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Abstract 

Alternative splicing plays an essential role in many cellular processes and bears major 

relevance in the understanding of multiple diseases, including cancer. High-throughput RNA 

sequencing allows genome-wide analyses of splicing across multiple conditions. However, 

the increasing number of available datasets represents a major challenge in terms of 

computation time and storage requirements. We describe SUPPA, a computational tool to 

calculate relative inclusion values of alternative splicing events, exploiting fast transcript 

quantification. SUPPA accuracy is comparable and sometimes superior to standard methods 

using simulated as well as real RNA sequencing data compared to experimentally validated 

events. We assess the variability in terms of the choice of annotation and provide evidence 

that using complete transcripts rather than more transcripts per gene provides better estimates. 

Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve 

accuracies as high as using quantification of known transcripts, but remains comparable to 

existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard 

methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a 

much higher speed than existing methods without compromising accuracy, thereby 

facilitating the systematic splicing analysis of large datasets with limited computational 

resources. The software is implemented in Python 2.7 and is available under the MIT license 

at https://bitbucket.org/regulatorygenomicsupf/suppa. 

Contact: eduardo.eyras@upf.edu 

Supplementary Information: available at 

https://bitbucket.org/regulatorygenomicsupf/suppa/downloads/Supplementary_Data.zip 
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Introduction 

Alternative splicing plays an important role in many cellular processes and bears major 

relevance in the understanding of multiple diseases, including cancer (David & Manley 2010, 

Ward & Cooper 2010). Numerous genome wide surveys have facilitated the description of the 

alternative splicing patterns under multiple cellular conditions and disease states. These 

studies are generally based on the measurement of local variations in the patterns of splicing, 

encoded as events, and have carried out using microarrays (Thorsen et al. 2008, Lapuk et al. 

2010, Misquitta-Ali et al. 2011), RT-PCR platforms (Klinck et al. 2008, Simpson et al. 2008), 

or RNA sequencing (Pan et al. 2008, Wang et al. 2008). The description of alternative 

splicing in terms of events facilitates their experimental validation using PCR methods and 

the characterization of regulatory mechanisms using sequence analysis and biochemical 

approaches (Bechara et al. 2013, Raj et al. 2014); and they provide a valuable description for 

predictive and therapeutic strategies (Xiong et al. 2014, Hua et al. 2015). Events are generally 

defined as local variations of the exon-intron structure that can take two possible 

configurations, and are characterized by an inclusion level, also termed PSI or Ψ, which 

measures the fraction of mRNAs expressed from the gene that contain an specific form of the 

event (Venables et al. 2008, Wang et al. 2008). In terms of sequencing reads, Ψ is usually 

defined as the ratio of the density of inclusion reads to the sum of the densities of inclusion 

and exclusion reads (Wang et al. 2008, Shen et al. 2012). Initial methods to estimate Ψ values 

were based on reads from junction, exons or both (Pan et al. 2008, Wang et al. 2008, Sultan et 

al. 2008). Later methods were developed that take into account the uncertainty of 

quantification from single experiments (Katz et al. 2010), the comparison of two conditions 

(Katz et al. 2010, Griffith et al. 2010, Shen et al. 2012, Wu et al. 2011, Shi et al. 2013), as 

well as multiple replicates per condition (Shen et al. 2012, Brooks et al. 2011, Singh et al. 

2011, Hu et al. 2013) and paired-replicates (Shen et al. 2014). 

Current tools to process RNA sequencing data to study alternative splicing events can take 

more than a day to analyze a single sample and often require excessive storage, so they are 

not competitive to be applied systematically to large data sets, unless access to large 

computational resources is granted. In particular, methods for estimating Ψ values generally 

involve the mapping of reads to the genome or to a library of known exon-exon junctions, 

both of which require considerable time and storage. Additionally, accuracy is often achieved 
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at the cost of computing time. All this represents a major obstacle for the analysis of large 

datasets, and in particular, for the re-analysis of public data and updates with new annotations 

or assembly versions. More importantly, these analyses remain unfeasible at small labs with 

limited computational resources. On the other hand, recent developments in the quantification 

of known transcripts have shown that considerable accuracy can be achieved at high speed (Li 

et al. 2011, Roberts et al. 2013, Patro et al. 2014, Zhang et al. 2014). This raises the question 

of whether fast transcript abundance computation could be used to obtain accurate estimates 

of Ψ values for local alternative splicing events genome wide.  

In this article we describe SUPPA, a computational tool to leverage fast transcript 

quantification for rapid estimation of Ψ values directly from the abundances of the transcripts 

defining each event. Using simulated data we show that Ψ values estimated by SUPPA, 

coupled to Sailfish or RSEM transcript quantification, are closer to the ground-truth than two 

standard methods, MATS and MISO. Additionally, using an experimentally validated set and 

matched RNA-Seq data we show that SUPPA achieves slightly superior or comparable 

accuracy compared with MATS and MISO. We further assess the variability in terms of the 

choice of annotation and provide evidence that using complete transcripts rather than more 

transcripts per gene in the annotation provide better estimates. Moreover, we show that 

SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies 

as high as using the quantification of known transcripts, but remains comparable to existing 

methods. Finally, speed benchmarking provides evidence that SUPPA can obtain Ψ values at 

a much higher speed than existing methods. We argue that coupled to a fast transcript 

quantification method, SUPPA provides a fast and accurate approach to systematic splicing 

analysis. SUPPA facilitates the accurate splicing analysis of large datasets, making possible 

for labs with limited computational resources to exploit data from large genomics projects and 

contribute to the understanding of the role of alternative splicing in cell biology and disease. 
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Results 

 

SUPPA 

SUPPA provides an effective and easy-to-use software to calculate the inclusion levels (Ψ) of 

alternative splicing events exploiting transcript quantification (Figure 1A). An alternative 

splicing event is a local summary representation of the exon-intron structure from the 

transcripts that cover a given genic region, and is generally represented as a binary form, 

although more complex variations may happen. Accordingly, an event can be characterized in 

terms of the sets of transcripts that describe either form of the event, which can be denoted as 

F1 and F2. For instance, for an exon-skipping event, F1 represents the transcripts that include 

the exon, whereas F2 represents the transcripts that skip the exon. The inclusion value (Ψ) of 

an event is defined as the ratio of the abundance of transcripts that include one form of the 

event, F1, over the abundance of the transcripts that contain either form of the event, F1∪F2 

(Venables et al. 2008, Wang et al. 2008, Katz et al. 2010, Shen et al. 2012). Given the 

abundances for all transcripts isoforms, assumed without loss of generality to be given in 

transcript per million units (TPM) (Li et al. 2010), which we denote as TPMk, SUPPA then 

calculates Ψ for an event as follows: 

   

SUPPA provides the identifiers for the transcripts that describe either form of the event, 

which in combination with the transcript quantification is used to obtain the Ψ values using 

formula (1) (Figure 1A). SUPPA is agnostic of the actual methodology for quantifying 

transcripts and can read the quantification from multiple experiments from a single input. 

SUPPA generates different alternative splicing events types from an input annotation file in 

GTF format: exon skipping (SE), alternative 5’ and 3’ splice-sites (A5/A3), mutually 

exclusive exons (MX), intron retention (RI), and alternative first and last exons (AF/AL) 

(Figure 1B). The Ψ value for an event is calculated with respect to one of the two forms of the 

event (Figure 1B). Further details and options of the software are given at 

https://bitbucket.org/regulatorygenomicsupf/suppa/.  

 

Ψ = TPMk
k∈F1

∑ TPM j
j∈F1∪F2

∑        (1)
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Accuracy analysis with simulated data 

Transcript abundances and corresponding paired-end reads were simulated using 

FluxSimulator (Griebel et al. 2012) with the RefSeq annotation as reference (Methods) 

(Supplementary Table 2). The reference set for accuracy analysis was built using events in 

genes with only two alternative transcripts in the RefSeq annotation that did not overlap any 

other events. In these cases, the Ψ of the event is identical to the relative abundance of one of 

the two transcripts. The ground-truth Ψ values were then defined to be the relative 

abundances of the transcripts isoforms in these genes, where the transcript abundances were 

taken to be the simulated abundances. Simulated RNA-Seq reads were mapped to the genome 

and used to calculate ΨMISO and ΨMATS values with MISO (Katz et al. 2010) and MATS (Shen 

et al. 2011), respectively (Methods). The same simulated reads were also used to quantify 

transcript abundances with Sailfish (Patro et al. 2014) and RSEM (Li et al. 2011), and ΨSailfish 

and ΨRSEM values were then calculated with SUPPA (Methods). Only genes with total 

transcripts per million (TPM) abundance, calculated as the sum of the TPM of its transcripts, 

greater than 1 were considered. This resulted in a set of 144 events (Supplementary Data 1). 

Comparing the four sets of estimated Ψ values with the ground-truth, the ΨSailfish and ΨRSEM 

values calculated with SUPPA show the highest correlations (Table 1) (Figure 2A). 

Moreover, calculating how different the estimated Ψ values are from the ground-truth, 

SUPPA Ψ values (ΨSailfish and ΨRSEM) show the closest behaviour, followed by MISO and 

MATS, which behave similarly (Figure 2B). 

 

Accuracy analysis with experimentally validated events 

To further validate the calculation of Ψ values with SUPPA, we used a set of 163 alternative 

splicing events validated by RT-PCR in MDA-MB-231 cells under two conditions: with 

overexpression of the splicing factor ESRP1 (ESRP1) and with an empty vector (EV) (Shen et 

al. 2012). We used the RNA-Seq data obtained from the same samples (Shen et al. 2012) to 

predict the Ψ values as before. From both RNA-Seq datasets we quantified the RefSeq 

transcripts using Sailfish and RSEM, and calculated the SUPPA ΨSailfish and ΨRSEM values. 

RNA-Seq reads were mapped to the genome to run MISO and MATS to obtain the 

corresponding Ψ values (Methods). From the 163 validated events, we finally compared those 
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60 that were present in the RefSeq annotation and for which we had Ψ values for all methods 

(Supplementary Data 2). Sailfish+SUPPA and RSEM+SUPPA show an overall slightly better 

correlation than the other methods for the ESRP1 sample, whereas RSEM+SUPPA and 

MATS show the best correlations for the EV sample (Table 1) (Figure 3A). Although 

RSEM+SUPPA shows the highest correlations in all cases, Sailfish+SUPPA correlations are 

comparable to the rest. Calculating the absolute difference between the estimated and the 

experimental Ψ values for each event, we observe that SUPPA, either combined with Sailfish 

or RSEM, is more accurate than MISO and MATS (Figure 3B). Performing the same analysis 

using the Ensembl annotation, comparing a total of 91 events common to all approaches, we 

observe a general decrease of accuracy in all methods  (Table 1) (Supplementary Figure 1). 

 

Variability associated to replicates and annotation choice 

To study how the choice of annotation may impact the accuracy of Ψ estimation, we obtained 

RNA from two biological replicates for the cytosolic fractions of MCF7 and MCF10 cells and 

performed sequencing using standard protocols. Correlation between replicates of the SUPPA 

Ψ values, using quantification with Sailfish on the RefSeq annotation, is high in all 

comparisons (Person R ~0.86-0.89) (Supplementary Figure 2). Furthermore, restricting this 

analysis to genes with TPM>1, calculated as the sum of the TPMs from all transcripts in each 

gene, the correlation between replicates increases (Pearson R~0.95-0.97) (Supplementary 

Figure 2). We then compared the results obtained using SUPPA with the quantifications on 

the RefSeq and Ensembl transcripts. SUPPA Ψ values were calculated using both replicas of 

the cytosolic MCF7 RNA-Seq data (similar results were observed for MCF10, data not 

shown). The comparisons were performed using the 9301 (MCF7, replica 1) and 9287 

(MCF7, replica 2) events that were found in both annotations, and not overlapping with other 

events from the same replica. We observe variability in the estimation of Ψ between 

annotations that does not depend on the difference in the number of transcripts used for Ψ 

calculation (Figure 4A). Similarly, this variability is also independent of the difference in the 

number of transcripts annotated in the gene in which the event is contained (Supplementary 

Figure 3). Moreover, the disparity in Ψ estimates is also independent of the mean expression 

of the gene in which the event is contained (Figure 4B). On the other hand, the dispersion of 

Ψ estimates comparing replicas and using the same annotation decreases with the mean 
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expression of the gene (Figure 4C), which at low expression it is comparable to the dispersion 

for Ψ estimates as a result of differences in annotation (Figures 4A and 4B).   

 

Annotation-free estimation 

The previous analyses suggest that incomplete annotations may lead to inaccurate transcript 

quantification, which will have in turn a negative impact on the Ψ estimates by SUPPA. 

Methods for de novo transcript reconstruction facilitate the discovery of new transcripts 

missing from the annotation and the completion of existing ones from RNA-Seq reads 

(Trapnell et al. 2010, Li et al. 2011b, Li et al. 2011c, Li et al. 2012, Mezlini et al. 2012, Behr 

et al. 2013, Tomescu et al. 2013, Rossell et al. 2014, Maretty et al. 2014). As these methods 

produce an annotation of transcripts and their corresponding abundances, their output can be 

used with SUPPA to calculate alternative splicing events and their Ψ values. They thus 

provide an opportunity to assess whether a de novo prediction of transcripts structures and 

subsequent quantification from RNA-Seq data may lead to more accurate Ψ values than using 

a fixed annotation. To test this, we run Cufflinks with the de novo options with RNA-Seq data 

from the ESRP1 and EV samples (Methods). Using the resulting annotation, we calculated all 

possible alternative splicing events and their contributing transcripts with SUPPA. Similarly, 

we calculate the Ψ with MATS and MISO using the same reads mapped to the genome, this 

time guided by the Cufflinks annotation. We then compared the Ψ values obtained for the 

events in common with the experimentally validated set (Shen et al. 2012): 82 for ESRP1 and 

47 for EV (Supplementary Data 3). We observe that for all approaches the correlation of Ψ 

values decreases (Table 2). The ΨCufflinks values obtained with SUPPA (Figure 5) (Table 2) are 

comparable to the values obtained using the Ensembl annotation (Table 1). Moreover, we 

recalculated the transcript quantification using Sailfish on the Cufflinks annotations, but 

found no improvement (Table 2).  

 

Speed benchmarking 

The time needed by each methodology to obtain the Ψ values from a FastQ file depends on 

multiple different steps. To make a comparative assessment of computation times we broke 
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down the benchmarking into three different tasks, equivalent to the three necessary steps for 

the SUPPA analysis. The first step involves the calculation of alternative splicing events from 

an annotation file, which only needs to be carried once for a give annotation. To calculate 

66577 alternative splicing events from the Ensembl 75 annotation (37494 genes, 135521 

transcripts), SUPPA generateEvents took 20 minutes, whereas to calculate 16714 alternative 

splicing events from the RefSeq annotation (25937 genes, 48566 transcripts), it took 3 

minutes.  

The second step consists in the assignment of reads to transcripts and/or genomic positions. 

For the purpose of speed benchmarking of read-assignment to transcripts, although transcript 

abundance estimation includes extra computation steps, we considered the transcript 

quantification by Sailfish to be approximately equivalent to the read mapping to a reference 

genome. To perform this speed comparison we used the synthetic data (45 millions of paired-

end reads) and both (ESRP1 and EV) RNA-Seq samples from the MDA-MB-231 cells pooled 

together (256 millions of single-end reads), and used STAR (Dobin et al. 2012) and TopHat 

as a comparison. Sailfish and STAR are the fastest to assign reads to their likely molecular 

sources, compared to TopHat and RSEM (Figure 6A).  

The third and final step is the Ψ calculation from either transcript quantification (SUPPA) or 

from the mapped reads (MISO and MATS). SUPPA psiPerEvent operation took less than a 

minute to produce an output size of 1Mb for 16714 events and was >1000 times faster than 

MISO and MATS on the same datasets (Figure 6B). In summary, the total time from the raw 

reads in FastQ format to the Ψ values for Sailfish + SUPPA against the RefSeq annotation-

derived events took 214 (~ 3,5 mins) and 4022 (~ 1h) seconds for the synthetic and the MDA-

MB-231 samples, respectively. We conclude that when used in conjunction with Sailfish, 

SUPPA is much faster than MISO and MATS, even if an ultra-fast aligner such as STAR 

(Dobin et al. 2012) is used for read mapping to the genome. 

 

Discussion 

We have described SUPPA, a tool to calculate alternative splicing events from a given 

annotation and to estimate their Ψ values from the quantification of the transcripts that define 

the events. Using synthetic and experimental data, we have shown that SUPPA accuracy is 
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generally comparable to and sometimes higher than other frequently used methods. 

Importantly, SUPPA can obtain Ψ values at a much higher speed without compromising 

accuracy. Moreover, SUPPA needs very little configuration, requires a small number of 

command lines for preprocessing and running and has no dependencies on Python libraries.  

Although RNA-Seq data presents a number of systematic biases that need correction for 

accurate transcript quantification (Hansen et al. 2010, Li et al. 2010, Roberts et al. 2011), we 

did not observe differences in the accuracy of SUPPA when comparing corrected or 

uncorrected transcript quantification with Sailfish (data not shown). In fact, previous reports 

have already indicated that bias correction in RNA-Seq data does not influence the estimation 

of Ψ values (Shen et al. 2012, Zhao et al. 2013). On the other hand, we did observe that there 

is variability in the estimation of Ψ values associated to the choice of annotation. In the 

benchmarking using experimental data, using Ensembl annotation provides slightly worse 

accuracy than using RefSeq annotation, and this behaviour is consistent amongst all the tested 

methods. Interestingly, the observed variability between annotations does not depend on the 

difference in the number of transcripts per gene, on the number of transcripts used to describe 

the events, or on the expression of the gene in which the event is contained. On the other 

hand, the observed variability is comparable to the expected variability for lowly expressed 

genes between biological replicates. Such variability is in fact also frequently observed in 

transcript quantification methods (Patro et al. 2014, Maretty et al. 2014). It should be noted 

that RefSeq annotation includes less transcripts per gene than Ensembl, but these transcripts 

are mostly full-length mRNAs. In particular, RefSeq transcripts generally include complete 

untraslated regions, which generally hold a large contribution of the reads coming from a 

transcript, whereas a large proportion of Ensembl transcripts may be incomplete. These facts, 

together with our results, suggest that the completeness of the transcript structures, rather than 

the number of transcripts in genes, is determinant for an accurate estimate of transcript 

abundances, and consequently, for the correct estimate of event Ψ values with SUPPA.  

Although SUPPA at the moment SUPPA generates the most common types of events, its 

model can be potentially expanded to more complex events, possibly involving more than two 

possible conformations. However, these complex events may not always be easy to test 

experimentally. On the other hand, the complexity may not always have to do with the 

number of possible conformations, but rather with a binary change that cannot be easily 
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described in terms of just one or two exon boundary changes, as described recently for the 

gene QKI in lung adenocarcinomas (Sebestyen et al. 2015). We argue that a large proportion 

of the relevant splicing variation can be encapsulated with the binary events described by 

SUPPA and that more complex variations may be better described using transcript isoform 

changes (Sebestyen et al. 2015). Although SUPPA is limited to the splicing events available 

in the gene annotation, events can be expanded with novel transcript variants obtained by 

other means, like de novo transcript reconstruction and quantification methods. In this case 

we observed accuracies similar to the tests performed with the Ensembl annotations but lower 

than when using the RefSeq annotations. Moreover, performing quantification on the 

reconstructed transcripts using a different method does not improve the accuracy, indicating 

there is still a limitation on how well we can recover the right exon-intron structures de novo 

from RNA-Seq.  

As transcript reconstruction and quantification methods improve in accuracy and methods for 

RNA sequencing increase their efficiency and reliability, our knowledge of the census of 

RNA molecules in cells will keep on progressing. Although single molecule sequencing 

methods may eventually lead to the abandonment of transcript reconstruction methods, they 

are still costly and error prone, and quantification still relies on short read sequencing. 

Transcript quantification methods will therefore continue to be an essential component in the 

description of the abundance of RNA molecules in cells. As fast reliable methods still depend 

on the annotation, future efforts may perhaps focus on improving transcript annotations under 

multiple conditions. In parallel to these advances, the local description of alternative splicing 

in terms of events will remain a valuable description RNA variability in genes in the context 

of studies of RNA regulation (Bechara et al. 2013, Raj et al. 2014) and of predictive and 

therapeutic strategies (Xiong et al. 2014, Hua et al. 2015). 

In summary, when coupled to a fast transcript quantification method, SUPPA outperforms 

other methods in speed without compromising the accuracy. This is of special relevance when 

analyzing large amount of samples. Accordingly, SUPPA facilitates the systematic analyses 

of alternative splicing in the context of large-scale projects using limited computational 

resources. We conclude that SUPPA provides a method to leverage fast transcript 

quantification for efficient and accurate alternative splicing analysis for a large number of 

samples.  
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Methods 

 

Alternative splicing events 

The Ensembl annotation (Release 75) (Flicek et al. 2014) and the RefSeq annotation (NM_ 

and NR_ transcripts) (Pruitt et al. 2014) (assembly hg19) were downloaded in GTF format 

from the Ensembl FTP server and the UCSC genome table browser, respectively. All 

annotations on chromosomes other than autosomes or sex chromosomes were removed. In 

total, 37,494 genes and 135,521 transcripts were obtained for the Ensembl annotation, while 

25,937 genes and 48,566 transcripts were obtained for the RefSeq annotation. We applied 

SUPPA to each annotation to obtain 16714 and 66577 events from RefSeq and Ensembl, 

respectively, including exon skipping (SE), alternative 5’ and 3’ splice-sites (A5/A3), 

mutually exclusive exons (MX), and intron retention (RI) events (Supplementary Table 1). 

Alternative first (AF) and last exons (AL) were not included in the analysis but can be also 

computed with SUPPA. Each event has a unique identifier that includes the gene symbol, the 

type of event, and the coordinates and strand that characterize the event:  

<gene_id>;<event_type>:<seqname>:<coordinates_of_the_event>:strand 

where gene_id, seqname and strand are obtained directly from the input annotation in GTF, 

seqname is the field 1 from the GTF file, generally the chromosome. The field 

coordinates_of_the_event is defined by start and end coordinates that define the event_type 

(SE, MX, A5, A3, RI, AF, AL).  

RNA sequencing data 

A total of 45 million 2x50bp paired-end simulated reads were generated using FluxSimulator 

(Griebel et al. 2012) (parameter file described in Supplementary Table 2). RNA sequencing 

data from (Shen et al. 2012) was also used, corresponding to ESRP1-overexpression (ESRP1) 

and empty-vector (EV) experiments in MBA-MD-231 cells, available from the short read 

archive (SRA) under id SRX122589. Moreover, RNA sequencing was also performed in 

duplicate on cytosolic fractions of MCF7 and MCF10 cells using standard protocols 

(Supplementary Material), available at SRA under id SRP045592. 
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Read mapping and PSI quantification 

Read mapping to the genome was performed with the MATS pipeline (Shen et al. 2012), 

which uses TopHat (Trapnell et al. 2009) and an input annotation to map the reads. Reads 

mapping to de novo splice junctions were allowed, and those reads mapping to more than one 

genomic position were filtered out. For benchmarking, the same annotation used for transcript 

quantification was also used for read mapping to the genome in each of the comparisons 

(RefSeq, Ensemb or de novo Cufflinks). The mapping pipeline was run on simulated and real 

RNA-Seq reads. Mapped reads for each of the datasets were used with MATS, to obtain 

ΨMATS values for the different alternative splicing events (Supplementary Table 3). Similarly, 

mapped reads in SAM format were converted to BAM format and then sorted with samtools 

(Li et al. 2009) and analysed with MISO (Katz et al. 2010) to calculate the ΨMISO values for 

each of the datasets (Supplementary Table 4). 

Sailfish (Patro et al. 2014) and RSEM  (Li et al. 2011) were used to quantify all transcripts in 

the Ensembl and RefSeq annotations using the simulated and the real RNA-Seq datasets. The 

FASTA sequences of the transcripts corresponding to the same annotation as the GTF 

described earlier, were downloaded and used to generate the Sailfish index, selecting a k-mer 

size of 31 to minimize the number of reads assigned to multiple transcripts. Sailfish was then 

run using the FASTQ files for each read set and uncorrected and corrected (for sequence 

composition bias and transcript length) TPMs were calculated (Patro et al. 2014). RSEM was 

run as described previously (Li et al. 2011). The psiPerEvent operation of SUPPA was used 

to calculate the ΨSailfish and ΨRSEM values from the transcript quantifications obtained by 

Sailfish and RSEM, respectively, for the alternative splicing events generated before, using 

the simulated and real datasets. The number of events for which SUPPA estimated a ΨSailfish 

or ΨRSEM values are given in Supplementary Tables 5 and 6. For the purpose of 

benchmarking, the PSI values obtained from SUPPA (ΨSailfish and ΨRSEM), from MATS 

(ΨMATS) and from MISO (ΨMISO) for those events identified by all methods in each of the 

experiment, were compared with the simulated or the experimental values. Details of the 

commands used to run the different analyses are provided in Supplementary Tables 7-10. 

Supplementary data files with the alternative splicing events used in each on of the 

comparisons tested can be found at 

https://bitbucket.org/regulatorygenomicsupf/suppa/downloads/Supplementary_Data.zip 
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Cufflinks analysis 

The BAM files from 2 the MBA-MD-231 datasets were used to run Cufflinks (Trapnell et al. 

2010) in order to generate and quantify transcriptome annotations de novo. The same read 

mapping as before was used. A total of 47211 transcripts were predicted and quantified for 

the ESRP1 dataset, whereas 37699 transcripts were predicted and quantified for the EV 

dataset. SUPPA generateEvents operation was then run on the GTF annotation generated by 

Cufflinks to calculate all the exon skipping events. This produced a total of 2566 and 2139 

exon skipping events for the ESRP1 and EV datasets, respectively. Finally, SUPPA 

psiPerEvent operation was used to calculate the ΨCufflinks values from the transcript 

quantification obtained by Cufflinks. For MISO and MATS, reads were mapped with the 

MATS pipeline using the Cufflinks annotation as input, and ΨMATS and ΨMISO were estimated 

as before. Additionally, Cufflinks reconstructed transcripts were used with SUPPA to 

quantify them from the same RNA-Seq data and to calculate Ψ values with SUPPA as before. 

The events common to all methods and coinciding with the experimentally validated ones 

were used for the benchmarking.  

Time benchmarking 

All tools were run on the same node of an Oracle Grid Engine cluster, with 98Gb of RAM 

memory and 24 AMD Opteron (1.4 GHz) processors. All tools were run in multi-threaded 

mode when possible, but time reported is the actual cumulative time the process used across 

all CPUs.  
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Tables 

Annotation  Dataset Sailfish+SUPPA RSEM+SUPPA MATS MISO 

  Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

RefSeq Synthetic 0,971 0,959 0,987 0,978 0,833 0.819 0,862 0,815 

 ESRP1 0,778 0,769 0,795 0,779 0,763 0,753 0,701 0,715 

 EV 0,767 0,766 0,808 0,823 0,805 0,815 0,765 0,782 

Ensembl ESRP1 0,633 0,627 0,682 0,673 0,723 0,715 0,708 0,691 

 EV 0,608 0,613 0,664 0,668 0,794 0,790 0,747 0,774 

Table 1. First row: Correlation values (Spearman and Pearson) between the estimated and ground-truth Ψ values 

using simulated data. The comparison involves 144 events (Supplementary Data 1). Second and third rows: 

correlation values (Spearman and Pearson R) between the estimated Ψ values from ESRP1-overexpressed 

(ESRP) and empty-vector (EV) RNA-Seq datasets and the RT-PCR validation for the same samples (Shen et al. 

2012). This comparison involves the 60 events that were in the RefSeq annotation and had a Ψ value from every 

method (Supplementary Data 2). 
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 Cufflinks+SUPPA Cufflinks+Sailfish+SUPPA MATS MISO 

 Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

ESRP1 0,613 0,627 0,549 0,582 0,622 0,610 0,605 0,611 

EV 0,659 0,650 0,597 0,602 0,709 0,701 0,630 0,604 

Table 2. Correlation values (Spearman and Pearson R) between the estimated Ψ values from ESRP1-

overexpressed (ESRP) and empty-vector (EV) RNA-Seq datasets and the RT-PCR validation for the same 

samples (Shen et al. 2012). This comparison involves 83 events in the ESRP1 sample and 47 in the EV sample, 

which can be found in Supplementary Data 3.  

 

Figure legends 

 

Figure 1. SUPPA pipeline. (A) SUPPA calculates possible alternative splicing events with 

the operation generateEvents from an annotation, which can be obtained from a database or 

built from RNA-Seq data using a transcript reconstruction method. For each event, the 

transcripts contributing to either form of the event are stored and the calculation of the Ψ 

value per sample for each event is performed using the transcript abundances per sample 

(TPMs) (Methods). From one or more transcript quantification files, SUPPA calculates for 

each event the Ψ value per sample with the operation psiPerEvent. SUPPA can use transcript 

quantification values obtained from any method. (B) Events generated from the annotation are 

given an unique identifier that includes a code for the event type (SE, MX, A5, A3, RI, AF, 

AL) and a set of start (s) and end (e) coordinates that define the event (shown in the figure) 

(Methods). In the figure, the form of the alternative splicing event that includes the region in 

black is the one for which the relative inclusion level (Ψ) is given: for SE, the PSI indicates 

the inclusion of the middle exon; for A5/A3, the form that minimizes the intron length; for 

MX, the form that contains the alternative exon with the smallest start coordinate (the left-

most exon) regardless of strand; for RI, the form that retains the intron; and for AF/AL, the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 26, 2015. ; https://doi.org/10.1101/008763doi: bioRxiv preprint 

https://doi.org/10.1101/008763
http://creativecommons.org/licenses/by/4.0/


 

form that maximizes the intron length. The gray area denotes the alternative form of the 

event. 

 

 

Figure 2. Benchmarking with simulated data. (A) Correlation of the ground-truth Ψ values 

(Methods) with those estimated with Sailfish+SUPPA using simulated data. The blue line and 

gray boundaries are the fitted curves with the LOESS regression method. (B) Cumulative 

distribution of the absolute difference between the ground-truth Ψ values and the ones 

estimated with Sailfish+SUPPA (SAILFISH), RSEM+SUPPA (RSEM), MISO and MATS. 

The lines describe the proportion of all events tested (Cumulative percent, y-axis) that are 

predicted at a given maximum absolute difference from the ground-truth value (ΔΨ, x-axis). 

 

Figure 3. Benchmarking using experimentally validated events. (A) Correlation of the 

experimental Ψ values with those estimated with Sailfish+SUPPA in MDA-MB-231 cells 

with (ESRP1, left panel) and without (EV, right panel) ESRP1 overexpression. Experimental 

Ψ values were obtained using RT- PCR (Shen et al. 2012) and estimated Ψ were obtained 

from RNA-Seq data from the same samples (Shen et al. 2012). The blue line and gray 

boundaries are the fitted curves with the LOESS regression method. (B) Cumulative 

distribution of the absolute difference between the same experimental Ψ values and the ones 

estimated with Sailfish+SUPPA (SAILFISH), RSEM+SUPPA (RSEM), MISO and MATS 

from RNA-Seq data from the same samples (Shen et al. 2012). The lines describe the 

proportion of all events (Cumulative percent, y-axis) that are calculated at a given maximum 

absolute difference from the RT-PCR value (ΔΨ, x-axis). 

 

Figure 4. Annotation dependencies. Boxplots of the difference of Ψ values estimated by 

SUPPA for Ensembl and RefSeq annotations from Sailfish quantification (y axis) as a 

function of (A) the difference in the number of transcripts defining each event in Ensembl and 

RefSeq or as a function of (B) the mean expression of the gene in which the event is 

contained. The x-axis in (B) is grouped into 10 quantiles according in the log10(TPM) scale. 

The variability is represented for both replicates (7C1 and 7C2) of the cytosolic RNA-Seq 
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data from MCF7 cells. (C) Boxplots of the distribution of Ψ differences between replicates 

for the estimates from the Ensembl (left panel) and RefSeq (right panel) annotations as a 

function of the mean expression genes (x-axis), grouped into 10 quantiles in the log10(TPM) 

scale, using genes with TPM>0. Mean expression is calculated as the average of the 

log10(TPM) for the each gene in the two replicates for (C) or for the each gene in the two 

annotations in (B). 

 

Figure 5. Annotation-free PSI estimation. Correlation of the experimental Ψ values with 

those estimated with Cufflinks de novo + SUPPA in MDA-MB-231 cells with (ESRP1, left 

panel) and without (EV, right panel) ESRP1 overexpression. Experimental Ψ values were 

obtained by RT-PCR (Shen et al. 2012) and estimated PSIs were obtained from RNA-Seq 

data in the same samples (Shen et al. 2012). The blue line and gray boundaries are the fitted 

curves using the LOESS regression method. 

 

Figure 6. Speed benchmarking. (A) Time performance for read assignment/mapping to 

transcript/genome positions by RSEM, Sailfish, STAR and TopHat on the synthetic as well as 

the ESRP1 and EV RNA-Seq datasets separately (Methods). RSEM and Sailfish include the 

transcript quantification operation. (B) Time performance for the Ψ value calculation from the 

already mapped reads (MATS, MISO) or quantified transcripts (SUPPA). ESRP1 and EV 

samples were pooled for this benchmarking (MDA-MB-231). MATS time includes the 

calculation of the ΔΨ between samples, which we could not separate from the Ψ calculation 

(Shen et al. 2012). All tools were run in multi-threaded mode when possible. Time reported 

for all cases is the actual cumulative time the process used across all threads (Methods). 
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