.

Following our analysis of PSAT1, we reasoned that a particularly interesting set of genes were those
showing a higher degree of co-expression (as quantified by the magnitude of the Spearman correlation
coefficient) in tumor samples relative to normal samples. For both BRCA and KIRC, we isolated pairs of
genes exhibiting this property, and scored each metabolic gene based on how many such interactions it
participated in. Interestingly, in both studies the highest-scoring gene was associated with the metabolism
of lipids. In KIRC, the highest scoring gene was mevalonate kinase, MVK, a key gene in the cholesterol
pathway described above for BRCA. In breast tissue, the highest scoring gene was LIPG, an endothelial
lipase which catalyzes the hydrolysis of lipids. The products of this hydrolysis can then be used for the
production of signaling lipids as well as cell membrane components.

Breast and Kidney Cancers Show Distinct Co-Expression Patterns

Surprisingly, breast and kidney cancers shared no common genes among the ten highest-scoring genes
in the differential co-expression analysis above. Prompted by this observation, we decided to investigate
more explicitly whether differential co-expression patterns were similar between the two cancer types.

We reasoned that while individual genes may not show similar patterns of differential co-expression,
larger groups (e.g. pathways) of genes might. To probe whether common, “global” patterns of differential
co-expression existed between the two studies, we completed a principal components analysis (PCA,
Figure 2A). We assembled a concatenated differential co-expression matrix:

DC =

[
DBRCA

DKIRC

]
(5)

with dimension 2m ×m, where m is the number of genes under study. For a given index i < m, row i
corresponded to the differential co-expression pattern of that gene in BRCA, while row m+i corresponded
to the differential co-expression pattern in KIRC. Thus, each column of DC corresponded to a metabolic
gene, and stored the differential co-expression of that gene with all other metabolic genes in both breast
and kidney studies.

Our expectation was that PCA would identify patterns of differential co-expression which breast
and kidney cancers might share in common. Instead, we found that genes in the two studies displayed
completely distinct patterns of differential co-expression (Figure 2A). While a large portion of the variance
in the data was captured by the first two principal components (33 and 19 percent of the total variance
in the data, respectively), most genes from breast cancer had nearly no loading on component 2, while
most genes from kidney cancer had nearly no loading on component 1. The result was the cross pattern
evident in Figure 2A.
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These discrepenacies between tumor types led us to directly compare the frequency of differential co-
expression for each gene in the two studies (Figure 2C). We observed a remarkably high density of points
which fell on either of the two axes, corresponding to genes which showed no differential co-expression in
one of the tumor types. Furthermore, of the 1789 genes we examined, we identified 224 genes (13% of
all genes) which participated in at least 10 differential co-expression pairs in breast cancer, but less than
2 in kidney cancer, and 164 genes with at least 10 differential co-expression pairs in kidney cancer, but
less than 2 in breast cancer.

Of particular interest to us were genes which showed extreme cases of the pattern described above:
very high differential co-expression in one tumor type, but none in the other. To identify these genes,
we calculated the mean and standard deviation of S0 (the number of differentially co-expressed gene
pairs a gene participates in) for each study. We then searched for genes with S0 greater than two
standard deviations above the mean S0 in one study, but with S0 = 0 in the other study (Figure 2C,
blue and green points). Doing so, we identified dozens of genes which seemed to be specifically de-
coupled in only one of the two studies. Among these, the kidney specific genes seemed to be highly
enriched for SLC and ABC transporters. A particularly interesting kidney-specific gene was DPEP1
(a dipeptidase) in light of the recently observation of elevated dipeptide levels in a subset of clear cell
renal carcinoma tumors (manuscript in preparation). In contrast, breast-specific genes included CDO1
(cysteine dioxygenase Type 1, whose inactivation was recently reported to contribute to survival and
drug resistance in breast cancer [27]) and a number of genes involved in glycerolipid/lipid biosynthesis
and associated with malignancy in breast cancer (GPAM [15] and MGLL [37]).

We were similarly interested in finding genes enriched for differential co-expression in both BRCA
and KIRC samples. Among them was ASS1, an enzyme which catalyzes the rate-limiting step in argi-
nine synthesis, and is further invovled with the synthesis of nitric oxide and polyamines. Perhaps the
most intriguing feature of arginine metabolism in cancer is that several tumor types exhibit an arginine
auxotrophy phenotype, and are unable to proliferate in the absence of arginine [14]. Intriguingly, Qiu
and colleagues recently reported the killing of triple-negative breast cancer cell lines under arginine de-
privation, identifying it as a lucrative therapeutic target [39]. It is not clear from our analysis whether
differential co-expression of ASS1 is associated with such a vulnerability, but its recurrent differential
co-expression in both studies suggests that its activity may play an important role in malignancy.

Finally, we analyzed the pattern of differential co-expression across metabolic pathways, as annotated
in the Recon2 metabolic network [43] (see Methods). The results of our analysis are highlighted in Figure
3B, where we compared the score of each pathway in BRCA and KIRC, respectively. In breast cancer,
among the most enriched pathways is peroxisomal transport genes, including the peroxisomal transporters
ABCD1,ABCD2, and ABCD3, which transport fatty acids and acyl-CoAs and have been shown to be
markers of tumor progression and response to therapy [22]. Notably, genes in the vitamin C pathway
were enriched for differential co-expression in both cancers, possibly as an indirect consequence of high
oxidative stress within the tumors.

Differential Expression Sheds Little Light On Differential Co-Expression

So far, we have spent a great deal of effort identifying individual genes which seem to be co-expressed in
different ways in normal and tumor tissues. A more common first step in the analysis of gene expression
data across samples is the identification of differentially expressed transcripts. The underlying rationale
behind differential expression analysis of metabolic genes is intuitive: that higher expression of genes in
one condition over another suggests a difference in the metabolic flux through those sets of genes. In this
study, we are more concerned with the coupling of genes together: since metabolic genes are components
of a network, differential regulatory patterns (which may not necessarily substantially affect absolute
expression levels) may lead to differences in metabolic flux. Naturally, one may ask whether the two sets
of genes overlap; in other words, do genes which are up- or down-regulated in tumor (compared to normal)
also exhibit large differences in co-expression patterns in tumor (compared to normal) samples? At first
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glance, one might expect the answer to be yes. The coordinated over-/under-expression of genes may
seem advantageous to the cell: if the cell’s objective is to increase the flux through a metabolic pathway,
it makes sense to synchronously overexpress each constituent enzyme of that pathway. However, it is
well-known that metabolic pathways route flux in non-canonical ways, especially in cancer (e.g. aerobic
glycolysis, overflow metabolism of 3-phosphogylcerate into one-carbon metabolism [48]).

To explicitly test the connection between differential co-expression and differential expression, we
compared the two measures for metabolic genes in BRCA and KIRC (Figure 3). We assessed differential
expression using the limma voom package [30]. We found that the magnitude of differential expression
(as quantified by the log2 ratio of tumor to normal expression) was weakly associated with the frequency
of differential co-expression of a gene (BRCA, Spearman ρ 0.21; KIRC, Spearman ρ 0.11). In spite
of this weak association, many of the most differentially expressed genes were members of very few
dysregulated gene pairs, and conversely many genes which exhibited no substantial change in expression
levels nevertheless were found to be frequent members of dysregulated gene pairs.

The most intriguing observation we made was that a number of genes showed no measurable change
in absolute expression levels, but nevertheless were among the most differentially co-expressed genes in
the entire dataset (green dots, Figure 3). To find exceptional cases like these, we identified genes with
S0greater than 2 standard deviations above the mean S0 for the study, but with an absolute log2 ratio
of less than 0.2. For breast cancer, these genes included PLOD2 (procollagen lysyl hydroxylase 2 [20],
recently reported to be essential for hypoxia-induced breast cancer metastasis), and LDHA, a key enzyme
in the terminal end of glycolysis. In KIRC, several of the genes we identified (RENBP, GNE, and CTSA)
were members of the glycoprotein sialyation pathway, which has also been associated with metastasis [1].

The presence of genes with exceptionally high differential co-expression and eseentially no differential
expression (and the converse) deserves further discussion. It is possible that, depending on how the
activity of a metabolic pathway is modulated, either differential expression or differential co-expression
may be a more suitable technique for identifying such modulation. In one case, a gene may change in
synchrony with its regulatory partners; that is, regardless of whether the gene is over- or under-expressed
relative to normal tissue, it exhibits precisely the same co-expression patterns. Such an effect may be
observed, for example, following the over-expression of a transcription factor common to all the genes in a
co-expressed cluster. As we suggested earlier, synchronous regulation of a metabolic pathway may serve as
a mechanism for increasing flux through the pathway, and would be detected through standard differential
expression analysis. In contrast, a gene’s expression may correlate with different sets of genes in different
conditions. In our case, the control over expression wielded by one transcription factor in normal tissue
TFN would be ceded to a different transcription factor in tumor tissue TFT . The consequence is that
the gene of interest is co-expressed with a completely distinct set of genes under the control of TFT .
The differential co-expression of such a gene provides indirect evidence that the source or destination of
metabolic flux through the enzyme encoded by this gene may be changing from normal to tumor tisues.

Signatures of Regulation in Differential Co-Expression Patterns

As alluded to above, the expression of genes is fundamentally orchestrated by regulatory factors such
as transcription factors and microRNAs. Thus, the differential co-expression patterns we observe are
likely due, at least in part, to differential regulatory activity by these molecules. Inspired by prior
work linking transcription factors with observations of differential co-expression [24,40], we examined our
differential co-expression networks for an enrichment of targets associated with particular transcription
factors annotated in MSigDB [32]. To detect such enrichment, we isolated metabolic genes which were
reported targets of a particular transcription factor. Then, we applied a binomial test (see Methods) to
quantitatively assess whether the number of differential co-expression edges existing between only these
target genes was higher than would be expected by chance. We used only highly significant differentially
co-expressed edges, with a p-value threshold of 1×10−4.

Among the 200 or so transcription factors we examined, only a few dozen were enriched in either
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kidney or breast cancer. In breast cancer, the most enriched transcription factors (reported in Table
4) included SP1, NFAT, and ERR1. Several of these transcription factors have already been reported
to play important roles in breast cancer throughout the literature. SP1 is known to be involved in cell
proliferation, apoptosis, and cell differentiation and transformation, and has been reported as a prognostic
marker for breast cancer [11, 31]. Both NFAT and SP1 have been shown to induce invasion of breast
tissue via the transcriptional modulation of downstream genes [11, 49].Perhaps most interesting is the
identification of ERR1 (estrogen-related-receptor 1, also known as as ERR-α), an orphan receptor known
to interact with PGC1-α to regulate a number of metabolism-related genes. ERR-α is regulated by
ErbB2/Her2 signaling [4], and is associated with poor outcomes in breast cancer patients [3].

For kidney cancer, the pattern was far more unanimous: several of the most enriched transcription
factor target sites were targets of HNF4 (Table 5). HNF4 is known to control cell proliferation in kidney
cancer cell lines, and regulates a number of well-known cancer-associated genes to do so (e.g. CDKN1A
and TGFA) [21,35,42]. Interestingly, HNF4A (one of the two isomers of HNF4, which was most enriched
for differential co-expression targets) shows no clear differential expression pattern between KIRC tumor
samples and adjacent normal tissue samples (Figure 5A), but does seem to exhibit more variation in
tumor samples than in normal samples. The co-expression of HNF4 and its metabolic gene targets is
markedly different in normal and tumor samples (Figure 5B). A number of these genes (including PIK3R3,
a member of the PI3K pathway, and PKLR, an isoform of pyruvate kinase) showed exceptionally strong
co-expression with HNF4A in normal samples, only to have this co-expression abrogated in tumor samples
(Figure S5C). Similarly, many of the strong co-expression patterns existent between the targets of HNF4A
and HNF4A itself in normal samples wre also abrogated in tumor samples (Figure 5B). Together, these
findings suggest that the regulatory program associated with HNF4A in normal tissue is disrupted in
tumor tissue, a hypothesis in line with previous findings implicating its dysregulation with increased cell
proliferation [21]. Given its high score in our enrichment analysis, we tested whether the expression of
HNF4A was associated with patient survival in the TCGA data. After stratifying patients into groups
with high and low expression (relative to the mean expression of HNF4A in the tumor samples), we found
that low HNF4A expression is associated with shorter survival in KIRC patients (Figure 5D, log-rank
p-value 0.007).

Taken together, our observations above suggest that HNF4A’s control over the expression of its targets
changes in at least a subset of clear cell kidney tumors when compared to normal kidney tissue. It is
possible that this loss of control occurs via under-expression of HNF4A itself. It is also possible that
(as we proposed in the prior section) other transcription factors exert a more dominant control over
HNF4A’s targets. In either case, this leads to the loss of co-expression among HNF4A’s targets, and
between HNF4A itself and its targets.

MSigDB Transcription Factor Motif P-Value
SP1-Q6 2×10−22

HNF4-01 9×10−16

NFAT-Q4-01 3×10−13

FREAC2-01 1×10−11

ETS2-B 2×10−8

AACTTT-UNKNOWN 6×10−8

ERR1-Q2 8×10−8

YNGTTNNNATT-UNKNOWN 5×10−7

HFH8-01 8×10−7

CTTTAAR-UNKNOWN 4×10−6

Table 4. Transcription factors most enriched for differential co-expression targets in BRCA.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2014. ; https://doi.org/10.1101/008946doi: bioRxiv preprint 

https://doi.org/10.1101/008946
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

MSigDB Transcription Factor Motif P-Value
LEF1-Q2 4×10−45

HNF4-Q6 2×10−31

HNF4-01 7×10−30

HNF4ALPHA-Q6 7×10−24

HNF4-DR1-Q3 1×10−13

HNF4-01-B 4×10−10

COUP-01 4×10−8

PPAR-DR1-Q2 6×10−7

PAX4-02 6×10−5

IK3-01 0.0002

Table 5. Transcription factors most enriched for differential co-expression targets in KIRC.

PanCan Patterns of Differential Co-Expression

This final section of our work strikes out into more difficult territory: we ask whether some patterns of
differential co-expression may exist throughout different cancer types, regardless of their tissue of origin.
While we have found a number of apparently dysregulated metabolic genes specific (and in some cases,
common) to breast and clear cell renal cell carcinoma tumors, we have made little effort to search for
common patterns across many different types of tumors. Such a search is necessarily complicated by
the fact that our analytical method requires large numbers of normal and tumor samples for sufficient
statistical power. The TCGA features few studies with large numbers of normal RNA-Seq samples. In
order to balance the need for statistical power with our desire to detect so-called “PanCan” patterns
of differential co-expression, we included five more studies (lung adenocarcinoma, LUAD; hepatocellular
carcinoma, LIHC; prostate adenocarcinoma, PRAD; head and neck squamous cell cancer, HNSC; and
thyroid cancer, THCA) with at least 30 normal RNA-Seq samples, in our analysis. To increase the
confidence of our predictions, we used a stricter p-value threshold of τ = 1 × 10−4 to call statistically
significant differential co-expression. The results of the PanCan analysis are shown in Figure 6. We
retained only those genes which were members of a gene pair which was differentially co-expressed in at
least three of the seven studies. Out of the 1789 metabolic genes under study, only 50 genes satisfied
this criteria. Interestingly, many of these genes encode key enzymes in central metabolism (for example,
PC, pyruvate carboxylase; LDHD, D-lactate dehydrogenase; IDH1, isocitrate dehydrogenase 1; ALDOA,
aldolase A), pointing to apparently recurrent dysregulations of core pathways.

Among the many individual results of our PanCan analysis, perhaps the most interesting was the
recurrent dysregulation of four genes in the mitochondrial electron transport chain (ETC): two genes
associated with mitochondrial ATP synthase complex V (ATP5F1 and ATP5L), COX7B (part of the
complex IV cytochrome c oxidase), and NDUFV2 (complex I). A number of other mitochondrial ETC
genes are also differentially co-expressed (but to a lesser extent), including UQCR10, UQCRC2, UQCRC1,
ATP5A1, and NDUFS3. Given how critical these protein complexes are to energy production and pro-
liferation, we examined in detail the co-expression patterns of ATP5F1 and ATP5L. We found an ex-
ceptionally strong correlation in the expression of both genes in normal tissue. Across all seven studies,
the expression of both genes was almost precisely equal (Figure 6B, blue dots). However, in tumor
samples, the strength of the co-expression (as measured by the correlation coefficient) was substantially
weaker. Notably, ATP5F1 and ATP5L were not differentially expressed; instead, their co-expression
simply appeared “noisier” in tumor samples. To quantify whether this “noisier” co-expression may be
occuring by chance, we fit each co-expression pattern in Figure 6B to a line, and then calculated the
variance of the residuals of the fit. We used Levene’s test to test whether the variance of the residu-
als associated with tumor samples was larger than the variance of the residuals associated with normal
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samples. In all four tumor types, we confirmed that the tumor samples showed higher variance (p-value
7 × 10−17, 3 × 10−3, 6 × 10−9, 6 × 10−6, 3 × 10−11, 2 × 10−3, 5 × 10−3 for BRCA, HNSC,KIRC, LIHC,
LUAD, PRAD, and THAC samples, respectively).

The functional consequences of these increasingly “noisy” co-expression patterns in ATP5F1 and
ATP5L are unclear. It is known that stoichiometric imbalances of proteins (for example as a result
of changes in gene dosage) in complex with each other can manifest phenotypically [44]. Given the
recurrence of differential co-expression of three different gene pairs containing ATP5F1 and a second mi-
tochondrial matrix member (ATP5L, COX7B, and NDUFV2), it is tempting to speculate that differential
co-expression of ATP5F1 may lead to an altered mitochondrial phenotype. In particular, an imbalance in
the levels of ATP5F1 and ATP5L may cause defects in the ability of mitochondria to efficiently conduct
oxidative phosphorylation via the electron transport chain. Further experiments are required to evaluate
this hypothesis.

Discussion

In this work, we have searched for signals of differential co-expression in tumors. Among our findings, the
most relevant is simply the prevalence of differential co-expression throughout metabolism. Gene expres-
sion studies are frequently the “first-step” analytical method of choice for understanding the consequences
of a perturbation on an organism, or for the comparison of two distinct subsets of samples. While stan-
dard methods for differential expression analysis offer useful insights into the differential regulation of
genes, our findings here (and the prior findings of others studying differential co-expression) suggest that
a great deal of information remains to be culled from the study of “second-order” co-expression patterns
between pairs of genes. We have shown that these two measures (differential expression and differential
co-expression) are not interchangeable, and in many cases point to distinct regions of the metabolic net-
work that may be dysregulated. Of course, it is important to remember that while the statistical power
of both approaches relies on large sample sizes, differential co-expression is significantly more sensitive to
sample size upon multiple hypothesis correction because of the large number of independent statistical
tests (equal to the square of the number of genes) under evaluation.

Our findings here are a small, first step in applying such a second-order analysis to cancer data, and
in particular to the study of cancer metabolism. We have made a number of assumptions in order to
make progress in the analysis, and these assumptions should be re-visited in future work. In particular,
we have repeatedly assumed that the expression of a gene roughly correlates with the abundance of its
translated protein product, and that this abundance correlates with enzyme activity. An entire field of
theoretical study (metabolic control analysis, [18]) and a number of experimental studies (e.g. [12]) have
shown that metabolite abundances are equally, if not more, important for the control of fluxes. We note,
given an adequately large number of samples, an analogous “differential correlation analysis” is possible
for metabolomics data. It would be especially interesting to compare the results from such an analysis
with the analogous results using expression data.

One major concern with our results are the confounding effects of (1) contamination by stromal and
immune cells, and (2) existence of heterogeneous tumor subtypes in the data. Tumor samples are often
contaminated with mixtures of normal adjacent tissue and immune cells. Deconvolving the contribution
of non-cancerous cells from the total signal obtained from a tumor sample remains a major computational
challenge, and it is unclear how the contribution of this non-cancerous signal affects our differential co-
expression results. A separate but related concern is the existence of distinct molecular subtypes in a
set of samples (e.g. ER+, ER− breast cancer samples). We have not made any efforts to tease apart
the confounding effects of these distinct subtypes in our work. Interestingly, it possible that a significant
portion of the differential co-expression signal we identify derives directly form these subtypes; in other
words, the primary differences between subtypes may lie among the differentially co-expressed genes.
Evaluating such a hypothesis will require substantially larger sample sizes. Nevertheless, we feel that a
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more careful analysis of such patterns after subtype separation and stromal deconvolution is a lucrative
route for future studies.

Finally, we would like to comment on the complementarity of differential expression and co-expression
which we have proposed. In the course of responding to environmental stresses and stresses, it is inevitable
that some genes will be both differentially expressed as well as differentially co-expressed. We are not
arguing that one measure is superior to the other; rather, each offers a different glimpse onto the response
of a highly-connected network to a perturbation. Neither the over-expression of a single gene, nor an
increase in the co-expression of a pair of genes, signals a change in a pathway’s activity. However, by
monitoring both measures, one univariate and the other multivariate, one may obtain a more complete
picture of the complex system under examination.

Methods

Data

All TCGA expression data were accessed using the Broad Institute Firehose, using the latest version as
of Sep 21, 2013.

Pathway Scores for Differential Co-Expression Breast and Kidney Cancers

We assigned each gene in our study to one or more pathways using the subsystem assignments in the
Recon2 human metabolic reconstruction [43] (see Methods). Then, for each TCGA study, we calculated
a score for each pathway i, Ei, using:

Ei =
∑
j∈Pi

S0
j , (6)

where Pi is the set of all genes in pathway i and m is the total number of genes. Thus, Ei counts the total
number of dysregulations for all genes in pathway i. We then divided each Ei by the number of genes
in pathway i to obtain a normalized pathway score Êi. Thus, Êi quantifies the differential co-expression
of all genes in a pathway, averaged over the number of genes in that pathway. We excluded from our
analysis pathways composed of fewer than five genes.

Tests for enrichment of transcription factor targets

We obtained data on transcription factor targets from the Broad Institute’s MSigDB website [32].
TAssuming that a particular regulatory factor has m targets, we calculate the total number of differential
co-expression edges in the sub-network composed of only these m gene targets. In this subnetwork, there

are t =

(
m

2

)
= m×(m−1)

2 total possible edges. If we see e edges in the true subnetwork, we can calculate

the probability that these edges would appear by chance. Given that the probability of a random edge in
the network is p ( for a Bonferonni-corrected p-value threshold of 1×10−2, p ≈ 8×10−3 ), the probability
of seeing at least e edges is

P = 1−
t∑
i=e

(
t

i

)
ip(t− i)1−p (7)

We then Bonferonni-corrected the p-value obtained from the calculation above.
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Figure 1. Differential co-expression can signal a change in the activity of a pathway. Each arrow
represents the level of expression of an enzymatic gene from a single sample (e.g. a patient, so that all
arrows of the same color derive from the same sample). In normal tissue (A), the expression of genes
encoding enzymes E1 and E2 are strongly correlated, and the expression of E1 and E3 are uncorrelated.
In tumor tissue (B), the expression of genes encoding enzymes E1 and E3 are strongly correlated, and
the expression of E1 and E2 are uncorrelated. If we assume that enzyme activity is correlated with
expression, then we may hypothesize that the metabolic flux exiting from E1 is coupled to flux in E2 in
normal tissue, and to flux in E3 in tumor tissue. Note that the average expression of all enzymes
remains constant between tumor and normal conditions, so that a differential expression analysis would
be unlikely to identify the expression of these genes as anamolous.
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Figure 2. Outline of the method to calculate differential co-expression. (A) Calculate the
co-expression for each pair of metabolic genes across tumor (red) and normal (blue) samples,
respectively. (B) For each pair of genes in a given tumor type (e.g. breast), compare the Spearman
correlation coefficient in tumor and normal samples. Most pairs of genes show very similar
co-expression in both tumor and normal samples (reflected in the high density of points in the center of
the plot). More rarely, a pair of genes will show significantly different co-expression between normal and
tumor samples (e.g. bottom right and top left corners). (C) Using the statistical methodology detailed
in 4, filter out insiginificant differences in correlation coefficients. Retain the remaining (significant)
differences in correlations in the matrix D. The filtered results can then be analyzed further to identify
regions of metabolism enriched for differential co-expression.
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Figure 3. (A) Principal components analysis (PCA) for the breast (green) and kidney (blue)
differential co-expression data. Each dot represents one gene. Data from kidney tumors exhibits
variation mostly along the first principal component, while data from breast tumors varies mostly along
the second, suggesting that the dominant modes of variation in the two tumor types are distinct from
each other. (B) Differential co-expression pathway analysis. Each axis denotes the enrichment score for
a pathway in breast or kidney tumors, respectively. Red dots indicate significantly over- or
under-enriched pathways. (C) A comparison of the score S0
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co-expression in one tumor type, but none in the other. Other genes (red dots and inset box) are highly
differentially co-expressed in both.
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Figure 5. The targets of HNF4 are enriched for differential co-expression in KIRC. (A) HNF4A is not
differentially expressed between tumor and adjacent normal tissue samples in KIRC. Each dot
corresponds to the expression of HNF4A in one sample of either primary KIRC tumor or normal kidney
tissue. (B) Nevertheless, the metabolic gene targets of HNF4A show a distinct loss of co-expression
with HNF4A in tumor samples. Several of these genes reside in central carbon metabolism. Genes
outside the shaded area correspond to statistically significant instances of differential co-expression. (C)
Heatmap of differential co-expression for the 20 metabolic gene targets of HNF4A containing the motif
AARGTCCAN around the transcription start site. Value of each square indicates the difference in
correlation coefficients between tumor and normal samples, with statistically insignificant differences set
to zero. A strict p-value threshold of 1× 10−4 was used to assign statistical significance. (D) Survival
curves for patients showing low or high expression of HNF4A. Patients with low expression of HNF4A
exhibited worse outcomes.
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Figure 6. PanCan analysis of differential co-expression. (A) All gene pairs which showed differential
co-expression in at least 3 out of 4 different TCGA studies were identified. Approximately 50 unique
metabolic genes participated in these recurrently differentially co-expressed pairs. The differential
co-expression across all possible pairs of thes genes is depicted in the heatmap. A p-value threshold of
1× 10−4 was used to assign statistical significance for differential co-expression. Special emphasis is
placed on ATP5F1. (B) Co-expression of ATP5F1 and ATP5L, both members of mitochondrial
Complex V, in four different TCGA studies (blue dots: normal tissue samples; red dots: tumor
samples). Red line corresponds to perfect 1:1 correlation. Tumor samples exhibit substantially noisier
co-expression of these two genes.
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Figure S1. A comparison of the difference in correlation coefficient in clear cell kidney cancer for the
true (green) and permuted random (purple) data sets. The labels (i.e. tumor or normal) of all
RNA-Seq samples were permuted, and the difference in correlation coefficient calculated. This process
was repeated 100 times to generate a distribution. Differences in correlation coefficients tend to be
larger in the true data, suggesting that differential co-expression is being observed.
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Figure S2. Differential co-expression in PSAT1 in KIRC.
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Figure S3. Novel co-expression in KIRC tumors with PSAT1.
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Figure S4. Differential co-expression in ACAT1 in BRCA.
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Figure S5. Differential co-expression of HNF4 with its metabolic gene targets in KIRC.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2014. ; https://doi.org/10.1101/008946doi: bioRxiv preprint 

https://doi.org/10.1101/008946
http://creativecommons.org/licenses/by-nc-nd/4.0/

