
Functional analysis and co-evolutionary model of chromatin and DNA 

methylation networks in embryonic stem cells 

 

 

Enrique Carrillo de Santa Pau1,*, Juliane Perner2,*, David Juan1,*, Simone Marsili1, David 

Ochoa3, Ho-Ryun Chung4,&, Daniel Rico1,&,$, Martin Vingron2,& and Alfonso Valencia1,&,$ 

 
1Structural Biology and BioComputing Programme, Spanish National Cancer Research Center, 

CNIO. Melchor Fernandez Almagro, 3. 28029 Madrid, Spain. 
2Computational Molecular Biology, Max Plank Institute for Molecular Genetics, Ihnestrasse 63-

73, 14195 Berlin, Germany. 
3European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, 

Wellcome Trust Genome Campus. Hinxton, Cambridge CB10 1SD, United Kingdom. 
4Otto-Warburg-Laboratories Epigenomics, Max Plank Institute for Molecular Genetics, 

Ihnestrasse 63-73, 14195 Berlin, Germany. 

 

*Contributed equally. 
&Jointly supervised research. 
$Corresponding authors: drico@cnio.es, valencia@cnio.es  

 

 

 

Abstract 

 

We have analyzed publicly available epigenomic data of mouse embryonic stem cells (ESCs) 

combining diverse next-generation sequencing (NGS) studies (139 experiments from 30 datasets 

with a total of 77 epigenomic features) into a homogeneous dataset comprising various cytosine 

modifications (5mC, 5hmC and 5fC), histone marks and Chromatin related Proteins (CrPs). We 

applied a set of newly developed statistical analysis methods with the goal of understanding the 

associations between chromatin states, detecting co-occurrence of DNA-protein binding and 

epigenetic modification events, as well as detecting coevolution of core CrPs. The resulting 
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networks reveal the complex relations between cytosine modifications and protein complexes 

and their dependence on defined ESC chromatin contexts.  

A detailed analysis allows us to detect proteins associated to particular chromatin states whose 

functions are related to the different cytosine modifications, i.e. RYBP with 5fC and 5hmC, 

NIPBL with 5hmC and OGT with 5hmC. Moreover, in a co-evolutionary analysis suggesting a 

central role of the Cohesin complex in the evolution of the epigenomic network, as well as strong 

co-evolutionary links between proteins that co-locate in the ESC epigenome with DNA 

methylation (MBD2 and CBX3) and hydroxymethylation (TET1 and KDM2A).  

In summary, the new application of computational methodologies reveals the complex network 

of relations between cytosine modifications and epigenomic players that is essential in shaping 

the molecular state of ESCs. 

 

 

Introduction 

 

Cell identity depends on complex networks of chemical processes that modify the chromatin 

(“epigenomic remodelling”) and lead to distinct epigenomic states. The current cell 

developmental state and its future possible fates are believed to be determined by the epigenomic 

landscape. Disruption of these landscapes is associated with disease and cellular transformation. 

In the case of embryonic stem cells (ESCs), the range of available cell differentiation options is 

very broad and changes in the epigenome are essential for lineage specification. 

 

DNA methylation (5-methylcytosine; 5mC), certain histone marks and chromatin-related 

proteins (CrPs) critically contribute to the plastic state needed for induction and maintenance of 

pluripotency. Recently, novel cytosine modifications with potential regulatory roles such as 5-

hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) have 

been described1–6. However, the physiological and disease role of these modifications is not yet 

well understood and the biological function is being elucidated7.  

 

ESCs constitute an ideal cellular model to study cytosine modifications, as they have very active 
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levels of TET1 that catalyze the oxidation of 5mC8. Several groups have reported genome-wide 

maps of cytosine modifications, histone marks and CrPs in mouse ESCs (for the full list of 

references, see Supplementary Table 1). Although many of the large-scale epigenomic datasets 

generated by different laboratories are currently available, the information is still heterogeneous 

and dispersed in different datasets. These datasets are normally processed with different 

bioinformatic protocols, making it even more challenging to analyze the relationships between 

the different epigenomic players and the functional implications. 

 

Here, we combine diverse epigenomic datasets generated by next-generation sequencing (NGS, 

139 experiments from 30 datasets with a total of 77 epigenomic features) to establish a 

homogeneous dataset between of different DNA methylation states, histone marks and CrPs 

using robust statistical approaches. We applied a set of newly developed analysis methods, 

including statistical analysis of networks of chromatin states, co-occurrence of DNA protein 

binding events and protein coevolution. Our results yield improved understanding of the 

functional role of different types of cytosine methylations marks within the molecular network of 

chromatin components and its evolutionary history and structure. 

 

RESULTS 

A chromatin atlas of mouse ESCs 

We compiled a large collection of genome-wide data from 139 assays, profiled by ChIP-Seq 

(Chromatin Immunoprecipitation Sequencing), MeDIP (Methylated DNA immunoprecipitation) 

and GLIB (glucosylation, periodate oxidation and biotinylation) for mouse embryonic stem cells 

(mESCs, see Supplementary Table 1). This collection includes 3 types of cytosine modifications 

(5mC, 5hmC and 5fC), 13 histone marks (H2Aub1, H2AZ, H3K4me1, H3K4me2, H3K4me3, 

H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me2, H3K36me3, H3K79me2, H4K20me3) 

and 61 different Chromatin related Proteins (CrPs). CrPs include structural proteins, members of 

the machinery involved in cytosine and histone modifications, transcription factors (TFs, such as 

stemness-related TFs NANOG, OCT4 and SOX2), and four different post-translational 

modifications of RNA polymerase II (RNAPolII; S2P, S5P, S7P and 8WG16 - unmodified) with 

binding data available for ESCs. All data were downloaded from public databases and processed 
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in a systematic way using the same pipeline (see Methods). To visualize the full data set 

collected for the 77 epigenomic features a UCSC track hub has been generated and it is available 

at http://genome.ucsc.edu/cgi-bin/hgTracks?db=mm9&hubUrl=http://ubio.bioinfo.cnio.es/data/mESC_CNIO/mESC_CNIO_hub2/hub.txt 

 

The genome of a given cell type can be classified in epigenetically-defined chromatin states9. 

Combinatorial methods such as ChromHMM10 based on hidden markov models have become a 

de-facto standard for the functional classification of genomic elements, such as 

active/inactive/poised promoters, elongation, active/inactive enhancers, etc, based on epigenomic 

data. We applied this methodology using as input information 17 “core epigenomic features” 

including the 3 cytosine modifications, the 13 histone marks and the insulator protein CTCF - 

which has been previously shown to define a particular chromatin state per se11. In this 

framework, chromatin states are defined by the combinations of these “core epigenomic 

features” that would function as “platforms” for the interactions of other non-histone proteins12. 

 

An empirically defined model of 20-states was established following previous selection 

strategies11,13 (see online Methods, Fig. 1A). We identified states related with transcription 

elongation (states 1-5), heterochromatin (6-10), enhancers (11-14), promoter activation (15-17) 

and repression (18-19), and the CTCF insulator (20), that are consistent with previous knowledge 

on the function of the features  (Fig. 1A). 

 

The good representation of several important chromatin related protein complexes in our ESC 

collection allows further exploration of their relationship with the 20 chromatin states. We 

identify clear associations between certain chromatin states and CrP complexes known to be 

functionally related to them (Supplementary Figures 1-5). For example, active promoter state 16 

shows a clear enrichment of proteins of the Mediator complex, including RNAPolII (Fig. 1B and 

Supplementary Figures 2-3). States 18 and 19 characterized by repressive histone marks and 

related to promoter regions of lowly express genes (see Fig.1A), are associated with proteins of 

the Polycomb complex that play a key role in inactivation (Fig. 1C and Supplementary Figures 1 

and 4). State 20 characterized by the CTCF insulator is additionally associated with cohesin 

proteins (Fig. 1D and Supplementary Figures 1 and 5), in agreement with previous analyses12,14 

and the recently proposed role of CTCF determining the localization of most of the cohesins in 
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the genome15. 

 

To disentangle the relationships between the chromatin states, we analyzed the association 

between the states based on the epigenomic features (histone marks, cytosine modifications and 

CrPs). The partial correlation analysis based on the frequency of occurrence of the features, 

provides a clean network of principal associations between states (Fig. 1E). This network 

contains 12 positive associations as well as 4 negatively correlated connections involving the 

empty heterochromatic state 7. Six out of the 12 positive links connect states with a similar 

functional role but with different levels of occupancy of the epigenomic features (Supplementary  

Figures 6-25). For example, we detect associations between stronger and weaker states of 

transcriptional elongation or promoter elongation (Fig. 1E). 

 

The remaining links connect states with different but complementary roles, determined by a few 

key (or by some missing) epigenomic features. For instance, state 15 (promoter activation) 

shows positive association with states 1 and 2 (strong transcriptional elongation). These states 

present a similar profile of CrPs (Supplementary  Figures 6, 7 and 20), as well as the strong 

enrichment in H3K79me2 in states 15 and 1 (Fig. 1E), a mark related with transcription initiation 

start just downstream to the promoter16. This suggests the involvement of states 1 and 15 in 

transcription initiation, while the higher enrichment in H3K4me2/3 for state 15 supports its 

classification as an active promoter. In contrast, state 2 show higher enrichment in the three 

cytosine modifications (Fig. 1E), consistent with the higher enrichment of the cytosine 

modification proteins TET1, OGT and the methyl-binding domain (MBD) proteins MBD1B and 

MBD2T (Supplementary Fig. 7).  

  

Interestingly, the four enhancer states (11-14) were separated into two different subnetworks. 

States 11 and 12 are connected to the subnetwork implicated in transcriptional elongation (states 

1-4); a link that might reflect the recently proposed role of elongation factors in posing enhancers 

in embryonic stem cells17. In contrast, enhancer states 13 and 14 (the most active enhancer 

states) form a different subnetwork together with the active promoter state 17. In fact, states 12 

and 14 present very complementary profiles of the “core” genomic features.  State 14 is highly 

enriched in H3K27ac, p300 and TFs (Supplementary Fig. 19), consistent to its role as active 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2014. ; https://doi.org/10.1101/008821doi: bioRxiv preprint 

https://doi.org/10.1101/008821
http://creativecommons.org/licenses/by-nc/4.0/


enhancer. State 12 is highly associated to the cytosine modifications, H2AZ and cohesin 

(Supplementary Fig. 17) indicating that to these states may function as poised enhancers.  

 

The five heterochromatic states are mostly unconnected in the network of chromatin states and 

show very different enrichments in the cytosine modifications. The state 6 enriched in H3K9me3 

and the “empty state 7” are mutually exclusive (negative connection) and are not associated to 

any cytosine modification. 5mC is mainly enriched in the heterochromatic state 10, characterized 

by the absence of DNaseI signal and a clear enrichment in LaminB1, MBDs and regions with 

sequence repeats (Fig. 1A and Supplementary Fig. 15). 

 

Finally, 5fC was most enriched in the unconnected state 8 (Fig. 1E), which is particularly 

enriched in simple repeats (Fig. 1A). DNA methylation (5mC) has been traditionally associated 

to retrovirus transcription repression in heterochromatin18. Our results suggest that the 5fC 

modification might be also important for this role. RYPB, usually associated to PRC1 in the 

Polycomb complex19, is one of the two enriched CrPs in this quite empty state (together with 

MBD2T, see Supplementary Fig. 13). Interestingly, it has been recently described that RYBP 

participates in the repression of endogenous retrovirus in mouse stem cells20. Therefore, we 

hypothesize that RYBP-mediated retrovirus repression could be related to cytosine conversion 

processes that result into 5fC production or RYBP binding to 5fC rich regions. 

 

By combining all available epigenomic data, we have characterized the 20 chromatin states of 

mouse ESCs. From the analyses above, we obtained a general overview of the relationships 

between chromatin states and the corresponding cytosine modifications, histone marks and CrPs, 

and a contrasted classification according to their functional role. To further investigate the 

organization of chromatin in ESCs, we inverted the problem to study the differential relations 

between cytosine modifications, histone marks and CrPs, in each one of the chromatin states. 

 

Chromatin-State Dependent Co-Location Networks 

To detect specific interactions between the components based on their binding co-localization it 

is necessary to eliminate indirect/transitive effects, i.e. co-localization that is introduced by other 

(observed) factors. To this end, we applied the method described in21 (see Methods for details). 
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This methodology aims at unraveling interactions between factors, which cannot be “explained 

away” by the other observed factors and thus is more specific than an analysis of simple pair-

wise correlations. 

 

To obtain an interaction network associated to each state (context-dependent), we analyzed 

separately the genomic regions assigned to a certain chromatin state. The global network with 

the information of all the states (Fig. 2A) summarizes all direct interactions between cytosine 

modifications, histone marks and CrPs. In total, this “co-location network” connects 66 nodes by 

149 edges, and as in the case of other biological networks it is dominated by a small number of 

hubs, i.e. MBD2T, G9A, SUZ12, RYBP and RNAPoIIIS2P (Supplementary Fig. 26). The 

networks specific of each one of the chromatin states have between 53 and 77 edges connecting 

between 51 and 62 nodes. These 20 chromatin specific networks, as well as the possible 

combinations of states, can be explored using EpiStemNet, an interactive viewer of the “co-

location” network (http://dogcaesar.github.io/epistemnet).  

 

About 13% of the interactions are present in all chromatin states (blue edges in Fig. 2A) and 25% 

of them are present in a single state (orange edges in figure 2), indicating a preferential 

association of CrPs to chromatin contexts. In fact, 85% of interactions are positive, supporting 

the classification in chromatin states and their proposed role as differential epigenomic binding 

platforms. Up to 36% (24 out of the 66) the direct protein-protein positive interactions in the “co-

location” network as well as 11 out of the 62 indirect positive (positive-positive or negative-

negative) associations mediated by a histone mark or a cytosine modification, correspond to 

previously characterized known and putative functional interactions obtained from STRING22.  

 

Moreover, the “co-location network” contains many interactions previously described in the 

literature, including the main epigenetic complexes, including known interactions among 

members of Polycomb, Cohesin and Mediator complexes (Fig. 2B). In addition, we identify 

interactions between members of complexes related with gene repression activity as the 

nucleosome remodeling deacetylase MI2/NuRD complex 

(MI2B/LSD1/MBD2/MBD3/HDAC1/HDAC2), the CoREST/Rest complex 

(Rest/CoREST/RYBP) or SETDB1 complex (SETDB1/H3K9me3). Another interesting group of 
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interactions are those related with different sites of phosphorylation of the RNA polymerase II, 

that are connected among them and with specific histone marks. S2P PolII is connected with 

H3K36m3 and H3K27ac, while unmodified PolII is connected with H3K4me3 reflecting the 

distribution of these modifications through coding regions or promoters, respectively23. In 

contrast, S5P RNAPolII is connected with H2Aub1 related with bivalent promoters and poised 

polymerase23. Remarkably, we also recover significant co-location signals of stemness-related 

complexes NANOG/OCT4/SOX2/TCF3 and SIN3A (SIN3A/TET1/OGT)3,24.  

 

Our analysis also recovers a number of interesting negative co-locations (mutually exclusive 

genomic features). About 68% of these negative associations (15 out of 22) involve either 

cytosine modifications or MBD2T, suggesting that cytosine modifications are probably 

important in defining mutually excluding epigenomic features within particular chromatin states. 

For instance, MBD2T and 5mC are positively connected to the repressive CBX3 protein, but 

they are negatively connected to a variety of activation histone marks, highlighting the repressive 

role of 5mC. In the next section we will explore this subnetwork in more detail.  

As whole, our results show that our approach for disentangling unspecific co-location signals 

allows to retrieve a global picture of the main complexes operating in ESCs, as well as 

interesting logics operating within chromatin states.  

 

Common and specific direct interactors of 5mC, 5hmC and 5fC 

The co-location network can be used to shed light on the relation between methylation marks and 

the epigenetic machinery, since the biological roles for 5hmC and 5fC are not well understood 

and the literature remains somewhat controversial1–6. Figure 3 shows all the CrPs directly 

interacting with the three cytosine modifications in each one of the 20 chromatin states. 

 

Overall, 5hmC and 5fC tend to be more connected via common interactors (NIPBL, RYBP and 

TET1-OGT), while 5mC appears to be more isolated and directly connected with 5hmC only via 

G9A histone methyltransferase in chromatin states 16 and 17 (active promoters, positive 

connection 5hmC-G9A) plus a negative connection between 5mC-G9A in states 1, 9 and 13. The 

position of G9A in the subnetwork indicates that it is indeed an essential protein in DNA 

methylation25. 
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Little is known about cytosine modification readers26,27 and only few of the cytosine 

modification interactions showed in the sub-network have been described previously, i.e. the 

positive interactions between TET1 with 5hmC3,28 and p300 with 5fC29. KDM2B has been 

shown to bind preferentially to unmodified cytosine26, which explains the anti-correlation to 

5hmC  in the Polycomb-related state 18. Interestingly, the complex association observed for 

5hmC to the KDM proteins relates 5hmC with the demethylation of H3K4 and H3K36, 

respectively, affecting the gene expression status. 

 

Moreover, we have identified a positive correlation (stronger in polycomb state) between 

MBD2T and 5mC30 and a weakly negative interaction (mutual exclusion) between MBD2 and 

5hmC across G9A in active promoter states (16 and 17). Although the interaction of MBD2 with 

5mC has been extensively described30,31, the recognition of 5hmC by MBD proteins remains 

controversial30. Our analysis suggests that MBD2 only interacts with 5mC - at least in ESCs. 

 

Another interesting observation is the relation of 5hmC and 5fC with TET1. It is well known that 

TET proteins catalyze the oxidation of 5mC into 5hmC, 5fC and finally in 5caC32. We found that 

the interaction of TET1 with 5hmC is direct, while the interaction with 5fC is via OGT. The 

interaction between TET1 and OGT has been recently described in mESCs24, where all OGT 

binding sites are co-occupied by TET1. However, no mechanistic roles for this complex have 

been described to date. Interestingly, the interaction of TET1 and OGT is found in particular 

chromatin states (2, 11, 12, 14, 15, 16, 18, 19) with different functional roles (elongation, 

enhancer, active transcription and repression/Polycomb; Supplementary Figures 6-25). Our 

analysis suggests that the interaction between OGT and TET1 could be important for TET1-

mediated cytosine oxidation, or to recruit other proteins to the complex for specific cytosine 

modifications as 5fC.  

 

The rest of the interactions in the co-location network based on the analysis of high-throughput 

experimental data, suggest specific roles of the cytosine modifications in CrPs complexes. 

Obviously, the verification of each one of them will require further detailed experimental work. 
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A co-evolution network of the chromatin-related proteins 

We have described part of the functional structure of the epigenetic network of cytosine 

modifications, histone marks and CrPs in ESCs. Given its implication in cell differentiation, it is 

reasonable to assume that the ESC epigenetic network played an important role in metazoan 

evolution. To further characterize this network it is essential to get additional insight on the 

evolutionary relations between co-evolving protein components that form the functional core of 

the system. Detecting these evolutionary relations between the protein components of the 

epigenetic network will inform us about its basic structure and its adaptations to different 

biological scenarios. 

 

To extract these evolutionary relations we implemented a co-evolutionary-based methodology 

particularly suitable for this scenario (for a general reference on co-evolution based methods 

see33, specific details of the implementation are given in Methods).  To collect the information 

required for the co-evolutionary study we retrieved 13,579 trees from eggNOG database34 

including over a million protein sequences from 88 metazoan species. For the co-evolutionary 

analysis we built a maximum-entropy model of pairwise interacting proteins35,36 based on the 

similarities between the evolutionary trees of orthologs for the 58 mouse CrPs included in the 

“co-location network“, while the whole set of 13,579 trees was used to evaluate the statistical 

significance of the results (see Methods). Similarly to the discussed methodology for the co-

location network, this large-scale approach allows us to detect significant connections between 

functional and structural modules by dissecting direct protein-protein co-evolutionary 

relationships from the large “hairball” of indirect interactions37. 

 

The combination of co-evolutionary signal and complex membership yields a highly populated 

network (Fig. 4A).  A third of the 34 statistically significant connections (p < 0.05) between the 

38 connected nodes correspond to connections supported by the STRING database (seven) or 

described in the literature (three physical and two regulatory interactions; see Supplementary 

Table 2). The Cohesin complex acts as the central element of the network, with its proteins co-

evolving with members of five different complexes (NuRD Mediator, RNA polymerase II-

Activation/Repression , SOX2/OCT4/NANOG/TCF3 and TET1/OGT/SIN3A complexes). 
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The Cohesin complex is strongly coevolving with the NuRD complex, an evolutionary 

interdependence that points to their interaction with the SWI/SNF complex involved in cohesin 

loading38. In addition, the Cohesin complex co-evolves with the Mediator member NIPBL, a 

known loading factor of cohesin39. Taken together, these results point to the evolutionary 

importance of the process of Cohesin loading into the chromatin. 

 

Interestingly, the functional relationship of five co-evolving protein pairs that are also connected 

by the co-location network has not been previously reported (see Supplementary Table 2). 

Among them, the SMC1A-HDAC1 protein pair, which show the strongest signal of co-

evolution, is particularly interesting as it shows a negative co-localization with H3K79me2 and it 

puts in contact the HDAC (HDAC2) and cohesin (SMC3) complexes. Given that NIPBL is also 

recruiting HDAC1/340, our result suggests that Histone deacetylation and Cohesin functions are 

strongly associated. 

 

We further detect a coevolution signal between RNA polymerase II-Activation/Repression and 

Cohesin as well as the RNA polymerase II-Mediator, which are involved in transcription 

regulation. Another highly connected complex is the NuRD complex that interacts with three 

other complexes and with several other proteins. In addition to Cohesin, NuRD co-evolves with 

SETDB1, a protein that interacts with MBD1 in the NuRD complex41,42 and with SIN3A in the 

SIN3A/TET1/OGT and REST-CoREST complexes43. These and other associations in this 

network provide a compelling starting point for future work. In the next section, we are going to 

focus on the cytosine modification-related subnetwork previously defined and discussed in the 

co-location analysis. 

 

Coevolution signals between proteins associated to 5mC, 5hmC and 5fC 

In order, to further characterize the relationships among proteins co-localized with the different 

cytosine modifications in the epigenome of ESCs, we analyzed this co-evolutionary sub-network 

in more detail (Fig. 4B). There are four protein co-evolving protein pairs connecting seven 

proteins involved in co-location interactions with cytosine modifications (see Fig. 3 for a broader 

co-location context). 
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First, there is a strong co-evolution signal for the KDM2A/B pair of histone demethylases. 

KDM2A and KDM2B also show a strong co-location signal but they are differently associated to 

5hmC (Fig. 3). 

 

Second, NIPBL and BRG1 have also a strong co-evolutionary relationship. These two previously 

unrelated proteins have a negative co-location interaction via by 5fC (i.e. NIPBL co-locate with 

5fC, while BRG1 is located in regions free from 5fC).  

 

Finally, we detected two co-evolving pairs linking two proteins positively co-locating with 5mC 

(CBX3 and MBD2) to two proteins positively co-locating with 5hmC (KDM2A and TET1). 

KDM2A is known to be recruited by CBX544 (the closest paralog of CBX3) and CBX3 interacts 

with KDM2B45,46, showing a very strong functional and evolutionary association between both 

protein families. This association is also relevant, because of the connection of the HDACs to 

cohesin discussed above. 

 

The co-evolution between MBD2 and TET1 is particularly interesting, given the key role of 

TET1 in the oxidation of 5mC. MBD2 shows higher binding affinity to 5mC than to 5hmC30 and 

MBDs have been suggested to modulate 5hmC levels inhibiting TET1 by their binding to 5mC31. 

The co-evolution detected between MBD2 (also co-evolving with MBD3, see Fig. 4A) and 

TET1 suggests an interdependence between the mechanisms maintaining 5mC and 5hmC in 

different epigenomic locations of ESCs. This interdependence can be also observed in the co-

localization network, where TET1 shows a double negative connection to MBD2T through 

H3K4me2 and H3K4me1 (Fig. 2A). In turn, H3K4 demethylation is performed by the KDM2A 

protein47 that co-localizes with 5hmC (and with H3K4me1). Therefore, the co-evolutionary 

analysis points to a strong interplay between histone demethylation and DNA demethylation 

processes, suggesting that MBD2, TET1 and KDM2A/B are key players in this process. 
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DISCUSSION 

 

We have obtained a large epigenetic network composed of relations obtained by a co-location 

analysis of cytosine modifications, histone marks and proteins in mouse ESCs. The relations 

described in the network are specific of different chromatin states and potentially reflect the 

functional activities behind genome regulation. The core structure of this epigenetic network is 

formed by the intimate interplay between protein complexes, histone marks and the different 

cytosine modifications. The evolutionary analysis of the proteins implicated in the co-location 

network illustrates how the corresponding protein complexes co-evolved by working together in 

the regulation of the different cytosine modifications and their interplay with histone marks. 

 

The analysis of the network of relations around the three best characterized DNA modifications 

(5mC, 5hmC and 5fC), allowed us for the first time to detect a set of proteins which genomic 

location is specifically dependent on the different cytosine modifications, as well a strong 

evolutionary co-dependence between some of them. In particular, our analyses reveal an 

evolutionary interaction between MBD2 and CBX3 proteins, linked to DNA methylation, with 

proteins TET1 and KDM2A, which genomic location is hydroxymethylation-dependent. 

 

We are still in early stages of the exploration of the epigenetic network behind stemness and cell 

pluripotency. The epigenetic network includes many relations with proteins for which genome 

wide location data have still to be produced. The computational framework introduced here 

represents the basis for the exploration this vast space and provides the first integrative picture of 

the different players in epigenetic regulation. The future inclusion of experimental data on other 

states of cell differentiation will make possible to complete the picture and to follow the 

dynamics of the epigenetic network in different cell lineages. 

 

 

Methods 

 

ChIP-Seq, MeDIP and GLIB data processing 

We downloaded sra files from Chromatin Immunoprecipitation Sequencing (ChIP-Seq), 
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Methylated DNA immunoprecipitation (MeDIP) and GLIB (glucosylation, periodate oxidation 

and biotinylation) technique experiments described in Supplementary Table 1. The MeDIP data 

for 5mC and the GLIB data for 5hmC were obtained from Pastor et al2, as it has been previously 

shown that these datasets are less biased to antibody affinity in regions with repeats than other 

methods7. The sra files were transformed in fastq files with the sra-toolkit v2.1.12 and aligned to 

the reference mm9/NCBI37 genome with bwa48 v0.5.9-r16 (Li et al, 2009) allowing 0-1 

mismatches. Unique reads were converted to BED format. 

 

Genome segmentation 

The cytosine modifications, histone marks and CTCF were used to segment the genome in 

different chromatin states. A multivariate Hidden Markov Model (HMM) was used. This model 

uses two types of information, the frequency with which different chromatin mark combinations 

are found with each other and the frequency with which different chromatin states occur in 

spatial relationships of each other along the genome. To apply this method we used the 

ChromHmm software10 (v1.03). The input data to generate the model were the ChIP-Seq, MeDIP 

and GLIB bed files containing the genomic coordinates and strand orientation of mapped 

sequences (see above). First ,the genome was divided in 200 bp non-overlapping intervals which 

we independently assigned if each of the marks was detected as present (1) or not (0) based on 

the count of tags mapping to the interval and on the basis of a Poisson background model11 using 

a threshold of 10-4. After binarization of each mark we trained the HMM model using a fixed 

number of randomly-initialized hidden states, varying from 20 up to 33 states. We focused on a 

20-state model that provides enough resolution to resolve biologically meaningful chromatin 

patterns. We used this model to compute the probability that each location is in a given 

chromatin state, and then assigned each 200-bp interval to its most likely state (see 

Supplementary Tables 3 and 4). Only, intervals with a probability higher than 0.95 were 

considered in further analysis. 

 

Segment enrichments 

The percentage of genome overlap for each state and different annotation data was computed 

with ChromHmm software on the intervals selected (see above). The genomic, CpG islands, 

repeats and laminB1 annotations were downloaded from the UCSC Genome Browser website. 
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DNAseI and RNAseq were obtained from ENCODE E14 cell line (see Supplementary Table 1). 

The CAGE data were obtained from FANTOM49 (see Supplementary Table 1). Data for 5hmC 

from ESC and NPC were obtained from GSE40810 (see Supplementary Table 1), fastq files 

processing and binarized calls were done as described previously. Interaction ChIA-PET data for 

ESCs were downloaded from the supplementary material of the original paper50. Enrichment fold 

changes for annotations and CrPs can be consulted in Supplementary  Tables 5 and 6.  

 

Simple Correspondence Analysis 

The Simple Correspondence Analysis was carried out after calculate the enrichment of the 

different proteins included in the analysis (see Supplementary Table 7) in each state. For this 

purpose we binarized the ChIP-seq data as described above for histone modifications and 

calculated the enrichment in the selected intervals as described for gene annotations. From the 

fold change and the % of bins in each state we calculated for each protein the % of bins in each 

state in which is present, following this formula: 

 

% bins state with the protein  =  Fold Change * % bins state all genome  

 

Once we got the matrix with the % of protein in each state, we carried out the Simple 

Correspondence Analysis in R package with the CA library 51. This library implement a 

multivariate statistical technique proposed that summarize a set of categorical data in a 

dimensional graphical space to reduce the dimensionality of a data matrix. The ca function 

provided us the percentages of explained inertias for all possible dimensions and values for the 

rows and columns dimensions (Supplementary Table 7). Additionally, principal coordinates, 

squared correlations and contributions for the points of the rows and columns were obtained. We 

generated a 3D plot with the plot3d.ca function in combination of the RGL library. We plotted 

the three first dimensions that let us recapitulate almost the 80% of the data variation (inertia) 

(Supplementary Fig. 1). 

 

Partial correlation analysis of the chromatin states 

Partial correlation analysis was performed using the matrix of the % of bins in each state where a 

histone mark, cytosine modification or CrPs have been detected as explained before. Here, 
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chromatin states were considered the variables and the genomic features the cases. We calculated 

the partial correlation matrix of the chromatin states using the GeneNet52 R package (v1.2.10). In 

order to deal with the small variables-cases ratio (20 states and 78 genomic features) we used an 

analytically estimated shrinkage to the identity matrix, then partial correlation matrix was 

calculated for this corrected matrix. Statistical significance of every state-state partial correlation 

was determined using the two-sided Student’s test implementation in the same package. Partial 

correlation linkages with a p-value < 0.05 were considered significant and represented in Fig. 

2C. 

 

Read counts and pre-processing for the co-location network inference 

We used the ChromHMM segments as samples for the network inference. We filtered all bins 

that are unexpectedly large for each state (the upper 5% for each state) because they can lead to 

outliers in the data and it is hard to justify where the signal occurs within the region. The 

distributions of the bin width are shown in Supplementary Fig. 27 and the number of deleted bins 

per state are shown in Supplementary Fig. 28. For the resulting in 757,045 bins, we counted the 

overlapping ChIP-Seq reads using Rsamtools. Some of the ChIP-experiments had to be excluded 

from the network inference due to low number of reads per bin, low number of bins with signal 

or study dependent artifacts. These include SMAD1_GSE11431, MBD1A_GSE39610, 

MBD1B_GSE39610, MBD2A_GSE39610, MBD3A_GSE39610, MBD4_GSE39610, 

MECP2_GSE39610, CTCF_GSE11431, NANOG_GSE11431 and H3K27me3_GSE36114. 

Using hierarchical clustering with 1-cor(x,y) as distance measure, we find that most replicates or 

functionally related samples fall into the same branch (Supplementary Fig.29).  

Next, replicates were merged by adding up the read counts in each bin. The resulting 71 samples 

were normalized against the corresponding input by using the same method as described in21 In 

short, we estimated the median fold-change of the sample over the input and used this median to 

shrink the fold-change for each bin towards 1. Finally, the data was log-transformed adding a 

pseudocount of 1. The final correlation matrix is shown in Supplementary Fig. 30.  

  

Co-location network inference        

For each chromHMM state, we inferred an interaction network as previously described21. In 

short, for each state the samples were scaled to have mean 0 and a standard deviation of 1. An 
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Elastic net was trained in a 10-fold Cross-validation to predict each HM/CTCF/DNA 

methylation from the CrPs or to predict each CrP from all other CrPs;. Further, the SPCN was 

obtained using all the available samples. For visualization of the final networks, we selected the 

interactions between Histone marks/cytosine modifications and CrPs that obtain a high 

coefficient (w >= 2*sd(all_w)) in the Elastic Net prediction and have a non-zero partial 

correlation in the SPCN. All median coefficients of the Elastic Net as well as the R2-values of the 

prediction over the 10-fold CV per state are given in Supplementary Tables 8 and 9. All partial 

correlation coefficients of the SPCN per state are given in Supplementary Table 10. 

 

Coevolution-based analysis 

We retrieved 13,579 protein trees of sequences at the metazoan level from eggNOG34 v4.0. 

These trees include proteins from NS = 88 metazoan species that are either orthologs or paralogs 

duplicated after metazoan speciation split. Based on these trees, we extracted only-unique-

orthologous protein trees for every mouse protein by inferring speciation and duplication nodes 

using a species-tree reconciliation approach53 and a previously used pipeline to deal with tree 

inconsistencies54. When more than one ortholog was detected for a mouse protein in a species, 

the one with the overall shortest evolutionary distance (extracted from the tree) was selected. As 

a result, we obtained 13,579 only-unique-orthologous protein trees. From these, we extracted 

those including the mouse proteins with chip-seq data analysed in this study. So, we performed 

the main analysis on NP = 58 different protein trees including mouse CrPs. The whole 

population of trees was kept for performing a randomization test for assigning empiric statistical 

significances to our results.  

 

We codified each protein tree as a vector containing the NS(NS – 1)/2 distances between all the 

pairs of species in the analysis, and formed a NS(NS – 1) X NP  distance matrix containing these 

vectors as columns. Each row of this matrix represents a different instance of the measure of 

distances on the set of proteins, for a different pair of species. For each row of the matrix, 

distances were ranked and binned into five equally populated intervals {ss,s,m,l,ll} according to 

the four quintiles of the distribution:  ss (very short distances), s (short distances),  m (around 

median),  l (large distances),  ll     (very large distances). An additional state NA was used for 

missing values in the distance matrix. Denoting with p,q two generic proteins and with a,b two 
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generic intervals, the single and pair frequencies fp(a) for protein p in bin a and fp,q(a,b)  for the 

pair p,q respectively in bins a,b were computed as averages over the pairs of species for p,q in 

{1,2,...,NP} and a,b in {ss,s,m,l,ll,NA}. 

The maximum-entropy distribution in the space of species-species distance bins {d} for  

fixed single and pair protein frequencies is given by:  

P({d}) = Z-1 exp[ Σp h(dp) + Σp,q Jp,q(dp,dq) ] 

where Z is the partition function and the parameters hp and Jp,q  have to be adjusted in order to 

match the empirical frequencies fp and fp,q. The parameters Jp,q are of special interest here since 

they regulate the interactions between proteins in the model. For example, a strongly positive 

parameter Jp,q(ss,ss) can be interpreted as the direct symmetrical interaction between the two 

proteins p and q, favoring the co-occurrence of short distances in the respective trees. The model 

parameters were determined by maximizing an l2-regularized version of the (log) pseudo-

likelihood55 of the data:  

{θ k
*} = argmax θ[ lpseudo({θ k}) – λ Σk θk

2 ] 

where θk denotes a generic parameter of the model and λ = 0.01.  

We determined a coevolutionary coupling Cp,q for each pair of proteins p,q from the related set of 

couplings between bins, represented by the matrix Jp,q(a,b) with a,b in {ss,s,m,l,ll}. Bin couplings 

involving missing values in the original set of distances (NA state) were not included in the 

definition of Cp,q. Following an established protocol for contact prediction in protein structural 

analysis56, we double-centered the matrix Jp,q  and computed the Frobenius norm Fp,q = [ Σa,b = 

ss,s,m,l,ll Jp,q(a,b)2 ]1/2.  

Finally, we applied an average product correction57 obtaining the coevolutionary coupling 

between proteins p and q, Cp,q = Fp,q - FpFq/F 

 

 

Statistical significance: 

In order to assign statistical significances to our co-evolutionary couplings, we randomly 

selected 10,000 groups of mouse proteins from the same size as our set of chromatin modifiers. 

We run the pipeline described above for every random set and retrieved the corresponding matrix 
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of coevolutionary couplings. P values were assigned based on the obtained random distribution 

and associations supported by p values < 0.05 were further considered. The matrix of 

coevolutionary couplings and corresponding p values are included in Supplementary Table 11.  

 

 

 

 

URLs 

UCSC Trackhub with chromatin states, cytosine modifications, histone marks and CrPs 

http://genome.ucsc.edu/cgi-

bin/hgTracks?db=mm9&hubUrl=http://ubio.bioinfo.cnio.es/data/mESC_CNIO/mESC_CNIO_hub2/hub.txt 

 

EpiStemNet: chromatin state specific co-location networks in ESCs 

http://dogcaesar.github.io/epistemnet 
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Figure legends 

Figure 1. Chromatin states in ESCs 

 (a) Heatmaps with the emission probabilities of core epigenomic features (left) and fold change 

enrichments of genomic features (right) in the 20 chromatin states model. 

(b-d) Enrichment of CrPs belonging to proteins tightly associated to Mediator (b), Polycomb (c) 

and Cohesin (d) complexes in particular chromatins states (16, 18 and 20) are indicated by red 

points. Members of every complex are highlighted in colored boxes. Boxplots indicate the 

distribution of each CrP in all 20 states. The solid horizontal line indicates the mean enrichment 

of all 58 CrPs and dashed lines indicate the corresponding standard deviation. 

(e) Partial correlation analysis of chromatin states (see legend). 

  

 

Figure 2. A network of interactions between chromatin modifiers, histone marks and 

cytosine methylations 

(a) Network of positive and negative interactions among epigenomic features. For visualization 

purposes, we select only the most reliable interactions within each state based on the coefficients 

of the Elastic Net and the SPCN (see methods). The thickness of the edges represents how well 

the participating proteins can be predicted in the Elastic Net measure by R2. The summary figure 

only shows the maximal R2 over all states. The color gradient on the edges indicates in how 

many states an interaction is observed (from orange=few over yellow=half to blue=all). Dashed 

lines indicate negative interactions (mutual exclusion). To see the resulting interaction networks 

per specific chromatin states, or combinations of chromatin states, visit EpiStemNet at 

http://dogcaesar.github.io/epistemnet   

(b) Schematic representation of several complexes in the co-location network. For the sake of 
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clarity, different representation is depicted for each complex, the region occupied by the complex 

is green shaded and nodes corresponding to the complex members are colored: 

NANOG/SOX2/OCT4/TCF3 (pink), Polycomb-PRC1/2 (red), Mediator (yellow), RNA 

polymerase II initiation/poised/elongation (orange), Rest/Co-Rest (magenta), TET1/OGT/SIN3A 

/OGT/SIN3A (light orange), NuRD (cyan), CTCF/Cohesin complex (green).  

 

Figure 3. Co-location subnetwork of cytosine modifications and their direct interactors. 

Subnetwork extracted from Figure 2 with the three cytosine modifications and their direct 

interactors. The connections relevant in each one of the 20 chromatin states are shown with 

different colors (see legend). Dashed lines indicate negative interactions. 

 

Figure 4. A co-evolutionary network of chromatin related proteins. 

(a) Co-evolutionary coupled proteins are connected by black lines, with thicker lines for stronger 

couplings. Proteins belonging to different epigenetic complexes are represented in colored boxes: 

CTCF/Cohesin complex (green box), Polycomb-PRC1/2 (red), NANOG/SOX2/OCT4/TCF3 

(pink), Mediator (yellow), TET1/OGT/SIN3A (light orange), NuRD (cyan), RNA polymerase II 

initiation/poised/elongation (orange), Setdb1 (grey).  

(b) Subnetwork of co-evolving proteins (white nodes) that co-locate with cytosine modifications 

(green nodes). Red lines indicate pairs of co-evolving proteins. Black lines indicate co-location. 
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