
Glucose-lactate metabolic cooperation in cancer:
insights from a spatial mathematical model and

implications for targeted therapy

Jessica B. McGillena,∗, Catherine J. Kellyb, Alicia Mart́ınez-Gonzálezc,
Natasha K. Martind, Eamonn A. Gaffneya, Philip K. Mainia, Vı́ctor M.
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Abstract

A recent hypothesis has proposed a glucose-lactate metabolic symbiosis between
adjacent hypoxic and oxygenated regions of a developing tumour, and proposed
a treatment strategy to target this symbiosis. However, in vivo experimental
support remains inconclusive. Here we develop a minimal spatial mathematical
model of glucose-lactate metabolism to examine, in principle, whether metabolic
symbiosis is plausible in human tumours, and to assess the potential impact of
inhibiting it. We find that symbiosis is a robust feature of our model system—
although on the length scale at which oxygen supply is diffusion-limited, its
occurrence requires very high cellular metabolic activity—and that necrosis in
the tumour core is reduced in the presence of symbiosis. Upon simulating thera-
peutic inhibition of lactate uptake, we predict that targeted treatment increases
the extent of tissue oxygenation without increasing core necrosis. The oxygena-
tion effect is correlated strongly with the extent of wildtype hypoxia and only
weakly with wildtype symbiotic behaviour, and therefore may be promising for
radiosensitisation of hypoxic, lactate-consuming tumours even if they do not
exhibit a spatially well-defined symbiosis. Finally, we conduct a set of in vitro
experiments on the U87 glioblastoma cell line to facilitate preliminary specula-
tion as to where highly malignant tumours might fall in our parameter space,
and find that these experiments suggest a weakly symbiotic regime for U87 cells,
which raises the new question of what relationship exists between symbiosis—if
indeed it occurs in vivo—and tumour malignancy.
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1. Introduction

Recent years have seen a refinement of the historical view of tumours as
greedy consumers of glucose. Experiments by Cheeti et al. (2006), Pavlides
et al. (2009, 2010), and Sonveaux et al. (2008) indicate that tumour cells can
consume lactate oxidatively as a metabolic substrate, either as a replacement5

fuel for glucose or concurrently with it. This lactate consumption has been
shown to occur via oxidative phosphorylation (OXPHOS) and to depend upon
uptake through the monocarboxylate transporter MCT1 (Sonveaux et al. 2008).
On the basis of these discoveries, Sonveaux et al. (2008) put forward the hypoth-
esis that “...lactate, the end-product of glycolysis, is the keystone of an exquisite10

symbiosis in which glycolytic and oxidative tumour cells mutually regulate their
access to energy metabolites” in a spatially compartmentalised manner depen-
dent upon oxygenation of the tumour tissue. Additionally, Sonveaux et al.
(2008) proposed a novel treatment strategy, which centred on radio-sensitising
a tumour by inhibiting MCT1 to force oxygenated cells to consume glucose and15

thereby starving nearby hypoxic, radiation-invulnerable, cells. Figure 1 provides
a graphical interpretation of these ideas.

Figure 1: Metabolic symbiosis as hypothesised by Sonveaux et al. (2008). In a
wildtype tumour (left panel), cells in the oxygenated environment near a capillary take up
lactate for consumption by oxidative phosphorylation, gated by monocarboxylate transporter
1 (MCT1), while cells in the hypoxic environment of the tumour interior take up glucose for
consumption by (anaerobic) glycolysis, gated by glucose transporters (GLUT) and producing
lactate, which is then extruded by monocarboxylate transporter 4 (MCT4). This cooperation
is thought to preserve glucose for the tumour interior. Sonveaux et al. postulated that in-
hibiting MCT1 (right panel) would force cells near the capillary to consume glucose instead of
lactate, starving interior cells and increasing oxygenation into the tumour. Image reproduced
with permission from the Journal of Clinical Investigation.
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Sonveaux et al. (2008) presented elegant in vitro evidence for dual glucose-
lactate metabolism gated by MCT1 in oxidative SiHa versus glycolytic WiDr
tumour cells. Qualitative in vivo experiments on mouse LLc and human WiDr20

tumours further suggested that symbiosis was a robust tumour feature, and
both the necrotic area and tissue oxygenation were shown to be extended by
chronic MCT1 inhibition in vivo. However, a subsequent set of independent
in vivo experiments carried out by Busk et al. (2011) on SiHa and FaDudd

tumours saw no impact by MCT1 inhibition on either necrosis or the tissue25

glucose concentration, and only a transient decrease in the correlation between
hypoxia and glucose uptake. Controversy has thus arisen as to whether the sym-
biosis hypothesis is an important feature of tumours and, especially, whether
MCT1 inhibition of this symbiosis can cause the desired detrimental effects.
The symbiosis hypothesis can be framed as a mathematical reaction-diffusion30

problem—how do the nutrients of interest flow in tumour tissue, and what spa-
tial features develop as a consequence of consumption of these nutrients across
the tumour domain?—and hence there is scope for mathematics to help resolve
some of this controversy. By translating the dual glucose-lactate metabolic sys-
tem into a mathematical model, with underlying assumptions made explicit,35

it may be possible to shed light on whether in vivo symbiosis as proposed by
Sonveaux et al. (2008) is plausible in principle, and which of the two sets of
experimental results is more likely to represent clinical reality.

Mendoza-Juez et al. (2012) developed a preliminary mathematical descrip-
tion of dual glucose-lactate tumour metabolism in vitro. This model was non-40

spatial and captured the metabolic behaviour of two fractional populations of
tumour cells, one oxidative and the other glycolytic, in the presence of glucose
and lactate. In brief, Mendoza-Juez et al. (2012) validated their model against
five human cancer cell lines with varying characteristic metabolic rates and
successfully replicated behaviours observed in vitro by Elstrom et al. (2004),45

Sonveaux et al. (2008), and Voisin et al. (2010). Their study thus supports the
idea that tumour cells can consume lactate and that this capability, conferred by
MCT1 expression, varies among cell lines in an in vitro environment. However,
it leaves unanswered the question of whether, in principle, metabolic symbiosis
is plausible in vivo.50

The symbiosis hypothesis is intrinsically related to spatial tumour features,
as the metabolism of each cell is responsive to hypoxia cues in the local mi-
croenvironment and hence based, at least in part, on relative distance from the
capillary bed. Consequently, to fully capture the symbiosis hypothesis, a spatial
model is needed. In this paper we develop a minimal spatial model of glucose-55

lactate metabolism and use it to interrogate both the plausibility of metabolic
symbiosis in vivo and the potential effectiveness of blocking this symbiosis as
a radiosensitisation strategy. We find that symbiosis is a robust feature of our
model system, and, although it does not directly rescue tumours from necrosis,
on average its effects on the tumour dynamics are in line with expectations.60

However, symbiosis does require the cells’ metabolic activity to be several or-
ders of magnitude higher than what is commonly observed in vitro. Whether
such levels are plausible remains an open question. Furthermore, we simulate
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MCT1 inhibition and discover that, in agreement with Busk et al. (2011), this
blocking of symbiosis does not cause the expected increase in necrosis; but, in65

agreement with Sonveaux et al. (2008), it does cause an increase in tissue oxy-
genation. This oxygenation is highly correlated in our model with the extent
of hypoxia exhibited by the wildtype system, suggesting that MCT1 inhibition
may be a promising strategy for radiosensitising lactate-consuming tumours
with or without symbiosis. Finally, we demonstrate experimentally that U8770

glioblastoma tumours are likely to fall in a parameter regime that produces only
weakly symbiotic behaviour, raising an open question of how symbiosis relates
to malignancy in general.

2. Our model

Throughout this study, we will aim for a model of minimal complexity, con-75

jecturing that if metabolic symbiosis is not possible in a simplified scenario
where glucose and lactate dominate the metabolic landscape, then it is unlikely
to be a significant feature in more complicated scenarios. We do consider it
vital for our model to be spatial, however, as the metabolic symbiosis hypoth-
esis in vivo is a spatial feature; hence, a minimal system of partial differential80

equations provides the requisite level of complexity.

2.1. Motivation and framework

The model we develop here is a direct extension, with simplifications, of the
model proposed by Mendoza-Juez et al. (2012) to a spatial tumour scenario. As
such, it captures behaviours that are qualitatively similar to those with which85

the non-spatial model was verified, namely patterns of dual consumption of
glucose and lactate that vary across tumour cell lines depending on the rela-
tive expression of membrane transporters. However, we simplify the modelling
framework considerably by avoiding the assumption of metabolic switching, and
instead suppose that cells can use both glycolysis and oxidative phosphoryla-90

tion given their relative expression of the requisite membrane transporters and
the appropriate environment conditions (e.g. oxidative phosphorylation (OX-
PHOS) requires oxygen). This change allows us to avoid imposing an artifi-
cial dichotomy between the metabolic pathways. We depart further from the
Mendoza-Juez et al. (2012) model by neglecting consumption of glucose by ox-95

idative phosphorylation, which experiments have shown to be a minor factor
relative to glycolysis in proliferative cells (Pfeiffer et al. 2001, Vander Heiden
et al. 2009, Koppenol et al. 2011). An alternative model that does consider OX-
PHOS of glucose can be found in the Supplemental Information and exhibits
dynamics which are qualitatively similar to those presented here.100

We model a one-dimensional ray in polar coordinates extending out from the
core of a tumour, under the assumption of spherical symmetry, to a spherical
shell of capillaries 0.02 cm from the core. This modelling scenario corresponds
either to a small avascular tumour or, more interestingly (and more realistically
biologically), to pockets of tissue inside a larger vascularised tumour. Large105
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tumours exhibit heterogeneities in oxygen supply due to capillary crushing and
leakiness of tumour-induced vascular networks (Gatenby et al. 2007, Gillies &
Gatenby 2007, Basanta et al. 2011), and hence our model can be viewed as
a simplified representation of localised metabolic features in a heterogeneous
tumour.110

2.2. Equations and terms

The species in our model are dependent upon time, t, in days, and one-
dimensional spatial coordinate, r, in centimetres from the tumour core, or inte-
rior of the local tumour pocket. These species are cell density, C(r, t), normalised
by the tissue carrying capacity; the tissue concentration of glucose, G(r, t), in115

mM; the tissue concentration of lactate, L(r, t), in mM; and the partial pres-
sure of oxygen, O(r, t), in mM. We model only tumour tissue as inclusion of
the underlying stroma could introduce tumour-healthy metabolic interactions
(Pavlides et al. 2009, 2010), and we wish to keep the modelling scenario re-
stricted to a simple in-principle test of the symbiosis hypothesis as it was stated120

by Sonveaux et al. (2008).
We let ρ represent the rate of tumour cell growth; δ the rate of tumour

cell necrosis; and κG and κL the maximal rates of consumption of glucose and
lactate, respectively, by the tumour population. Additionally defining switch
functions capturing tumour sensitivity to hypoxia, glucose deprivation, severe
acidosis, and severe anoxia as ψH , ψG, ψA, and ψN , respectively, our model
equations are

Ct =

cellular diffusion︷ ︸︸ ︷
∆C

r2
[r2Cr]r +

logistic growth︷ ︸︸ ︷
ρC

(
1− C

C∗

)
−

necrosis by starvation,
acidosis, or anoxia︷ ︸︸ ︷

δ (ψG + ψA + ψN )C, (1)

Gt =

diffusion︷ ︸︸ ︷
∆G

r2
[r2Gr]r −

consumption by glycolysis︷ ︸︸ ︷
κG

αGG

αGG+ αLL+ ηG
C, (2)

Lt =

diffusion︷ ︸︸ ︷
∆L

r2
[r2Lr]r +

production by glycolysis︷ ︸︸ ︷
2κG

αGG

αGG+ αLL+ ηG
C −

consumption by OXPHOS︷ ︸︸ ︷
κL

αLL

αGG+ αLL+ ηL
ψHC, (3)

Ot =

diffusion︷ ︸︸ ︷
∆O

r2
[r2Or]r −

consumption by OXPHOS︷ ︸︸ ︷
3κL

αLL

αGG+ αLL+ ηL
ψHC, (4)

where ∆C , ∆G, ∆L, and ∆O denote the diffusion coefficients of tumour cells,
glucose, lactate, and oxygen, respectively. We assume a Michaelis-Menten form
for the metabolite uptake functions such that ηG and ηL represent the half-
saturation points for uptake of glucose and lactate, respectively.125

Although expression of metabolite transporters is tied to the microenviron-
ment in vivo, with GLUT expression being hypoxia-induced (Burgman et al.
2001, Airley et al. 2001, Williams et al. 2002, Wincewicz et al. 2007, Liu et al.
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2009) and MCT1 expression being hypoxia-repressed (Berra et al. 2003, Marxsen
et al. 2004, Sonveaux et al. 2008, Feron 2009, Semenza 2010), different cell lines130

exhibit different characteristic levels of expression in vitro (Elstrom et al. 2004,
Sonveaux et al. 2008, Voisin et al. 2010) and it is possible that cells retain
these features in vivo in the form of characteristic maximal levels of expression.
The parameters αG and αL in Equations (2)-(4) allow for this possibility: if
the cells’ characteristic capacity for MCT1 expression is high relative to that135

for GLUT, then we will have αL > αG; conversely, if the characteristic capac-
ity for MCT1 expression is low relative to that for GLUT, then we will have
αL < αG. If αG = αL then the cells have no characteristic capacities in vivo and
instead transporter expression is determined entirely by the microenvironment.
We note that Equations (2)-(4) preserve the appropriate stoichiometry of the140

metabolic pathways; that is, two molecules of lactate are produced per molecule
of glucose consumed by the glycolytic pathway and three molecules of oxygen
are consumed per molecule of lactate processed by OXPHOS.

Tumour cells may become necrotic under severely glucose-starved, acidic, or
anoxic conditions. We model this in Equation (1) as a sum of simple sensitivity
switches—ψG for glucose starvation, ψA for acidosis, and ψN for anoxia—such
that the speed of cell death increases as conditions become harsher. Addi-
tionally, OXPHOS is sensitive to hypoxia, which we represent as an oxygen-
dependent switch, ψH , multiplying the uptake of lactate in Equations (3) and
(4). These four sensitivity switches are

ψG =

{
0 if G > σG,

1 otherwise;
(5)

ψA =

{
1 if L > σA,

0 otherwise; and
(6)

ψN =

{
0 if O > σN ,

1 otherwise;
(7)

ψH =

{
1 if O > σH ,

0 otherwise;
(8)

where σG denotes the minimum glucose concentration that cells require for
survival, σA the lactate concentration corresponding to the maximum tolerable145

level of tissue acidity, σN the oxygen threshold for severe anoxia, and σH the
oxygen threshold for hypoxia. We note that σG and σA are difficult to measure
experimentally, and hence these constants are somewhat abstract. Nevertheless,
we will make the reasonable choices of setting σG to be small and σA to be above
the lactate level typically observed in tumour tissue (Herholz et al. 1992).150

In keeping with Mendoza-Juez et al. (2012), we make the slight simplification
of scaling the tumour cell density by the tissue carrying capacity, such that
C̃ = C/C∗. Further letting a = αL/αG, nG = ηG/αG, nL = ηL/αL, kG = κGC∗,
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and kL = κLC∗, and dropping the tilde for convenience, we have

Ct =
∆C

r2
[r2Cr]r + ρC(1− C)− δ (ψG + ψA + ψN )C, (9)

Gt =
∆G

r2
[r2Gr]r − kG

G

G+ aLL+ nG
C, (10)

Lt =
∆L

r2
[r2Lr]r + 2kG

G

G+ aL+ nG
C − kL

L

G/a+ L+ nL
ψHC, (11)

Ot =
∆O

r2
[r2Or]r − 3kL

L

G/a+ L+ nL
ψHC. (12)

Lastly, for later notational convenience we define the uptake functions

φG =
G

G+ aL+ nG
, (13)

φL =
L

G/a+ L+ nL
. (14)

Boundary conditions are zero-flux for all species in the tumour core, under
our assumption of spherical symmetry, and we retain this zero-flux condition
for the tumour population at the edge of the tumour (at r = R where R is the
radius of a typical avascular tumour, taken here to be 0.02 cm), such that the
cells cannot migrate beyond the capillary shell. Metabolites are permitted to
exchange with the capillary shell as follows (for a generic metabolite, M):

∂M

∂r
|r=R = JM (Mv −M), (15)

where JM is the coefficient of exchange and Mv the concentration of the metabo-
lite in the vessels. The vessels act as a source for glucose and oxygen and, com-
monly, as a sink for lactate. In exceptional cases of chronic hyperlactatemia
(Huckabee 1961, Levraut et al. 1998, Boubaker et al. 2001) or insulin-induced
hypoglycemia (Boumezbeur et al. 2010), the capillary shell may act instead as155

a source for lactate, but we do not consider this relatively rare phenomenon
here. The vessel concentrations of glucose, lactate, and oxygen (Gv, Lv, and
Ov, respectively) and corresponding exchange coefficients (JG, JL, and JO) can
be found in Table 1.

We impose initial conditions such that the tumour cells have a uniform den-160

sity of half the carrying capacity across the domain, and metabolite concentra-
tions take a uniform value equal to their vessel concentrations. The steady-state
results of our system are qualitatively insensitive to our choice of initial con-
ditions, and we have chosen this particular configuration to facilitate a clear
interpretation of any necrosis in the tumour core that we may see relative to165

the edge.

2.3. Metrics for model exploration

‘Symbiosis’ as proposed by Sonveaux et al. (2008) is a qualitative and impre-
cisely defined feature of the tumour system. Nevertheless, we can consider it by
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determining the fraction of total metabolic consumption occupied by glycolysis,
denoted Φg, and the fraction occupied by oxidative phosphorylation of lactate,
denoted Φl; these are given by:

Φg =
kGφG

kGφG + kLφLψH
, (16)

Φl =
kLφLψH

kGφG + kLφLψH
. (17)

We consider symbiosis to occur when glycolysis dominates over oxidative
phosphorylation of lactate (OXPHOS) in the hypoxic core, and OXPHOS dom-
inates over glycolysis in the oxygenated region near the tumour edge. Further,
we can consider the ‘strength’ of symbiosis to be given by the degree of dom-
inance OXPHOS takes over glycolysis in the oxidative region. We are also
interested in the occurrence of necrosis, or a reduction in tumour density in
the core relative to the edge, and the extent of hypoxia, or the location along
the tumour domain where oxygen crosses the hypoxia threshold, σH . Accord-
ingly, letting θ denote symbiosis, γ denote necrosis, and λ denote the extent of
hypoxia, we define the metrics

θ =


max{Φl(edge)− Φg(edge)} if Φg(core) > Φl(core) and

Φl(edge) > Φg(edge);

0 otherwise;

(18)

γ = C(edge)− C(core); (19)

λ = r(O = σH); (20)

with λ subject to the limiting cases that λ = 0 if the whole tissue is normoxic
and λ = R if the whole tissue is hypoxic.

3. Computational and experimental methods170

3.1. Numerical solutions

Throughout this chapter, Equations (9)-(12) are solved numerically using
the Method of Lines (Schiesser & Griffiths 2009). By this method, we discretise
space using a very fine step (dr = 10−4 cm) and solve the resulting system
of coupled ordinary differential equations through time using Matlab’s inbuilt175

ODE15s solver to accommodate stiffness.
Numerically simulating Equations (9)-(12) with a representative choice of

parameters reveals that an end-time of 200 days is sufficient to achieve a steady
state in which all species have reached a plateau (Figure 2).

For the remainder of this work, we will be concerned with spatial behaviours180

established at steady state. Hence, all simulations are run to an end-time of 200
days; parameters are listed in Table 1 and discussed further in Section 3.2.

In Figure 2 it appears that we have fast early-time dynamics, possibly due to
the magnitude of the uptake rate parameters kG and kL. A full nondimension-
alisation could help to elucidate the relative timescales driving the system, and185

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008839doi: bioRxiv preprint 

https://doi.org/10.1101/008839


0 50 100 150 200
0

0.25

0.5

0.75

1

Time (days)

T
u

m
o

u
r 

d
e

n
s
it
y

(f
ra

c
ti
o

n
 o

f 
c
a

rr
y
in

g
 c

a
p

a
c
it
y
)

Tumour density over time

 

 

Core

Edge

0 50 100 150 200
0

1

2

3

4

5

Time (days)

G
lu

c
o

s
e

 c
o

n
c
e

n
tr

a
ti
o

n
 (

m
M

)

Glucose over time

 

 

Core

Edge

0 50 100 150 200
0

0.5

1

1.5

2

Time (days)

L
a

c
ta

te
 c

o
n

c
e

n
tr

a
ti
o

n
 (

m
M

)

Lactate over time

 

 

Core

Edge

0 50 100 150 200
0

0.02

0.04

0.06

0.08

Time (days)
O

x
y
g

e
n

 c
o

n
c
e

n
tr

a
ti
o

n
 (

m
M

)

Oxygen over time

 

 

Core

Edge

Figure 2: Temporal behaviour of Equations (9)-(12). Over-time profiles in the tumour
core (darker colours) and at the tumour edge (lighter colours) for the tumour cell density
(greys) and concentrations of glucose (oranges), lactate (reds), and oxygen (blues), for a
representative choice of parameters: a = 1, nL = 1, nG = 1, kL = 104, and kG = 103, with
the remaining parameters as listed in the top portion of Table 1. All profiles reach steady
state well before the simulation end-time of 200 days.

an asymptotic analysis could potentially generate insight. However, we wish
to explore the full range of possible parameter values for our model—including
smaller choices for kL and kG—in order to allow scope for metabolic aberrations,
such as mitochondrial dysregulation, which are observed in many tumours and
which perturb the normal stoichiometry of ATP production (Seyfried & Shel-190

ton 2010). We therefore turn our attention to an exploration of some effective
numerical methods by which to obtain a comprehensive picture of the funda-
mental parameter space of the model. Such methods can serve as a kind of proxy
for analytical insight in differential equation settings and have an elegance and
power of their own.195

3.2. Multivariate sensitivity analysis

In any given model of a biological system, some of the fundamental model
parameters may be well-determined, but others either cannot be measured ac-
curately due to experimental limitations, or are of interest where variation is an
important biological feature—for example, across different tumours. To explore200

the sensitivity of a system to its parameters that fall into the latter category,
i.e. are of interest as having the potential to vary, it is possible to carry out a
standard single-parameter or local sensitivity analysis in which one parameter
is varied at a time while the others are held constant at ‘baseline’ or reference
values (Marino et al. 2008). However, such an approach, while common, loses205

information about underlying uncertainties—for example in estimation of the
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‘baseline’ values—and also about parameter interaction effects, and so would
provide incomplete insight into the system (James & McCulloch 1990, Marino
et al. 2008, Saltelli & Annoni 2010).

To escape the limitations of one-at-a-time sensitivity, we can simply allow the210

parameters of interest to vary simultaneously, and take random samples from
the resulting multi-dimensional parameter space (Saltelli et al. 2008) for use in
repeated numerical solutions of the model system. We can then examine the
resulting distribution of model behaviours using histograms, scatterplots, and
further statistical methods as required. While more sophisticated approaches215

to global sensitivity analysis exist (Wu et al. 2013), for our system a sampling-
based approach is sufficient to avoid the pitfalls of single-parameter sensitivity
analyses while remaining computationally tractable.

The parameters in Equations (9)-(12) which we fix and consider ‘background’
parameters in order to set up a consistent ”background” system against which220

to view the tumour metabolic dynamics, are listed with their sources in the top
portion of Table 1. The remaining five parameters, which are the metabolic
parameters and therefore of interest as potentially varying across tumours, are
sampled from the ranges listed in the lower portion of Table 1, for repeated
numerical solutions of Equations (9)-(12) to steady state as described in Section225

3.1.
Global, multidimensional sensitivity analyses have been gaining traction in

systems biology (Marino et al. 2008) and nonlinear modelling (Homma & Saltelli
1996), particularly of ecology (De’ath & Fabricius 2000, Fieberg & Jenkins 2005,
Cutler et al. 2007, Cariboni et al. 2007) and infectious diseases (Wu et al. 2013).230

Yet, to our knowledge, we are the first to apply such approaches to tumour
metabolism modelling. In the following we briefly discuss two complementary
algorithms—one linear and one nonlinear—that exploit this multidimensional,
sampling-based method for sensitivity analysis.

3.2.1. Principal component analysis235

Principal component analysis (PCA) is a simple, non-parametric approach
for extracting relevant information from large, complex datasets by reducing
their dimensionality (Hastie et al. 2009). The PCA transformation is defined
such that the first principal component captures as much variability in the
data as possible, and each subsequent component captures the largest possible240

amount of the remaining variability, subject to the constraint that the new
component is uncorrelated with (i.e. orthogonal to) the preceding components.

If a dataset X is arranged as an m-by-n matrix such that each of n obser-
vations comprises a column vector of m variables (here, parameters), then each
observation (here, a sampled point from our model parameter space) is a vector245

that lies in an m-dimensional vector space spanned by a basis. The goal of PCA
is to find an alternative basis which is a linear combination of the original basis
vectors and expresses the dataset more meaningfully. Note that PCA is a linear
method; as such, it is stringent, because most complex systems are nonlinear,
but also powerful, because it renders the problem amenable to linear algebra.250
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Letting X and Y denote m-by-n matrices related by a linear transformation
P, such that X is the original dataset and Y is a re-representation of it, and
further defining ~pi as the rows of P, ~xi as the columns of X, and ~yi as the
columns of Y, a change of basis is represented by the equation PX = Y. The
rows of P, {~p1, ..., ~pm} are a set of new basis vectors for expressing the columns255

of X: by construction, the principal components.
The covariance matrix for the dataset X is then given by Sx = 1

n−1XXT , a
square symmetric m-by-m matrix. As our goal is to capture meaningful features
of the data, we want to remove the redundancy (i.e. covariance) from the vari-
ables, which, in turn, means diagonalising XXT . This operation ensures that260

all basis vectors {~p1, ..., ~pm} are orthonormal, and carries the assumption that
the directions with the largest variances are the most important, i.e. principal.

3.2.2. Analysis of parameter importance using classification trees

We can explore the sensitivity of a model output of interest to the fundamen-
tal model parameters—or, equivalently, the relative importance of the param-
eters for classifying that output—by applying a tree-based statistical classifier
(Pappenberger et al. 2006). A system of partial differential equations can be
translated into a classification problem by first generating a large random sam-
ple of the multidimensional parameter space, then numerically simulating the
system of partial differential equations to steady state and applying the binary
classification

y =

{
1 if the behaviour of interest is obtained, and

0 if not,

for each of the sampled parameter points. Our model parameters subsequently
comprise the set of variables for a tree analysis and our vector y the classified265

responses. Tree-based methods are nonlinear and iteratively determine which
variable best classifies the training data, progressively segmenting the data by
further classifications as the tree grows deeper.

Trees can capture complex interaction structures in data, but also are inher-
ently noisy (Hastie et al. 2009), as a small error near the top may propagate into270

a large effect at the bottom. A remedy for this is the popular machine-learning
algorithm RandomForest, developed by Breiman (2001), which grows a forest
of trees, each on an independent bootstrapped sample (random sample with
replacement) from the training data, and averages over the predictions from all
trees to reduce the variance in the final result. RandomForest is fast, accurate,275

and capable of handling a high-dimensional variable space.
Each tree in a given forest has a built-in test set—the out-of-bag data, or data

not included in the bootstrapped sample for that tree—which can be exploited
to determine the relative importance of the variables for accurate classification.
After growing a forest, the class of each point in the training data is predicted280

using each tree for which that point is out-of-bag. The values of a variable x
are then randomly permuted while holding the others fixed, and the permuted
data are passed down the tree. The relative importance of variable x for the
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behaviour of interest is the difference in out-of-bag error before and after the
permutation, averaged over all trees (Breiman 2001).285

3.3. In vitro experiments

Sonveaux et al. (2008) and Busk et al. (2011) considered the highly oxidative
cervical cell line SiHa, the glycolytic colon line WiDr, and the glycolytic squa-
mous carcinoma line FaDudd in vitro and in vivo. Mendoza-Juez et al. (2012) ad-
ditionally considered results from in vitro experiments on two glycolytic glioma290

lines (LN18 and LN229) and a more oxidative glioma line (C6). We supplement
these data further with a set of in vitro experiments carried out on the highly
malignant glioblastoma cell line U87. This extends our modelling scenario to
glioblastoma tumours, which are notoriously challenging clinically and hence
of special interest. Moreover, the blood-brain barrier renders glioma tumours295

slightly metabolically simplified—at least in terms of the variety of metabolic
substrates present in the local tissue—in comparison to body tumours (Terpstra
et al. 1998, Moreno-Sánchez et al. 2007), and thus U87 may be a good target
for future model validation in vivo. Finally, considering this cell line opens
the possibility for an eventual connection of tumour metabolic dynamics with300

healthy metabolic cooperation that is known to occur between glutamatergic
neurons and glia (Kirchhoff et al. 2001, Pellerin & Magistretti 2004, Gladden
2004, Magistretti 2006, Pellerin et al. 2007, Bélanger et al. 2011).

We carried out a set of experiments to explore the metabolic characteristics
of U87 glioblastoma cultures in vitro using three metrics: glucose uptake, ex-305

tracellular acidification, and oxygen consumption. Glucose was measured using
a radiolabelled analogue, [18F] fluorodeoxyglucose (FDG), which has similar
uptake kinetics to glucose. Unlike glucose, FDG is trapped in cells, and is fre-
quently used as an estimator of glycolytic flux. The rate of media acidification
(i.e. the change in pH over time) provides an estimate for the rate of lactate310

production and additional marker of glycolysis. The rate of oxygen consumption
reflects the rate of oxidative phosphorylation.

3.3.1. Acidification and oxygen consumption

In a pair of experiments, U87 cells were seeded in a Seahorse XF Analyser
96-well cellplate (Seahorse Biosciences, USA) and grown in standard tissue cul-315

ture under high-glucose conditions (25 mM) for 48 hours to allow full adhesion.
For the assay, cells were incubated with 180 µl Seahorse medium (5mM glucose,
4mM glutamine, and 0.1mM sodium pyruvate) to replicate physiological con-
ditions. Basal rates of oxygen consumption and extracellular acidification were
measured using the Seahorse XF Analyser. Sodium lactate was then injected320

at concentrations of 0, 3, 6, 9, 12, and 15mM and further rate data were col-
lected. Rate data were normalised to cell density as determined using Hoechst
fluorescence staining.

3.3.2. Uptake of glucose

U87 cells were trypsinised to a single cell suspension and transferred to325

counting tubes. Cells were washed twice with PBS and the growth medium
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was replaced with a medium containing 100kBq [18F]FDG, 4mM glutamine,
and sodium lactate at concentrations of 0, 3, 6, 9, 12, and 15mM. Cells were
incubated for one hour at 37C; thereafter, cells were washed in PBS and activity
in the cells was counted using a Beckman Coulter counter.330

We note that these experiments consider only low to moderate lactate con-
centrations. Although lactate has been estimated to potentially reach as high
as 35 mM in human brain tumours, maximum accumulation tends to occur
in necrotic and cystic regions, with concentrations remaining below 15 mM in
the more peripheral regions (Herholz et al. 1992) which are of interest for the335

symbiosis hypothesis.

4. Results

Application of the complementary statistical techniques for multivariate sen-
sitivity analysis that we discussed in 3.2—importance analysis of symbiosis (θ),
necrosis (γ), and hypoxia (λ) using classification trees, and principal component340

analysis of symbiosis (θ)—enables us to elucidate features of our multidimen-
sional parameter space, as follows.

4.1. Consumption rates and substrate preference govern symbiosis

Our principal component analysis, a linear method, shows that the first two
principal components for symbiosis (θ) comprise mainly the rates of glucose345

and lactate consumption by the tumour—kG and kL, respectively—and the
characteristic preference for lactate uptake, a (Figure 3a). Our complementary,
nonlinear, importance analysis is in agreement with this result (Figure 3b),
suggesting that we are capturing robust dependencies.

Figure 3b also reveals that the importance weighting for the extent of hy-350

poxia is similar (though not identical) to that for symbiosis, with lactate con-
sumption (kL) the most important parameter for both, followed by glucose
consumption (kG) and then preference for lactate (a). However, the importance
weighting for necrosis is markedly different from these (Figure 3b), with necrosis
depending primarily on consumption of glucose (kG), secondarily on preference355

for lactate (a), and much less on consumption of lactate (kL).
This difference in parameter dependence is further illustrated by projecting

each of the three characteristics—symbiosis, necrosis, and hypoxia—onto the
principal component space for symbiosis (Figure 4). Symbiosis and hypoxia
project similarly (though not identically) to one another, while necrosis projects360

differently from both.
The Michaelis-Menten constants for glucose and lactate uptake (nG and nL,

respectively) have relatively small principal component weightings for symbio-
sis and are relatively unimportant for all three characteristics. This is per-
haps surprising in view of the variability in nL across tumour cell lines in vitro365

(Mendoza-Juez et al. 2012).
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Figure 3: Principal component weighting and importance of parameters. (a) Weights
assigned to each parameter from the original parameter space of Equations (9)-(12) in linear
combinations comprising the first two principal components for symbiosis, described in Section
3.2.1; and (b) relative importance, as defined in Section 3.2.2, of the parameters for classifying
the presence of symbiosis, θ (brown), tissue hypoxia, λ (tan), and necrosis, γ (yellow). The
parameters are: expression of MCT1 relative to GLUT (a), the half-saturation point for uptake
of lactate (nL) and glucose (nG), and the rates of consumption of lactate (kL), and glucose
(kG).

4.2. Symbiosis exhibits the expected effects

Plotting symbiosis, necrosis, and hypoxia each against the three most im-
portant parameters pairwise (Figure 5) indicates that symbiosis can occur when
consumption of glucose (kG) and of lactate (kL) are both high and the prefer-370

ence for lactate (a) is not small (top row of Figure 5). Additionally, broadly
speaking it appears that symbiosis is more pronounced when kL > kG. We note
that symbiosis requires the tumour to be extremely active metabolically, as kG
must be above 102 mM/day and kL above 103 mM/day for it to occur. Quan-
titative measurements of in vivo metabolic consumption are, to our knowledge,375

difficult to come by, but future experiments could potentially be focussed in
this direction to help determine whether these are plausible parameter ranges
for tumours in vivo.

The extent of hypoxia is highest when consumption of glucose and lactate
(kG and kL, respectively) are both very high, though it is less dependent than380

symbiosis on the preference for lactate (a) (middle row of Figure 5). The fact
that hypoxia does not occur in the regime of lower metabolic consumption rates
suggests that metabolically less-active tumours of the size considered here do
not exhibit the nutrient gradients that are needed to drive the development of
a spatial symbiosis.385

Necrosis is mostly—though not entirely—mutually exclusive to symbiosis,
reaching high values when glucose consumption (kG) is very high and the pref-
erence for lactate (a) is small (bottom row of Figure 5). Plotting a representative
sample from this region of parameter space over time reveals that the cause of
this necrosis is glucose starvation, rather than acidosis or severe anoxia (Figure390

6). There is, however, a small region of parameter space in which symbiosis
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Figure 4: Projection onto the symbiosis principal component space. Projection onto
the first two principal components for symbiosis, as defined in Section 3.2.1, of (a) symbiosis,
θ, (b) hypoxia, λ, and (c) necrosis, γ. The projection of symbiosis onto the space of its first
two principal components is similar to the projection of hypoxia onto the same space, while
the projection of necrosis onto the same space is different from these.

and necrosis are not mutually exclusive: when the preference for lactate (a) is
on the order of one, and consumption of glucose (kG) is on the order of 104,
both symbiosis and necrosis can occur. It would be informative to determine
whether or not this small parameter region is narrow enough to be considered395

a biological fine-tuning; but this would require a mapping between this model
parameter region and the space of clinically plausible tumour characteristics,
which again points to the need for quantitative in vivo measurements of the
metabolic parameters.

Figures 7 and 8 illustrate the averaged steady-state system behaviours over400

the tumour domain for the parameter regimes which produce either strongly
symbiotic behaviour, with lactate consumption dominating over glucose con-
sumption near the oxygenated tumour edge (Figure 7), or weakly- or non-
symbiotic behaviour, with lactate consumption at the tumour edge which does
not strikingly dominate over glucose consumption at the tumour edge (Figure405

8). On average, the strongly-symbiotic regime exhibits lower lactate, higher
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Figure 6: Cause of necrosis under weak/no symbiosis. Species profiles in the tumour
core over time for a representative sample from the weakly-/non-symbiotic parameter regime
governing Equations (9)-(12). Shown are the (a) tumour density (grey), (b) glucose (yellow)
and lactate (red) concentrations, and (c) oxygen concentration (blue). Dotted lines in (b) and
(c) indicate the acidosis threshold σA and the hypoxia threshold σH , respectively.

glucose, and a greater extent of hypoxia over the tumour domain than does the
less-symbiotic regime. The latter additionally exhibits considerable necrosis in
the tumour core.

4.3. MCT1 inhibition increases oxygenation but not necrosis410

The first part of the symbiosis hypothesis concerns the establishment and
beneficial effects of a well-defined spatial symbiosis, which we have considered
thus far. The second part proposes that inhibiting symbiosis by blocking the
monocarboxylate transporter 1 (MCT1) forces cells near the tumour edge that
were consuming lactate by OXPHOS to instead consume glucose by glycolysis,415

such that MCT1-inhibition has the dual effect of starving the tumour core and
increasing the extent of tissue oxygenation (Sonveaux et al. 2008). The lat-
ter effect, if confirmed, would make MCT1-inhibition a promising method for
radiosensitising symbiotic tumours.

We simulate MCT1-inhibition by CHC—the treatment strategy employed420

by both Sonveaux et al. (2008) and Busk et al. (2011) in vivo—by numerically
solving Equations (9)-(12) with the same parameter values from our multi-
dimensional parameter space as before, but now with lactate uptake blocked by
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Figure 7: Symbiotic behaviour of Equations (9)-(12). Averaged spatial behaviours of
the (a) tumour density, (b) metabolic fractions, (c) metabolite concentrations, and (d) oxy-
gen concentration, at steady state. Shown are the means (curves) and standard deviations
(shaded areas) from 104 uniformly distributed samples from the parameter region giving rise
to symbiotic behaviour; that is, from the region in which consumption of lactate (kL) and
glucose (kG) are high with kL > kG, and the characteristic preference for lactate (a) is high.
Fixed parameters are listed in the top portion of Table 1.

setting kL = 0. Contrary to the prediction of Sonveaux et al. (2008), blocking
MCT1 has no effect on necrosis in our model system—except when, in cases of425

high hypoxia, it decreases necrosis (Figure 9a-c). These latter cases are mostly,
but not entirely, limited to tumours which were non-symbiotic in wildtype, and
thus the effect of CHC may be less straightforward than assumed.

CHC treatment does have the expected effect on hypoxia in our model sys-
tem, in that the extent of oxygenation is increased when lactate uptake is inhib-430

ited (Figure 9b-f). However, this effect correlates only loosely with the amount
of symbiosis exhibited by the wildtype system, with substantial reductions in
the extent of hypoxia occurring even in the absence of wildtype symbiosis. In-
stead, the effect correlates exactly with the extent of hypoxia that was already
present in the wildtype system, with greater reductions occurring for tumours435

with more extensive wildtype hypoxia.

4.4. Experiments suggest weak symbiosis in U87 tumours

One of the model criteria for strongly symbiotic behaviour, as discussed in
Sections 4.1 and 4.2, is that the tumour exhibits a strong characteristic prefer-
ence for lactate over glucose as a metabolic substrate (i.e. that a is large). From440
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Figure 8: Weakly- or non-symbiotic behaviour of Equations (9)-(12). Averaged spatial
behaviours of the (a) tumour density, (b) metabolic fractions, (c) metabolite concentrations,
and (d) oxygen concentration, at steady state. Shown are the means (curves) and standard
deviations (shaded areas) from 104 uniformly distributed samples from the parameter region
giving rise to weakly- or non-symbiotic behaviour; that is, from the region in which consump-
tion of lactate (kL) and glucose (kG) are high with kG > kL, and the characteristic preference
for lactate (a) is low. Fixed parameters are listed in the top portion of Table 1.

our in vitro experiments on the metabolic characteristics of U87 tumours (out-
lined in Section 3.3), it is evident that increasing the amount of available lactate
leads to a reduction in the extracellular acidification rate (Figure 10a) and a
corresponding increase in the oxygen consumption rate (Figure 10b), which to-
gether signal consumption of lactate by oxidative phosphorylation. However,445

there is only a slight decrease in glucose uptake with increasing lactate concen-
tration (Figure 10c), indicating that the cells do not exhibit a strong character-
istic preference for lactate but instead consume glucose at a similar rate whether
or not lactate is available.

A caveat here is that glutamine and pyruvate were present in the system due450

to incubation of the cells in standard medium, and, given the interconnectedness
of the glucose/lactate/glutamine/pyruvate metabolic pathways, we cannot be
sure of the impact of these metabolites. However, we expect our salient result—
a qualitative indication of whether or not U87 cells exhibit a marked substrate
preference—to hold so long as glutamine and pyruvate do not together suppress455

a preference that would have been strong in their absence.
Provided this assumption is valid, these experiments suggest that the param-

eter representing preference for lactate (a) is likely to be small, which places U87
glioblastoma tumours approximately into the regime in which only weakly sym-
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Figure 9: Effect of MCT1 inhibition on necrosis and hypoxia. Increase in necrosis
(left column) and extent of tissue oxygenation (right column) relative to wildtype, obtained
by numerically solving Equations (9)-(12) with 104 parameter points sampled uniformly from
the ranges in the bottom portion of Table 1, and comparing these to solutions for the same
parameter points but with kL = 0 to simulate MCT1 inhibition by CHC. Shown are the
increase in necrosis and increase in oxygenation as functions of the amount of symbiosis (top
row), necrosis (middle row), and hypoxia (bottom row) that were already occurring in the
wildtype systems.
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Figure 10: Experimental metabolic dynamics of U87 glioma cells in vitro. Metabolic
rate dynamics in U87 glioma cells cultured in vitro over varying concentrations of lactate in
the medium, as outlined in Section 3.3. (a) Extracellular acidification rate (ECAR), a marker
of the net effect of glycolysis and lactate consumption; (b) oxygen consumption rate (OCR),
a marker of oxidative phosphorylation; and (c) activity of fluorodeoxyglucose ([18F]FDG),
a marker of glycolysis. Multiple comparison of a balanced one-way analysis of variance
(ANOVA) was performed on the data to test whether the mean measurement for each non-
zero lactate concentration was significantly different from the zero lactate concentration. One
star indicates a p-value less than 0.05 (but greater than 0.01), two stars indicate a p-value
less than 0.01 (but greater than 0.001), and three stars indicate a p-value less than 10−4.
Increasing the concentration of available lactate leads to a statistically significant decrease in
ECAR and a significant increase in OCR, but a much less significant change in [18F]FDG, sug-
gesting consumption of lactate by oxidative phosphorylation without a strong characteristic
preference for lactate over glucose as a metabolic substrate.

biotic behaviour develops—but U87 tumours are highly malignant. This raises460

the question of how symbiosis might correlate with tumour aggressiveness. It
is perhaps possible that symbiotic tumours are stabilised by their metabolic
cooperation and insulated from oxygen-dependent treatments, but at the cost
of being less malignant than non-symbiotic tumours. This connection, or lack
thereof, remains to be explored.465

5. Discussion

In summary, our aim has been to examine the symbiosis hypothesis put
forward by Sonveaux et al. (2008) and address the disagreement in in vivo
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experimental support between their results and those of Busk et al. (2011). We
have pursued this by developing a minimal spatial model of dual glucose-lactate470

consumption, which is an extension, with simplifications, of a non-spatial model
presented by Mendoza-Juez et al. (2012). Our main findings from this model
are that, while symbiosis arises over a substantial portion of the parameter
space, it requires cells to be extremely metabolically active, and whether such a
parameter regime is clinically realistic remains to be established. For the most475

part, the occurrence of symbiosis is mutually exclusive with the occurrence
of necrosis in the tumour core, and, as predicted by Sonveaux et al. (2008),
the latter is caused by nutrient deprivation (rather than by acidosis or severe
anoxia). However, symbiosis and necrosis do not exhibit the same dependence
on the model parameters, indicating that symbiosis may not directly ‘rescue’480

tumours from nutrient starvation.
We also have found that simulation of MCT1 inhibition does not cause the

increase in necrosis in the tumour core that was expected to result from in-
creased glucose consumption by cells at the formerly lactate-consuming tumour
edge. This places our results in line with those of Busk et al. (2011), who saw485

no increase in necrosis upon CHC administration in vivo. MCT1 inhibition
does cause an increase in the extent of tissue oxygenation in our model system,
as predicted by Sonveaux et al. (2008), but this correlates with the extent of
hypoxia that was present in the wildtype system rather than with its strength
of symbiosis. This result gives the promising indication that CHC may be a vi-490

able radiosensitisation strategy wherever there is oxidative lactate consumption,
independently of whether the tumour exhibits a spatially well-defined symbiosis.

Furthermore, we have demonstrated experimentally that U87 glioma tu-
mours consume lactate but do not exhibit a discernible characteristic preference
for lactate over glucose as a metabolic substrate (Figure 10), one of the condi-495

tions required for strongly symbiotic behaviour under our modelling framework.
U87 tumours are known to be highly malignant, and thus our experimental re-
sults compel us to take a step beyond the original hypothesis and raise the new
question of whether symbiosis, if indeed it occurs in vivo, may be advantageous
or disadvantageous (or neither) for clinical malignancy. Under some conditions500

necrosis appears to be associated with tumour-promoting inflammation and ac-
celerated tumour growth (Degenhardt et al. 2006), such that the relationship
between necrosis-reducing symbiotic behaviour and malignancy may not be a
simple one.

We caution that our model is an abstract, minimal representation of tumour505

glucose-lactate metabolism, and real tumour metabolic systems are a great deal
more complicated than what we have considered here. As such, our conclusions
should be taken more as theoretical, in-principle statements than as prescrip-
tive of what occurs in real tumours in vivo. The framework developed here can
be extended in a variety of directions. For example, we do not accommodate510

vasculature dynamics here, but instead assume the somewhat abstract feature
of a fixed capillary shell, and hence the model cannot be used to explore the
vasoactive role of lactate (Ido et al. 2003, Hein et al. 2006) or the effect that
MCT1 inhibition may have on angiogenesis (Sonveaux et al. 2012). It would also
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be useful to incorporate intracellular lactate (Parks et al. 2013) into the mod-515

elling framework for comparison with experiments by Colen et al. (2011) which
induced tumour necrosis by blocking lactate efflux, or to extend the framework
further via consideration of glutamate and glutamatergic signalling.

It is worth noting that our tumour radius has been fixed at 0.02 cm through-
out, to capture the lengthscale of a typical avascular tumour, and for simplicity520

we have not considered varying this here. However, we expect that the conse-
quences would be straightforward—a smaller tumour would exhibit fewer spatial
features due to less-pronounced gradients, and a larger tumour would develop
a necrotic core with a surviving region, of a length similar to that considered
here, in which the metabolic dynamics predicted by our model would occur. A525

systematic examination of different lengthscales, however, could prove useful for
determining the earliest point in tumour growth at which spatial features may
develop. Similarly, we have asserted that our model system can be considered
to describe localised pockets within a large, heterogeneous tumour; but it would
be beneficial to explicitly model such a tumour as a whole, as this would intro-530

duce spatial complexities and facilitate more direct comparisons with medical
neuro-imaging in vivo.

Our in vitro experiments were preliminary, and served simply to facilitate
some speculation as to whether tumours might exhibit some characteristic pref-
erences regarding metabolic substrates, and where such preferences might place535

the tumours in our model parameter space. These experiments should in future
be extended to a series of microfluidic (Whitesides 2006, Huang et al. 2011,
Zhang & Nagrath 2013) or in vivo measurements of metabolic consumption
for a variety of tumour types—similarly to Sonveaux et al. (2008) and Busk
et al. (2011) but with local glucose and lactate consumption rates measured540

quantitatively—as these would help to place tumours in our model parame-
ter space far more accurately than we have attempted here. Such experiments
could thereby more conclusively establish whether symbiosis is likely to be a
significant feature of tumours in vivo.

Nevertheless, the minimal spatial model presented herein has enabled some545

predictions which can be tested experimentally—in particular, the relationship
(or lack thereof) between the occurrence of symbiosis and degree of clinical
malignancy can be investigated—and which support the in vivo observations of
Busk et al. (2011) with regard to CHC-induced necrosis over those of Sonveaux
et al. (2008). Hence, we hope that this work is illustrative of the gains that can550

be made by integrating mathematical modelling with experiments for clearer
and more rigorous testing of hypotheses in oncology.
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Mancha. JBM would like to thank Dr. Gregory A. Ross for helpful feedback on
the manuscript.

24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008839doi: bioRxiv preprint 

https://doi.org/10.1101/008839


References

Airley, R., Loncaster, J., Davidson, S., Bromley, M., Roberts, S., Patterson, A.,
Hunter, R., Stratford, I., & West, C. (2001). Glucose transporter Glut-1 ex-560

pression correlates with tumour hypoxia and predicts metastasis-free survival
in advanced carcinoma of the cervix. Clinical Cancer Research, 7 , 928–934.

Basanta, D., Ribba, B., Watkin, E., You, B., & Deutsch, A. (2011). Com-
putational analysis of the influence of microenvironment on carcinogenesis.
Mathematical Biosciences, 229 , 22–29.565

Bélanger, M., Allaman, I., & Magistretti, P. (2011). Brain energy metabolism:
focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14 , 724–
738.

Berra, E., Benizri, E., Ginouvés, A., Volmat, V., Roux, D., & Pouysségur, J.
(2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-570

state levels of HIF-1a in normoxia. The EMBO Journal , 22 , 4082–4090.

Blum, J. (1960). Concentration profiles in and around capillaries. American
Journal of Physics, 198 , 991.

Boubaker, K., Flepp, M., Sudre, P., Furrer, H., Haensel, A., Hirschel, B., Bog-
gian, K., Chave, J., Bernasconi, E., Egger, M., Opravil, M., Rickenbach, M.,575

Francioli, P., & Telenti, A. (2001). Hyperlactatemia and antiretroviral ther-
apy: the Swiss HIV cohort study. Clinical Infectious Diseases, 33 , 1931–1937.

Boumezbeur, F., Peterson, K., Cline, G., Mason, G., Behar, K., Shulman, G.,
& Rothman, D. (2010). The contribution of blood lactate to brain energy
metabolims in humans measured by dynamic 13C nuclear magnetic resonance580

spectroscopy. The Journal of Neuroscience, 30 , 13983–13991.

Breiman, R. (2001). Random Forests. Machine Learning , 45 , 5–32.

Burgman, P., O’Donoghue, J., Humm, J., & Ling, C. (2001). Hypoxia-induced
increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42 ,
170–175.585

Busk, M., Walenta, S., Mueller-Klieser, W., Steiniche, T., Jakobsen, S., Hors-
man, M., & Overgaard, J. (2011). Inhibition of tumour lactate oxidation:
consequences of the tumour microenvironment. Radiotherapy and Oncology ,
99 , 404–411.

Cariboni, J., Gatelli, D., Liska, R., & Saltelli, A. (2007). The role of sensitivity590

analysis in ecological modelling. Ecological Modelling , 203 , 2007.

Cheeti, S., Warrier, B., & Lee, C. (2006). The role of monocarboxylate trans-
porters in uptake of lactic acid in HeLa cells. International Journal of Phar-
maceutics, 325 , 48–54.

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2014. ; https://doi.org/10.1101/008839doi: bioRxiv preprint 

https://doi.org/10.1101/008839


Colen, C., Shen, Y., Ghoddoussi, F., Yu, P., Francis, T., Koch, B., Monterey,595

M., Galloway, M., Sloan, A., & Mathupala, S. (2011). Metabolic targeting of
lactate efflux by malignant glioma inhibits invasiveness and induces necrosis:
an in vivo study. Neoplasia, 13 , 620–632.

Cutler, R., Edwards, T., Beard, K., Cutler, A., Hess, K., Gibson, J., & Lawler,
J. (2007). Random forests for classification in ecology. Ecology , 88 , 2783–600

2792.
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