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Breast cancer comprises multiple tumor entities associated with different biological features

and clinical behaviors, making individualized medicine a powerful tool to bring the right

drug to the right patient. Next generation sequencing of RNA (RNA-Seq) is a suitable method

to detect targets for individualized treatment. Challenges that arise are i) preprocessing and

analyzing RNA-Seq data in the n-of-1 setting, ii) extracting clinically relevant and action-

able targets from complex data, iii) integrating drug databases, and iv) reporting results to

clinicians in a timely and understandable manner. To address these challenges, we present

OncoRep, an RNA-Seq based n-of-1 reporting tool for breast cancer patients. It reports

molecular classification, altered genes and pathways, gene fusions, clinically actionable mu-

tations and drug recommendations. It visualizes the data in an approachable html-based

interactive report and a PDF clinical report, providing the clinician and tumor board with

a tool to guide the treatment decision making process. OncoRep is free and open-source,

thereby offering a platform for future development and innovation by the community.
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Introduction

Breast cancer is the leading cause of cancer among females making up 23% of total cancer deaths1.

It is a heterogenous disease comprising multiple tumor entities associated with distinctive histolog-

ical patterns, different biological features and clinical behaviors2, 3. This is driven by the fact that

different breast cancer subtypes are characterized by distinct molecular, genetic, epigenetic, and

transcriptional patterns (e.g. gene amplifications, in-frame fusion genes or mutations, homozygous

deletions, disrupting fusions and deleterious mutations)4. Five year survival rates from the time of

diagnosis range from 98 percent (localized cancer) to 24 percent (metastatic cancer). Twenty per-

cent of patients who completed either adjuvant or neoadjuvant systemic therapy had a recurrance

of the disease within 10 years after treatment 5, 6

Molecularly profiling breast cancer tumors takes advantage of the genomic characteristics of

the tumor to improve the chances of patient response to targeted agents. This enables stratification

of patients based on their molecular alterations. Therapies targeting specific genomic alterations

have been shown to be effective in treating specific subgroups of breast cancer patients. Examples

of targeted therapies include the efficacy of Trastuzumab in HER2-amplified breast cancers, the

mTOR inhibitor Everolimus in hormone receptor positive, HER2-negative patients, and the PARP

inhibitor Olaparib in patients whose tumors harbor BRCA1/2 mutations7–10. However, the transition

to an individualized medicine approach, in which one selects the optimal treatment for a patient

based on genomic information remains challenging. One of the main challenges is the translation

of tumor genome-based information into clinically actionable findings. This relies not only on the
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identification of biologically relevant alterations that can be used as therapeutic targets or predictive

biomarkers4, but also on the availability of appropriate reporting tools. These reporting tools need

to integrate the wealth of genomic data and make it usable in a routine clinical setting. This will

provide additional treatment options based on the genetic nature of the patient’s tumor, enabling

true individualized cancer medicine.

Gene expression profiling using RNA-sequencing (RNA-Seq) is an ideal tool to assess the

molecular heterogeneity of breast cancer to inform individualized medicine. It enables the estima-

tion of transcript abundance, the detection of altered genes and molecular pathways, the detection

of fusion genes and the reliable identification of genomic variants 11–15. RNA-Seq can be performed

for nearly all breast cancer and metastatic breast cancer patients that require therapy using tissue

collected during routine biopsy. The main difficulties remaining for prospective use of RNA-Seq

in individualized breast cancer treatment are analyzing RNA-Seq data in the n-of-1 setting and the

lack of an open source reporting tool providing clinically actionable information.

To address these challenges, we developed OncoRep, an open-source RNA-Seq based report-

ing framework for breast cancer individualized medicine https://bitbucket.org/sulab/

oncorep. It can be used as part of the reproducible, automated next generation sequencing

pipeline Omics Pipe16, it can be used as a standalone reporting tool and it can be adapted to exist-

ing sequencing pipelines. OncoRep includes molecular classification, detection of altered genes,

detection of altered pathways, identification of gene fusion events, identification of clinically ac-

tionable mutations (in coding regions) and identification of target genes. Furthermore, OncoRep
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reports drugs based on identified actionable targets, which can be incorporated into the treatment

decision making process. To demonstrate the feasibility of OncoRep, we produced reports based

on the mRNA profiles of 17 breast tumor samples of three different subtypes (TNBC, non-TNBC

and HER2-positive) which have been previously analysed and described17–19.

Results

OncoRep was integrated as an RNA-seq Cancer Report pipeline in Omics Pipe16 which handles

the processing of the raw RNA-seq data in an automated and parallel manner on a compute cluster.

After the data were processed, the results files from each step and the patient specific meta data

were automatically processed by OncoRep to produce a summary report for each patient. OncoRep

performs the following analyses (Figure 1): i) variant annotation; ii) gene expression estimation;

iii) differential gene expression analysis; iv) pathway analysis; v) prediction of receptor status and

molecular subtype; and vi) selection of drugs targeting dysregulated genes, variants and pathways.

OncoRep displays these results along with the results from the quality control of the raw data

and alignment, variant calling, fusion gene detection and estimation of oncogenic potential. The

R package knitr is used to produce an interactive HTML report. A PDF file containing a final

summary report is generated using the R package Sweave (Figure 2). Analyzing a single patient

sample (20-30 mio reads, 100bp, paired end) takes about one day in a cluster environment using

four nodes.
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Interactive Report The HTML report produces interactive tables that are sortable and search-

able. They can be exported as CSV files to be viewed in spreadsheet software. Gene descriptors

and drugs are linked to the respective databases for easy access to further information. Path-

ways are visualized and they are annotated with differentially expressed genes. The interac-

tive HTML reports for the 17 analyzed breast tumor samples can be viewed and browsed at

http://sulab.org/tools/oncorep-oncogenomics-report/.

PDF Report The PDF based report is generated in LATEX, making it fully customizable (Figure

2). The report, as displayed here, holds basic patient information, sample processing information

and gives a list of FDA approved drugs recommended based on the altered variants, genes and

pathways in a patient’s tumor. An appendix holds all results from the various analysis steps in

tabular form.

Quality control OncoRep provides quality control of raw RNA-Seq reads using the FastQC tool.

Basic QC results are displayed within the HTML report and linked to the detailed FastQC report

for further inspection if needed (for details see online Materials and Methods). Post alignment

QC includes computation of insert size distribution and collecting basic RNA-Seq metrics using

functionalities provided by Picard tools. The QC results and figures are presented within OncoRep.

Variant Calling Variants identified using the SNPiR pipeline15 are provided in a tabular format

in the HTML report. If available, the user is displayed with clinically relevant information on

the variants (e.g. a matching drug or the NCBI ClinVar rating). The variants are annotated us-

ing information from SnpEff20, dbNSFP21, COSMIC22, NCBI ClinVar23, CADD24, DrugBank25,
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PharmGkb26 and IntOGen27 (for details see online Materials and Methods). Furthermore, variants

are matched against SNP-drug relationships available from DrugBank and PharmGkb and possible

hits are displayed in the table.

Fusion Gene Detection Identified fusion gene candidates are provided in tabular manner in the

HTML report. The information provided includes 5’ and 3’ fusion partners, fusion description (if

available), and the the oncogenic potential prediction depicted as a p-value and expression gain/loss

(for details see online Materials and Methods).

Differential Gene Expression OncoRep filters out all genes estimated to have ’unreliable expres-

sion’ based on the expression of a background gene set of 156 genes that are not expressed in any

sample of the reference cohort (see online Materials and Methods). All remaining genes are further

analyzed. Differentially expressed genes are detected by comparing the reliably expressed genes

in the patient tumor to normal breast tissue samples. The results are presented in tabular format in

the HTML report.

Pathway Analysis Pathway analysis is conducted based on the differential expressed genes. Al-

tered pathways are presented in tabular form in the HTML report. Visualizations of the pathways

are provided with the differentially expressed genes colored based on their log2FoldChange ex-

pression compared to normal tissue.

Receptor Status OncoRep includes predictors for the three receptors ER, PR and HER2 (see

online Materials and Methods for details). A new patient sample is classified as being positive or
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negative for the expression of each receptor and the prediction probability is given. Results are

presented in tabular format in the HTML report.

Molecular Subtype OncoRep includes a predictor for the molecular subtype of the sample (Basal,

HER2, Luminal A and Luminal B). A new patient sample is classified into one of the groups and

the prediction probability is given. Results are presented in tabular manner in the HTML report.

Drug Matching OncoRep reports FDA approved compounds that target the discovered differ-

entially expressed genes, variants and pathways in the patient sample. Results are presented in

tabular manner in the HTML report. Results are linked to their DrugBank and KEGG Drug entries

for further investigation.

Discussion

In this article, we introduce OncoRep, a reporting tool that performs automated processing and

interpretation of RNA-Seq raw data from breast cancer patients. Gene expression profiling using

RNA-Seq generates vast amounts of data. This requires precise analyses and expert knowledge

to generate clinically actionable information. Without expert knowledge, it remains challenging

and time-consuming to do even simple data preprocessing and analysis. In a clinical setting, only

clinically relevant data are needed from the RNA-Seq data. We address this problem by chaining

software tools together to integrate them into a single analysis workflow that is able to deliver
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clinically digestable information within a short time span. OncoRep enables the prospective use

of transcriptomic profiles within a clinical setting by performing molecular profiling, assessing

altered genes and pathways, identifying mutations and fusion gene transcripts and by providing

drug recommendations based on actionable targets to guide the treatment decision making pro-

cess. This represents a critical first step towards individualized cancer treatment since it provides

a reproducible approach in reporting actionable targets and allows for a quick turnaround time for

real-time treatment of patients.

OncoRep detects altered genes, variants, fusions and dysregulated pathways in a patient’s

tumor. The challenge exists to distill this large amount of information into clinically actionable tar-

gets. OncoRep draws from several databases and employs several variant filtering and annotation

steps to extract variants that are the most biologically meaningful. Integrating these databases and

presenting them in a report provides the community with a valuable resource, as many databases

are sparsely populated and information is distributed throughout many poorly curated databases

and in the primary literature28. OncoRep also reports fusion genes annotated with their predicted

oncogenic potential, as many fusion genes have been discovered in breast cancer that may make

a substantial contribution to its development 14, 29, 30. OncoRep uses several lines of molecular

evidence to match drugs to altered drug targets in a patient’s tumor by drawing on information

provided by DrugBank, KEGG Drug and PharmGKB.

By distilling and reporting clinically actionable aberrations on an individual level, OncoRep

provides researchers and clinicians with a powerful tool for implementing individualized medicine.
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For example, an OncoRep report for a patient may detect an aberration that is present in a small

fraction of patients (e.g ROS1 expression) for which targeted therapies exist. Since these are

found in only a small fraction of patients, these treatments would not be used as standard of care,

highlighting the importance of this method for identifying individualized treatments. In addition,

OncoRep reports fusion genes and evidence exists that fusion genes may be suitable therapeu-

tic targets. For example, Banerji et al. identified a recurrent MAGI3-AKT3 fusion enriched in

triple-negative breast cancer that leads to constitutive activation of AKT kinase, which can be

targeted with an ATP-competitive AKT small-molecule inhibitor29. OncoRep advances individu-

alized medicine by reporting all relevant information in a user-friendly way so that clinicians can

access all of the results, as well as by extracting clinically actionable findings to aid in the treatment

decision making process.

OncoRep overcomes one of the main difficulties remaining for prospective use of transcrip-

tome profiling in clinical routine by creating reproducible and clinically digestible reports to guide

clinical decision making. OncoRep is an open-source project, which increases the reproducibility

and transparency of the analyses. We invite researchers to use the code, refine it and provide fur-

ther improvements, such as incorporating new methods and additional disease areas. We believe

that offering this modular and extensible framework will provide a useful community platform for

implementing individualized genomic medicine.

Methods

Methods and associated references are available in the online version of the paper.
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ONLINE METHODS

Software design OncoRep is developed within the open-source software environments R (v3.0.2)31

and Bioconductor (v2.13)32 using the knitr & knitr bootstrap packages for creating the patient re-

port in HTML format and Sweave package for creating the PDF-based report. OncoRep is dis-

tibuted via Omics Pipe16 which handles the processing of the raw RNA-Seq data using distributed

computing either on a local high performance cluster or on Amazon EC2. Installation and setup

are documented online at http://pythonhosted.org/omics_pipe/.

Reference cohort The reference cohort incorporated into OncoRep (n=1,057) consists of 947

breast cancer samples and 106 matched tumor normal tissue samples from The Cancer Genome

Atlas (TCGA), one normal breast tissue sample from the Illumina body map project (ArrayExpress

accession number E-MTAB-513) and 3 normal breast tissue samples from the Gene Expression

Omnibus dataset GSE52194. Level 3 gene expression data (raw read counts) were downloaded

as provided for the TCGA samples. The normal samples within E-MTAB-513 & GSE52194 have

been downloaded as raw sequence data (.fastq files) and processed using STAR aligner and htseq-

count (see alignment and gene expression quantification section). Finally, to create the reference

cohort, count data from all samples were merged and normalized using the Bioconductor package

DESeq233. Additionally, for use in predictor generation, the data were transformed into log2 scale

after adding a constant +1.

n-of-1 add-on preprocessing OncoRep proceses a single patient sample by applying a ”docu-

mentation by value” strategy 34. This uses preprocessing information gathered from the reference
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cohort generated from 1,057 breast cancer samples from TCGA. Generated thresholds can be ap-

plied to a subsequent RNA-Seq patient sample, which is a prerequisite for prospective use of tran-

scriptomics data. Add-on preprocessing of a new patient sample was done utilizing the size factor

method implemented in the DESeq2 Bioconductor package33. Raw read counts of a new patient

sample were scaled using previously stored quantitative preprocessing information from the refer-

ence cohort, thus being the geometric mean of the counts from each gene across all samples in the

reference cohort. To calculate the size factor (sequencing depth) of a new patient sample relative

to the reference, the quotient of the counts in the sample divided by the counts of the reference

was calculated. The median of the quotients was the scaling factor for the new patient sample.

Additionally, scaled read counts were transformed to log2 scale after adding a constant +1.

Quality control Quality control (QC) of raw RNA-Seq reads was implemented using FastQC.

Basic QC statistics are listed tabularly and linked to the full report generated by FastQC. Post

alignment QC included computation of insert size distribution and collecting basic RNA-Seq met-

rics using functionalities provided by Picard tools.

Alignment RNA-Seq reads were aligned to the human genome (hg19) using STAR aligner 35.

Alignment statistics were reported in a table within the report.

Gene expression quantification & differential expression Gene expression quantification was

done using the htseq-count function within the Python HTSeq analysis package, which counts all

reads overlapping known exons using hg19 annotation from UCSC (v57). To reduce the number

of genes that serve as input for differential expression calling and pathway analysis we introduced
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the measure of gene expression reliability. Instead of using a non specific filtering step, a gene

was determined to be reliably expressed when its expression value succeeded an expression cutoff.

The expression cutoff was calculated based on the background distribution of all genes that were

not expressed (raw read count equals 0) in the reference cohort (n=156 genes). This method has

been described by Warren et al.36 and adopted for our use case. Differential expression was cal-

culated based on a model using the negative binomial distribution as implemented in the DESeq2

package33.

Prediction of receptor status & molecular subtype Using prediction analysis for microarrays37,

predictors for breast cancer receptor status (ER, PR, HER2) and molecular subtype (Luminal A,

Luminal B, Her2, Basal) were implemented using samples and clinical data provided by TCGA.

TCGA samples were randomly split up into a training cohort, on which the predictors were trained,

and a validation cohort, on which to validate the predictors:

ER+ Training n=600; validation n=305; number of genes: 26; overall error rate training: 0.065;

overall error rate validation: 0.036

PR+ Training n=600; validation n=302; number of genes: 28; overall error rate training: 0.133;

overall error rate validation: 0.099

HER2+ Training n=136; number of genes: 12; overall error rate training: 0.139

Subtype Training n=346; validation n=100; number of genes: 254; overall error rate training: 0.248;

overall error rate validation: 0.218
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Pathway analysis Pathway analysis was implemented using Signaling Pathway Impact Analysis

(SPIA) on the list of differentially expressed genes and their log fold changes identified in the

patient sample to identify significantly dysregulated pathways using the Bioconductor packages

SPIA13 and Graphite38. Graphite was used to create graph objects from pathway topologies derived

from the Biocarta, KEGG, NCI and Reactome databases, which were then used with SPIA to run

a topological pathway analysis.

Fusion gene identification Fusion gene identification was implemented using FusionCatcher14.

FusionCatcher searches for novel/known fusion genes, translocations, and chimeras in RNA-seq

data from diseased samples. The oncogenic potential of the detected fusion genes was predicted

using OncoFuse39.

Variant calling, filtering & annotation Variant calling was implemented using SNPiR, a highly

accurate approach to identify SNPs in RNA-seq data15. Basic genetic information was annotated

using SnpEff20 and information provided by dbNSFP21. Variants were further filtered based on

being described as either common/no known medical impact in the NCBI variants database or

having a MAF >0.1 in the 1000 genomes data. Identified variants were further annotated using

information obtained from the following databases: the Sanger Institute’s COSMIC (Catalogue

of Somatic Mutations in Cancer) version 6822; NCBI’s ClinVar23; CADD (Combined Annotation

Dependent Depletion) version 1.024; DrugBank version 4.025; and PharmGkb’s Variant and Clin-

ical Annotations Data26. Entries from these databases that exactly matched the mutated allele of

a single nucleotide variant, which was called by the pipeline, were included as annotations. In

addition, functional effect predictions (driver or passenger status and its likely implication in the
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cancer phenotype) were calculated by the IntOGen27 pipeline and included for each variant.

Integrative drug matching A list of all FDA approved compounds was extracted and integrated

with information from DrugBank and KEGG Drug databases, which including meta information

about gene targets, pathway involvements and type of drug (e.g. inhibitor, antibody, antagonist,

agonist). Altered genes were matched against these data using the meta information to select ap-

propriate drug-gene partners. Furthermore, variants were matched against SNP-drug relationships

available from DrugBank and PharmGkb.

URLs

OncoRep: https://bitbucket.org/sulab/oncorep

Omics Pipe: https://bitbucket.org/sulab/omics_pipe

The R suite: http://www.r-project.org/

Bioconductor: http://bioconductor.org/

knitr: http://yihui.name/knitr/

knitr bootstrap: https://github.com/jimhester/knitrBootstrap

FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Picard tools: http://picard.sourceforge.net/
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Figure 1 Flowchart illustrating tools used and their interactions within OncoRep. The

four main branches (left to right) are variant calling, fusion gene detection, quality control

and gene expression quantification and analysis (for a detailed description of each step

see materials and methods). Results from each branch are analyzed, annotated and

integrated and an HTML report is created at the final stage of the pipeline.

Figure 2 PDF clinical report generated by OncoRep for dissemination to treating physi-

cians.
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