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Abstract

Carbohydrate polymers are ubiquitous in biological systems and their
roles are highly diverse, ranging from energy storage over mechanical sta-
bilisation to mediating cell-cell or cell-protein interactions. The functional
diversity is mirrored by a chemical diversity that results from the high flexi-
bility of how different sugar monomers can be arranged into linear, branched
or cyclic polymeric structures. Mathematical models describing biochemi-
cal processes on polymers are faced with various difficulties. First, polymer-
active enzymes are often specific to some local configuration within the poly-
mer but are indifferent to other features. That is they are potentially active
on a large variety of different chemical compounds, meaning that polymers
of different size and structure simultaneously compete for enzymes. Second,
especially large polymers interact with each other and form water-insoluble
phases that restrict or exclude the formation of enzyme-substrate complexes.
This heterogeneity of the reaction system has to be taken into account by
explicitly considering processes at the, often complex, surface of the poly-
mer matrix. We review recent approaches to theoretically describe polymer
biochemical systems. All attempts address a particular challenge, which we
discuss in more detail. We emphasise a recent attempt which draws novel
analogies between polymer biochemistry and statistical thermodynamics and
illustrate how this parallel leads to novel insights about non-uniform polymer
reactant mixtures. Finally, we discuss the future challenges of the young and
growing field of theoretical polymer biochemistry.

1 Introduction

Prokaryotic and eukaryotic cells synthesise a large number of chemically diverse
polysaccharides (also designated as glycans) that consist of a variety of monosac-
charide moieties linked by inter-sugar bonds. Chemical diversity includes both the
sequence of monosaccharide residues and the type of the inter-sugar linkages. As
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these linkages can be made to any hydroxyl group of the monosaccharide residues,
both linear and branched glycans exist but, in terms of quantity, linear structures
(i.e. glycan chains) are by far dominant.1 Furthermore, within a given glycan the
number of branching types is usually low. Polysaccharides exert many distinct
biological functions, such as carbon and energy storage ([60], [26], [37]), mechan-
ical stabilisation of cells or tissues [8], cell-cell or cell-protein interactions ([42],
[14]) and organelle division [59]. In addition, glycans have attracted consider-
able (bio)technological interest because they are being used as starting materials
or additives for many technological applications [47] and act as renewable energy
source [21].

Polysaccharides constitute the most abundant polymer type present in biotic
systems. As compared to the vast majority of proteins and nucleic acids, cells use,
however, an entirely different mode to synthesise carbohydrate polymers. This
peculiarity is due to two reasons: First, no general molecular equipment (function-
ally equivalent to the ribosome in protein biosynthesis) exists that is capable of
forming any glycan molecule provided structural information is available. Second,
(and similar to the rare cases of non-ribosomal peptide biosynthesis [45]) glycans
are specified by the kinetic properties of the glycan synthesising enzymes but not
encoded by any non-carbohydrate system that is comparable to those in protein
biosynthesis (the sequence in base triplets in genes and in their messenger RNAs).
Due to the lack of appropriate enzymes, most of the theoretically possible diversity
of glycans is not real in living systems.

This mode of biosynthesis has several important implications. A large num-
ber of carbohydrate-active enzymes are required to synthesise complex glycans
and all these enzymes need to be encoded in the genome. Carbohydrate-active en-
zymes often catalyse not a single reaction but rather perform a series of closely
related reactions and repetitively act on a single glycan molecule. This implies
that glycan samples of natural origin usually do not consist of a single chemical
species but rather arenon-uniform.2 Despite sharing several chemical features,
such as the building blocks (i.e. the monosaccharide moieties and/or their se-
quence) and the types of inter-sugar linkages, glycans in a non-uniform sample
have different molar masses or degrees of polymerisation (DP). As an example,
the various soluble starch synthases exert distinct yet partially overlapping func-
tions when synthesising the various chains of the amylopectin molecule [5]. Fi-
nally, carbohydrate-active enzymes often interact with small regions of the entire
polysaccharide molecule. If (as it is frequently the case) a given enzyme undergoes

1We ignore cyclic glycans in this review since they are less relevant for higher plants.
2We adopt a recent IUPAC recommendation and refer to samples as being uniform instead of

monodisperse, a self-contradictory term, and non-uniform instead of polydisperse, a tautological
term [44].
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multiple interactions with the glycan, properties of the glycan-protein complex are
largely determined by the avidity of this complex rather than by the affinity describ-
ing the interaction between a single carbohydrate-binding site and a single site of
the target carbohydrate. The binding site can be closely related to the catalytically
active site but, in many cases, is physically separated from the latter.

For several reasons, this mode of action of many carbohydrate-active enzymes
complicates the description and characterisation of these reactions. First, any em-
pirical determination of the usual kinetic (Km andVmax) and thermodynamic (Keq)
parameters of the series of reactions is difficult as in most cases, any individual
reaction cannot be separated from the others. From a theoretical point of view,
an appropriate description of these reactions requires a large number of parame-
ters and rate equations that often cannot be empirically determined. Furthermore,
the thermodynamical equilibrium of a series of related reactions is difficult to de-
fine. Finally, the enzymatic actions at the surface of insoluble substrates (such as
native starch granules) can certainly not be interpreted in terms of the classical
Michaelis-Menten equation or a more advanced rate law that assumes enzymes
acting in homogeneous systems. These reactions take place in an inhomogeneous
system and, therefore, essential parameters such as volume-based substrate or en-
zyme concentrations are not well defined or insufficient. Instead, structural features
of the insoluble carbohydrate substrate(s) are highly relevant for the enzymatic ac-
tions.

In the following, we summarise the current knowledge on carbohydrate-protein
interactions and present a theoretical approach to appropriately describe reiterat-
ing actions of carbohydrate-active enzymes on soluble and insoluble carbohydrate
substrates. We do not consider kinetic features of protein complexes consisting of
several enzyme activities.

2 Challenges for modelling polymer systems

The diversity of polymeric species and of the possible chemical transitions be-
tween them requires to consider more degrees of freedom than is usually the case
in kinetic models. We discuss modelling strategies to address this combinatorial
complexity.

Another complication arises if intra- and intermolecular interactions of poly-
mers leads to macroscopic boundaries like the starch granule interface. The het-
erogeneity that is introduced by these interactions has a profound influence on the
enzymatic accessibility of parts of the substrate and thus on reaction rates.
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2.1 Soluble polysaccharides

Kinetic models describe the state of a biochemical reaction system by introducing
suitable state variables. These are usually copy numbers (X = X1, . . . ,XN) or con-
centrations (x= x1, . . . ,xN) of a fixed numberN of individual chemical species. The
state variables span the state space whose dimension isN. There are two potential
problems with this approach when applied to glycan reaction systems. First, it is
difficult to define all relevant species that make up the state space, since monomers
can be combined in many different ways to form a vast number of diverse species.
Second, in models of open systems at least, the choice of an upper limit on gly-
can size is somewhat arbitrary since, for example, cogent information on a sharp
limiting DP is missing. This can introduce artificial boundary effects in computer
simulations that are not observed in reality. To circumvent these effects it is pos-
sible to choose a very high maximum DP, such that the numerical error is very
small compared to the measurement error under given experimental conditions. If
that is not sufficient computer memory can be allocated dynamically during the
simulation to extend the state space ’on the fly’.

To get an idea of the combinatorial complexity of glycans we briefly discuss
the possible number of structures for a (non-cyclic) polysaccharide of a given DP.

The chemical structure of polymers largely depends on the number and the
type of functional groups of the constituting monomers [16]. In the case of gly-
cans, functionality is determined by the OH-groups through which carbon atoms
of monomers can condense. As an example, glucose has five OH-groups (at C1,
C2, C3, C4 and C6) all of which can, in principle, be used for interglycosyl bonds.
In starch-related glucans, however, interglucose bonds are restricted to C1, C4, and
(less frequently) to C6. While amylose almost exclusively contains C1-C4 link-
ages, amylopectin additionally contains C1-C6 intergluose bonds. Thus, in amy-
lose the monosaccharyl residues essentially undergo two types of linkages which
allow only for chains of polymers. By contrast, C1-C6 interglucose bonds can ac-
count for non-linear, branched structures typical for amylopectin (and glycogen as
well).

The notion of sequence is usually well-defined for linear polymers since both
ends are chemically distinguishable by the functional group that is exposed (3’- and
5’-end in nucleic acids or C1 and C4 as reducing and non-reducing end(s), respec-
tively, in polysaccharides). However, the sequence of monomers is relevant only
in cases where different monomers are combined in which case we speak of het-
eropolymers, like DNA or heteroglycans. Unbranched homopolymers (consisting
of a single type of monomer) are sufficiently determined by their DP.

Branched polymers are more complex than linear polymers in that they have at
least two types of bonds and cannot be described anymore by a single sequence,
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much less by a single DP. For homoglycans, an experimentally accessible observ-
able that conveys a better description than DP of the whole polymer is the DP
distribution of individual branches which can be obtained by selective enzymatic
hydrolysis. Still, this distribution only partly reflects differences in the distribution
of branch points within the polymer.

To illustrate the combinatorial complexity of polymers we focus onα-glucans
in which a single glucosyl residue can undergo at most three interglucose bonds,
i.e. at C1, C4, and C6. Typically, most internal glucosyl residues are linked to
neighboring sugar residues by twoα-1,4 linkages. At branching points, however,
an additionalα-1,6 linkage is found. Two classical examples are amylopectin and
glycogen that differ, however, in the arrangement of branchings. The non-random,
clustered occurrence of branch points in amylopectin leads to a different confor-
mation and physical properties compared to glycogen, where the branch points are
more randomly distributed [55]. These structural differences are correlated with
their different physiological function.

To perform the counting of possible glucan structures it is useful to model the
class of glucans as a mathematical object called a graph, basically a set of nodes
and edges endowed with a certain relationship (connectedness). This strategy, al-
though ignoring three-dimensional features like conformation, has a long tradition
in combinatorial chemistry. A suitable model for (acyclic) glucans is a so-called
rooted, plane unary-binary tree, in which nodes represent glucose monomers and
edges the interglucose bonds.3 Figure 1 shows all possible trees up to size DP-
5, that is trees up to five nodes. The sequence in the table included in Figure 1
indicates that the number of possible glucan structures grows enormously with
increasing DP. This sequence, the so-called Motzkin numbers, is well-known in
combinatorics as the solution to many different combinatorial problems (A001006
in the On-line Encyclopedia of Integer Sequences) and an exact formula can be
given [11, 15].

Clearly, only a tiny subset of this overwhelming number of molecular species
is relevant in natural systems, and this is mainly due to enzymes that constrain
possible transitions. A structure that cannot result from enzymatic activity at a
reasonable time scale can be safely ignored. Thus, restriction to enzymatically
possible transitions allows us to reduce the state space. Nonetheless, enzyme ac-

3This type of tree has a single designated root node, from which the whole tree emerges (in our
case the reducing end of the glucan), at least one leaf node (the non-reducing ends) and intermediate
nodes with two or three edges. If a node has a single descendant or child we assume that it is always
only one type of bond (hereα-1,4-glucosidic). Only in the case of two children we distinguish
between them, hence we have a planar or ordered tree. If we would like to distinguish two types
of bonds in general we would have to model the glucan as alabelled tree and this would result in a
different combinatorial problem.
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Motzkin Sequence

DP Structure Count
3 2
4 4
5 9
6 21
7 51
8 127
9 323

10 835
15 113,634
20 18,199,284
25 3,192,727,797
30 593,742,784,829

Figure 1: The combinatorial explosion of glucans. The figure shows all possible
rooted and plane unary-binary trees up to DP-5. The table exemplifies the growth
of the number of structures with DP as given by the Motzkin sequence (see text).

tivity can produce a highly non-uniform system even when the starting conditions
are uniform. To illustrate the diversity of enzymatically catalyzed reactions, we
consider state transitions that a single branched glucan can undergo in terms of
changes in number of branch pointsk and monomersn. Table 1 summarises possi-
ble transitions and gives, for each type of transition, a carbohydrate-active enzyme
(CAZyme) example from starch metabolism that can catalyse this transition un-
der physiological conditions. Note, that the transitions referred to as grafting or
cutting can be accomplished by different means, respectively. We can speak of
grafting (∆k> 0, ∆n> 0) if the glucan at hand is

• condensed through anα-1,6-bond with a branched or unbranched glucan, or

• condensed through anα-1,4-bond with a branched glucan.

Likewise, we can speak ofcutting (∆k< 0, ∆n< 0) if the glucan at hand is

• hydrolised at aα-1,6-bond (typically referred to as debranching), or

• hydrolised at an internalα-1,4-bond, such that a branched glucan is re-
moved.

There are in principal two approaches to model large-scale polymer systems,
the individual-based approach and the continuous mixture approximation.

The mechanistic, individual-based approach distinguishes each chemical species
and formulates reaction rates for every reaction in the system. This leads to a set
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Transition Description CAZyme Example
∆k= 0, ∆n= 0 redistribution of branches or

branch lengths
4-α-glucanotransferase

∆k= 0, ∆n> 0 elongation of a branch starch synthases,α-glucan
phosphorylase

∆k= 0, ∆n< 0 shortening of a branch β -amylase,α-glucan
phosphorylase

∆k> 0, ∆n= 0 internal branching branching enzymes
∆k< 0, ∆n= 0 internal debranching isoamylases, pullulanases
∆k> 0, ∆n> 0 grafting with another (possibly

branched) glucan
branching enzymes

∆k< 0, ∆n< 0 cutting off a (possibly
branched) glucan

debranching enzymes,
α-amylase

Table 1: Reactions on polymers in terms of changes in number of branch pointsk
and monomersn. In principle, the all reactions are reversible. The reactions listed
in this table reflect the main direction occurring under physiological conditions.

of differential equations that describes how the polymer composition changes over
time. In deterministic models, concentrations describe the composition and the
time evolution is determined by ordinary differential equations. The individual-
based approach to polymer dynamics goes back to Smoluchowski in the determin-
istic case [43, 36]. In probabilistic (or stochastic) models, each state, defined by the
copy number of each component, is described by its probability. The differential
equation describing the time evolution of these state probabilities is known as the
chemical master equation (CME) [56, 2]. In practice, the CME is simulated by the
stochastic simulation algorithm (SSA) [17] which “draws“ individual trajectories
for each species.

It is clear that the individual-based approach is only suitable if we know the
stoichiometric coefficients and kinetic parameters of each reaction [20]. This com-
plexity can be reduced by applying lumping techniques. Often the reactivity of a
polymer depends only on the local configuration of the reactive group but not on
the size and shape of the molecule more than some number of monomers away.
Applying this principle of reaction shortsightedness [22] allows lumping kinetic
parameters. The same principle can be applied to binding where, as a rule, the
probability of forming positional isomers depends on a limited number of partici-
pating monomer units [52], that is only a small number of binding modes need to
be distinguished.

The continuous mixture approximation ignores the discrete nature of the com-
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ponents altogether and considers the time evolution of a concentration function
c(x) that varies continuously with some descriptorx of the system, like tempera-
ture or weight. Given the enormous number of species present in a mixture, it is
assumed that two adjacent species differ so little that their difference can be con-
sidered infinitesimal,dx. Thus, the concentration of a polysaccharide Gi having a
DP of xi is replaced byc(xi)dx, the concentration of material with DP in the in-
terval (xi ,xi + dx). The study of the dynamics of polymer distribution functions
apparently goes back to De Donder and was further developed in particular by
Aris [3, 22].

2.2 Insoluble polysaccharides

In the previous section, we ignored non-covalent interactions within and between
polymers. Both lead to additional complexity in describing the state of a polymer
or polymer mixture. To illustrate this briefly, we focus onα-glucans but point the
reader to a detailed review [9] of structural aspects of starch for further details.

In linear α-glucans one can observe conformational transitions between dis-
ordered coil and ordered helix states, depending on DP, temperature and solvent
properties [6]. These pure conformations are only extremes and within long poly-
mers helical regions may be interrupted by less ordered (melted) regions. Two
helical α-glucans can form a double helix and several double helices can interact
to form a crystalline phase. In starch the double helix is typically formed by ad-
jacent amylopectin side-chains and the alignment of several double helices form
the crystalline lamellae of the starch granule. These double helices can align into
different configurations, which are known as allomorphs. The crystalline lamellae
can melt as well – a process which is linked to starch gelatinisation [57].

From the point of view of enzyme activity, the most interesting aspect of these
intermolecular interactions is the formation of interfaces. The existence and ex-
plicit incorporation of interfaces complicates modelling since the enzymes become
part of a heterogeneous reaction system where the reactants are part of a differ-
ent phase and not entirely accessible. Any controlled mass transfer between the
aggregated and the aqueous phase (e.g. starch synthesis and breakdown) requires
enzyme diffusion to and adsorption and activity at the interface. In some cases the
enzyme can move on the substrate interface to act repetitively.

In heterogeneous systems, the state variables depend on spatial coordinates if
diffusion or convection are significant. The resulting reaction-diffusion equations
are partial differential equations (PDEs) that are more difficult to handle analyti-
cally and computationally than ODEs. The PDEs can be replaced by ODEs if the
fast diffusion approximation is applied. This means that adsorption or binding at
the interface is treated like the transport between two compartments. If adsorption
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is reversible and is assumed much faster than substrate turnover a further simplifi-
cation is possible by using adsorption isotherms. The most well-known adsorption
isotherm that has also been used for modelling surface-active enzymes is the Lang-
muir isotherm.

3 Overview of existing models

The challenges discussed above that arise from the complexity of carbohydrate
polymers such as starch have been addressed by various authors on different levels
of complexity.

Rollings’s review [40], apart from being a good general introduction into poly-
mer degradation, gives an overview of deterministic modelling up to the mid 1980s.
He discusses the differences between single-chain, multichain and multiple chain
attack models, three action patterns that have been considered forα-amylase in
pioneering studies by Robyt and French [38, 39]. He further explains how endo-
acting and exo-acting enzymes lead to different product distributions and how their
joint activity could lead to synergistic effects.

We will not review the models in [40] but want to point out some common
features and problems. All models assume that random fission of glycosidic links
basically follows Michaelis-Menten-like kinetics. Substrate multiplicity leads to
inhibition terms in the denominator of the rate laws and irreversible enzyme in-
activation is occasionally also considered in the models. Nearly all of the models
suffer from the aforementioned combinatorial explosion, either in the form of infi-
nite sums over substrate concentrations or many different parameters. Complicated
models may, under some circumstances, give a good fit to experimental data but the
general insight gained from this exercise is usually very limited. The more com-
plicated a model, the more difficult is, as a rule, its interpretation and a parameter
set that gives an exceptionally good fit for a specific experiment can miserably fail
under different conditions.

For unknown reasons, Rollings omits some valuable theoretical work on de-
polymerizing enzymes, especially Hanson [19] who derived an analytic rate ex-
pression for short-chain cleavage, resulting in general rate laws including endo-
and exohydrolases as special cases. Another early pioneer was John Thoma, who
extended Hanson’s work by considering endwise cleavage of mixed polymer pop-
ulations and heteropolymers [53], devised mathematical models to test different
attack hypotheses forα-amylase [51, 50] and who’s demonstration, together with
Daniel Koshland, that internal polymer segments inhibitβ -amylase was important
evidence for the induced-fit theory of enzyme catalysis [54].

With the similar goal to derive closed rate expressions, Chetkarov and Kolev [7]
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have applied the classical approach of Michaelis and Menten [31] to enzyme-
catalysed hydrolysis of homopolymers. An interesting result is their conjecture that
the Michaelis constantKM decreases with increasing DP of the substrate molecule.

The comprehensive treatment by Thoma [53] on rate laws for enzymes de-
grading mixed polymers by endwise cleavage demonstrates rigorously how many
different phenomena may be hidden in a rate law assuming the classical Michaelis-
Menten form, but that the apparent parameters of maximal rate (Vmax) and
Michaelis constant (KM) depend in general on a large variety of phenomena oc-
curring at the molecular level. While in some cases the direction of the effect can
be predicted (e.g. competitive self-inhibition, where the bonds that are not hy-
drolyzed act as competitive inhibitors of the reaction, will always lower the appar-
entKM while the degree of repeated attack will always increase it), in many cases
the effect on apparent values cannot be predicteda priori. Both, apparent maxi-
mal rate and Michaelis constant, depend in general on heterogeneity in monomer
composition, the variation in the type of polymer distribution and on enzymatic
properties such as competitive self-inhibition, the degree of repetitive attack and
the occurrence of multiple intermediates.

Derivation of explicit rate laws is only possible for relatively simple systems. It
is therefore not surprising that these approaches remained limited to bond hydrol-
ysis, where the elementary reaction works on a single substrate molecule. A note-
worthy approach is therefore the work by Mulders and Beeftink [32] who derived
analytic expressions for enzymatic polymerisation and could show how the result-
ing chain length distribution depends on the Michaelis constant for the elementary
elongation reaction. As a general tendency it could be shown that a Michaelis con-
stant lower than the substrate concentration (indicating high substrate saturation)
leads to narrower distributions of the degree of polymerisation.

A more complex treatment is required for example for transglycosylation re-
actions, where a reversible bi-bi mechanism must be assumed and both substrate
molecules are of an unspecified length. Such reactions are also important in the
turnover of starch. To treat such enzymes, Hiroshi Nakatani employed Monte Carlo
simulations and described in a series of papers various models of the action of en-
zymes on soluble carbohydrate polymers. In [33, 23] a model of the action of
β -amylase is presented, which takes into account the possibility of repeated attack
of the enzyme without dissociation of the substrate. In [34] a conceptually similar
model is discussed which describes the action ofα-glucanotransferases, which in-
clude central enzymes in the starch degradation pathway such as DPE1. Finally, a
model of the enzyme hyaluronidase is discussed in [35]. While the carbohydrate
hyarulonan is not present in plants, the action of hyaluronidase shares common
principles with many starch degrading enzymes. A particularly interesting aspect
of hyaluronidase is that its possible catalytic activity includes transglycosidation,
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as well as condensation and hydrolysis. In so far, the presented model can serve as
a prototype also for isolated multi-enzyme systems. All these models are limited
to soluble carbohydrates and describein vitro systems containing a single enzyme
and are numerically analyzed by simple Monte Carlo simulations.

Stochastic models have also been applied to simulate the complex soluble
structure of amylopectin. In [29, 28], Marchal and coworkers model amylopectin
as a matrix and demonstrate how this is used in Monte Carlo simulations to com-
pute sugar release. This model is highly illustrative and useful to investigate how
molecular mechanisms determine overall characteristics of long polymers such as
chain length distribution and branching patterns. In [28] the authors applied their
model to evaluate various suggested subsite patterns ofα-amylase and found that
the inclusion of specific inhibition terms improved the predicting power of the
model.

Besides its non-uniform composition, the insoluble nature of native starch
poses a major challenge for any theoretical description of starch degrading or syn-
thesising processes.

McLaren and Packer [30] summarise important earlier attempts to model en-
zymatic reactions in various heterogeneous systems including the action of sol-
uble enzymes on carbohydrates like cellulose, chitin and starch. Rollings’s [40]
and Zhang and Lynd’s [61] reviews focus on cellulose degradation but their ob-
servations regarding the influence of adsorption and surface properties (specific
surface area and surface states) are valid also for starch. In particular, both insol-
uble cellulose and starch have ordered and less ordered interfaces that are differ-
ently susceptible towards enzymatic attack and intercompartmental mass transfer.
Bansal et al. [4] is another more recent review on models of cellulases.

To our knowledge the only review dedicated to kinetic models of starch degra-
dation exclusively is by Dona et al. [10]. It gives an impression of classical de-
terministic approaches geared towards biotechnological applications rather than
fundamental considerations. Here we would like to emphasise models that focus
on principle features or give an interesting perspective on the general problem of
heterogeneous catalysis in its entirety.

An early attempt to simulate degradation of insoluble substrate was made by
Suga and coworkers [46] where they describe the degradation of an insoluble
cross-linked dextran by a dextranase fromPenicillium funiculosum. Their rather
elaborate model takes into account the transport of enzymes and soluble products
through pores in the insoluble substrate. Tatsumi and Katano [48, 49] developed
a rate expression for the enzymatic surface hydrolysis of raw starch by glucoamy-
lase. Their results illustrated the importance of including the specific surface area
into any rate equations of surface-active enzymes and they have systematically
validated their rate expressions with raw starch granules from different botanical
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sources having different size distributions.
Building on such results, Kartal and Ebenhöh [24] have systematically de-

rived a generic rate law for surface-active enzymes, which can be applied to en-
zymatic processes at the surface-bulk interface and can easily be generalised for
specific enzymatic mechanisms. The authors demonstrated how different adsorp-
tion isotherms can be used to derive the enzyme kinetics and, due to the generality
of their approach, could explain how different assumptions and different adsorption
models influence the kinetic parameters, in particular the apparent Michaelis and
maximal rate constants. Also, in agreement with and in extension to the previous
approaches mentioned above, the generic rate law provides a quantitative relation
between important experimental parameters, such as particle size distribution and
specific surface area, and the apparent kinetic parameters.

An insightful mechanistic model has been presented by Levine et al. [27]. This
model is purely based on standard ordinary differential equations and is applied to
the degradation of cellulose, but it contains a number of interesting features of gen-
eral applicability: The model adapts a procedure to map a collection of arbitrarily
shaped three-dimensional objects to spheres while preserving total area, volume
and hydrolysis rate. This procedure, in conjunction with random sequential ad-
sorption (RSA) simulations, allows the authors to infer an effective footprint of
cellulose degrading enzymes and to calculate that the surface-active enzyme occu-
pied nearly twice as much surface as its physical footprint would suggest.

Another interesting aspect is addressed by the model of Fenske and cowork-
ers [13] simulating the action of a glycosidase fromCellulomonas fimias an exam-
ple for an enzyme which is both exo- and endo-acting in the degradation of insol-
uble polysaccharides. With a Monte Carlo approach simulating random endo- and
exo-attacks on a two-dimensional array, which models a surface, the authors partic-
ularly investigate whether one enzyme alone can achieve synergism, so-called au-
tosynergism. The simulations suggest that for autosynergism the enzymes should
be in close vicinity to each other on the substrate surface. However, this raises the
immediate question how autosynergism might be achieved while avoiding crowd-
ing and jamming of enzymes at the surface, suggesting that for autosynergism to
occur further regulatory mechanisms might be required.

To confuse matters even further and to illustrate the vast amount of specific de-
tails which must be considered when theoretically describing carbohydrate poly-
mer biochemistry, the work of Xu and Ding [58] is worth mentioning, in which
they have shown that non-Fickian diffusion, resulting from small confined spaces
and crowding, leads to fractal (i.e. non-integer) kinetic orders in Michaelis-Menten
like rate laws. This theory was applied specifically to the catalytic action of cel-
lobiohydrolase.
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4 The entropic approach to polymer biochemistry

The review of the numerous theoretical approaches to simulate and understand
the vastly complex process of biosynthesis and degradation of insoluble carbohy-
drate polymers demonstrates that many different peculiarities have to be considered
which are not important when building mathematical models of classical pathways
in the aqueous phase. Most important are the correct description of surface-active
enzymes and a suitable representation of polymeric structures. Especially the latter
is a novel theoretical challenge, because clearly a straight-forward enumeration of
all possible structures is neither practical nor insightful due to the combinatorial
explosion in theoretically possible structures.

As a consequence, various Monte Carlo based modelling approaches have been
applied to simulate the action of polymer-active enzymes [33, 34, 35, 23, 29, 28,
13] (see review in the previous section). Such approaches have the advantage that
not all possible configurations have to be known a priori. However, in many of
these simulations, the temporal progress of the catalytic action was simulated only
as a function of the reaction coordinate (see e.g. [33, 34, 35]) and it was difficult
to relate the substrate formation with the actual time passed. In [25] and [41]
the Monte Carlo approach was slightly modified and simulated using a Gillespie
algorithm [17], allowing to explicitly include the time coordinate. As a result, the
temporal progress of various glucanotransferases and a plastidial phosphorylase
could be reproduced and explained by the enzymatic mechanisms and an extremely
good match to experimentalin vitro data was obtained.

However, while stochastic simulations can provide a realistic temporal repre-
sentation of the action of polymer-active enzymes, they are always limited to the
particular case (including the starting conditions) to which they are applied. A
more general theory explaining the action of non-substrate specific enzymes acting
on polymers with arbitrary length in a wider context has recently been proposed by
Kartal, Ebenhöh and coworkers [25, 12].

As a hallmark of the developed theory, it accepts the fact that the number
of specific reactions catalysed by polymer-active enzymes, such as glucanotrans-
ferases, is in principle infinite and so are the different chemical structures which
may serve as substrate. It then draws parallels between biochemical systems with
non-uniform polymer composition and canonical ensembles in statistical thermo-
dynamics and arrives at the conclusion that polymer-active enzymes are driven by
a combination of release of enthalpy and an increase in the mixing entropy of the
polymer solution. In other words, polymer-active enzymes tend to maximise the
disorder by creating a maximally mixed state of different chain lengths. In the in-
teresting special case of the glucanotransferases DPE1 and DPE2, the change of
enthalpy is zero [18] and consequently the increase in mixing entropy is the only
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driving force of these enzymes. The theoretically predictedequilibrium distribu-
tions have been verified experimentally in [25] with high accuracy.

The underlying conceptual idea which allows to apply principles from statisti-
cal thermodynamics to biochemical systems acting on non-uniform polymer mix-
tures is that different chain lengths (or degrees of polymerisation, DP) are identi-
fied with different energy states of a molecule. In a case of a simple unbranched
chain with a single type of bond, the enthalpies of the bonds linking the monomers
correspond to the energy state of the whole molecule. If, for example, the bond en-
thalpy isE, the energy state of a linear polymer consisting ofn monomers equals
En = (n−1) ·E. Thus, all possible configurations (chains of length 1,2, . . .) are rep-
resented by equidistant energy states with the ground stateE1 = 0 corresponding
to a monomer.

As a prototype consider the reaction catalysed by disproportionating enzyme 1
(DPE1), a plastid-located glucanotransferase involved in starch metabolism. This
enzyme catalyses the transfer of 1, 2 or 3 glucosyl residues from one unbranched
malto-oligosaccharide to another, a reaction that can be written as

Gn+Gm −−⇀↽−− Gn−q+Gm+q with q= 1,2,3, (1)

where Gk denotes an unbranched,α-1,4 linked glucan. In this special case, the
catalysed reactions do not change the overall enthalpy, because in every catalytic
step one bond will be opened and another one closed, and, moreover, the bond
enthalpy is independent on DP and position within the polymer [18]. The action
of DPE1 in the thermodynamic picture is schematically depicted in Fig. 2 for a
case in which the reaction is initialised with a uniform solution of glucans of DP
8. According to Eq. (1), the catalytic action of DPE1 on a statistical ensemble
of energy states corresponds to the simultaneous downward shift of one molecule
from an energy stateEn to En−q (donor reaction) and an upward shift of another
molecule from energy stateEm to Em+q (acceptor reaction), whereq= 1,2,3.

In statistical thermodynamics, the principle of maximum entropy provides the
method to calculate the equilibrium distribution of the occupation of each energy
state depending on the total energy within the system. In physical systems (such as
gases or atomic ensembles), the total energy is given by the temperature of the sys-
tem. In a biochemical system in which the total enthalpy is conserved (such as for
DPE1), the total energy is given by the (conserved) total number of bonds between
monomers in the system. This quantity can be controlled through the experimental
starting conditions. If, for example, anin vitro assay of DPE1 is incubated with
maltopentaose molecules only, there areb= 4 interglucose bonds per molecule and
this average number will remain constant in time. Thus, in this particular scenario,
the average bond number is analogous to the temperature in physical systems and
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Figure 2: Scheme of the DPE1 mediated reaction system in the statistical ther-
modynamics picture. The energy statesEk correspond toα-1,4 linked glucans
of DP k. DPE1 mediates transfers of glucose, maltose and maltotriose units, i.e.
q= 1,2,3. In each reaction step the system follows an arbitrary dashed and solid
arrow of the same colour simultaneously. This leads to a combinatorial explosion
of the reaction system.

all known formulae from statistical thermodynamics can directly be applied to de-
termine the equilibrium distribution of the enzymatic system. Thus, for polymer
solutions the principle of entropy maximisation states that the action of an enzyme
will continue until the distribution of DPs within the solution is maximally mixed,
as is characterised by a maximal value of the mixing entropy

Smix =−∑xk lnxk, (2)

wherexk denotes the molar fraction of a polymer of DPk. A short calculation to
determine the maximal value ofSmix under the constraints that the total number
of molecules is conserved (∑xk = 1) and the total number of bonds is conserved
(∑(k−1) ·xk = b) leads to the prediction that in equilibrium the molar fractions of
the different DPs are distributed as

xk ∝ e−k·β , (3)
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wherexk is molar fraction of molecules with DPk, andβ = ln((b+1)/b), andb
the average bond per molecule.

This formula quantifies precisely how the equilibrium distribution depends on
the initial conditions and, moreover, leads to a conceptual advance by introducing
a novel constant,β , which is a generalisation of the classical equilibrium constant
for the case of non-uniform polymeric systems.

While in the case of DPE1, the theory is presented in its simplest form and
the analogies between polymer biochemistry and statistical thermodynamics be-
come most clear, it is of general validity and thus applicable to a wide spectrum
of systems, as was demonstrated in [25, 12, 41]. Besides providing experimental
evidence for the soundness of the theoretical concepts, Kartal et al. [25] proved
in the accompanying supplementary information that the thermodynamic formulae
can be deductively derived from first principles in the case of a mixture of dilute
solutions. This derivation is highly illustrative because it shows the mathematical
formulation in its most general form for an arbitrary biochemical reaction system.

For the generalisation of the theory, various issues have to be taken into ac-
count. In many cases enthalpies are not conserved. For example, the reaction
catalysed by phosphorylase, that reversibly transfers the non reducing glucosyl
residue of anα-glucan to an orthophosphate according to the formula

Gn+Pi −−⇀↽−− Gn−1+G1P, (4)

opens anα-1,4 glucosidic linkage while forming a phosphoesther bond with quite
a different bond enthalpy. In such a case, the biochemical system is analogous to a
closed system in statistical physics, rather than an isolated system as was the case
for DPE1. From the analogies it follows directly, that now an energetic and an
entropic term have to be considered. The progress of the biochemical reaction (4)
from left to right will lead to a release of enthalpy and concomitantly to a combi-
nation of reactants with a lower total Gibbs energy of formation. Kartal et al. [25]
have shown that the correct way to predict the equilibrium distribution is by min-
imising the Gibbs free energy of the system which is related to the mixing entropy
by

G= Gf −T ·Smix, (5)

whereGf is the total summed Gibbs energy of formation of all reactants andT is
the temperature.

Another important aspect is to consider possible additional constraints imposed
by the enzymatic mechanisms. Disproportionating enzyme 2 (DPE2), a cytosol-
located glucanotransferase involved in maltose metabolism, catalyses a reaction
according to the formula

Gn+Gm −−⇀↽−− Gn−1+Gm+1 with n 6= 3,m 6= 2, (6)
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with the critical limitation that maltose cannot act as an acceptor (m 6= 2) and mal-
totriose can never act as donor molecule (n 6= 3). This limitation results in the
additional constraint that the sum of the molar fractions of glucose and maltose
is constant (x1+ x2 = m). Performing the entropy maximisation as in the case of
DPE1, but with this additional constraint considered, leads to the correct prediction
of the equilibrium distribution, as was also experimentally demonstrated in [25].
The difference to the case of DPE1 is illustrated in Fig. 3. Similar to DPE1, the
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Figure 3: Scheme of the DPE2 mediated reaction system. Each DPE2 reaction step
consists of one donor and one acceptor reaction depicted by a dashed and a solid
arrow, respectively. Due to the restriction that maltose is never an acceptor and
maltotriose is never a donor, the maltose and glucose pool is separated from the
other DPs as shown by the horizontal dashed line. The scheme exhibits all possible
reaction pathways starting from the two indicated initial substrates maltohexaose
and maltose, where in each step one arbitrary solid and one arbitrary dashed path
is taken.

catalytic action of DPE2 corresponds in the thermodynamic picture to a simulta-
neous occurrence of an arbitrary donor reaction (dashed arrows) and one arbitrary
acceptor reaction (solid arrows). However, since maltose cannot act as an acceptor
and maltotriose cannot act as donor, no arrow can cross the dashed line, resulting
in a separation in two pools, one containing glucose and maltose molecules and
the other all longer glucans. Fig. 3 illustrates the case in which the reaction is
initialised with maltose and maltohexaose molecules only.
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All the systems discussed above conserve the total number of reactants,
because all elementary reactions are reversible bi-bi reactions, consuming two
molecules and producing two molecules. In principle, the theory is also applicable
to systems not conserving the number of molecules, but in this case the difficulty
arises that the ratio between concentrations and molar fractions is no longer con-
stant. This leads to some changes in the formulae, as has been derived and laid
out in [25, 12]. However, the theory has up to now not been applied and verified
experimentally for systems not conserving the total number of molecules.

Although the theory in its present form only allows to make precise predictions
about the equilibrium states, and living systems are always far from equilibrium,
the theoretical concepts nevertheless provide significant insight into the principles
how polymer-active enzymes work. Firstly, knowledge of the equilibrium is, as
for classical enzymes, prerequisite to determine in which direction a reaction will
proceed and to evaluate how far from equilibrium an experimentally determined
physiological state actually is. Moreover, Ebenhöh et al. [12] have shown how the
theoretical knowledge can be used to indirectly determine bond enthalpies from
measured equilibrium distributions.

5 Open problems and conclusions

Biosynthesis and degradation of complex and insoluble polymers, such as starch or
cellulose, are multi-faceted processes which are challenging to describe in math-
ematical models and simulations. What makes the description of these processes
more difficult than modelling classical pathways that occur in solution are mainly
two facts: 1) the insoluble nature and large size make it necessary to distinguish
between enzymatic processes occurring in solution and those taking place at the,
probably very complicated, surface of the substrate; 2) the unlimited flexibility in
combining monomers into long polymers leads to a combinatorial explosion in the
numbers of theoretically possible molecular structures that appear as reactants in
the biochemical pathways. Starch synthesis and degradation are excellent exam-
ples in which inhomogeneous phases and soluble polymers both play a central role.
Therefore, developing a comprehensive model of starch metabolism confronts us
with both of these challenges simultaneously.

The various approaches to theoretically describe and simulate processes on
substrate surfaces are very promising and it appears that the difficulties to include
surface-active enzymes into pathways models can soon be overcome, in particu-
lar thanks to early pioneering work [46] and the development of more and more
general rate laws for surface-active enzymes [48, 49, 24]. On the theoretical and
modelling side, the key issues here will be to derive simplified but sufficiently accu-
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rate descriptions of the insoluble reactants and their surfaces, and to make plausible
assumptions over the different adsorption models of the involved proteins, to sim-
ulate adequate available area functions, which are the key to correctly represent
competition and crowding effects on the substrate surface. However, also experi-
mental efforts are necessary to support the development of comprehensive pathway
models. As was demonstrated in the various theoretical works developing surface-
active rate laws, interpretation ofin vitro data has to be performed with great care.
Apparent turnover rates and Michaelis constants depend on a number of factors,
which do not have to be considered for enzymes acting in solution. The specific
rate, for example, decreases with increasing enzyme concentration and, moreover,
depends also on the presence of other enzymes acting on the same surface. Such
a dependency on enzyme concentrations does not exist in bulk solution. Further,
the specific rate increases with increasing specific surface area, and the Michaelis
constant increases with decreasing specific surface area and with increasing total
enzyme concentration [24]. Consequently,in vitro experiments, in which the con-
trollable parameters such as specific surface area and enzyme concentrations are
systematically varied, are necessary to parameterise the generic rate equations.

Major challenges are posed for the simulation, and even more for the theo-
retical understanding, of biochemical reactions in non-uniform and complex re-
actants. Despite the recent progress by successfully finding analogies between
polymer biochemical systems and statistical ensembles [25], it is apparent that a
further development of the theoretical concepts is still necessary. Whereas it is
now understood how equilibrium distributions generated by non substrate-specific
polymer-active enzymes can be explained and predicted, the biologically relevant
far-from-equilibrium steady states still evade a prediction from first principles. It
is therefore evident that a focus of future theoretical activities in polymer biochem-
istry research must lie in an advancement of our fundamental understanding which
factors govern the dynamics of polymer-active enzymatic processes. With the es-
tablished parallels between polymer biochemistry and statistical thermodynamics
it is well possible that both scientific fields will mutually benefit from each other,
because experimentally observed dynamics in simplein vitro systems can now
in principle conversely be employed to draw conclusions about non-equilibrium
thermodynamic physical systems. Non-equilibrium thermodynamics is still a very
active area of research and the analogies should be further elaborated to ensure that
novel insights gained in physics can lead to a deeper understanding of polymer
biochemistry.

Notwithstanding our lack of understanding of far-from-equilibrium states,
Monte-Carlo simulations [33, 34, 35] and Gillespie algorithms [25, 41] allow for a
precise prediction and explanation of the temporal evolution of polymer mixtures
in in vitro experiments towards equilibrium. Our new theoretical understanding of
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polymer-active enzymes allows us now to define adequate kinetic parameters. In
order to transgress from mimicking relatively simplein vitro systems to the biolog-
ically more interestingin vivosituation it will now be necessary to integrate the the-
oretically supported stochastic simulations into whole pathway models. Here, sev-
eral difficulties can be expected. If, as is commonly the case, reactions in solution
are modelled by ordinary differential equations, then the integration of these two
fundamentally different types of simulation techniques is far from trivial [1]. If, on
the other hand, also all reactions in bulk solution were to be modelled by stochastic
simulations, a considerable increase in computation time can be expected and it is
questionable whether such a pathway model could still be simulated on a standard
desktop PC in reasonable time.

In conclusion, the recent advancements in theory building and model develop-
ment regarding carbohydrate polymer metabolism have addressed all major prob-
lems and difficulties and solutions for most aspects have been proposed. We are
therefore currently in the exciting situation that the single pieces and building
blocks are at hand – at least in a prototype form – but that comprehensive mathe-
matical models combining the various approaches, in order to simulate for example
the synthesis of a starch granule, do not yet exist. One focus of theoretical research
in carbohydrate metabolism should therefore lie in the development of integrative
pathway models, in which processes at surfaces and in solution are combined and
polymeric diversity is adequately represented. These models can then serve as
valuable tools to first reproduce in simulations complex processes as starch gran-
ule synthesis and maturation, and later query inin silico experiments the effect
of genetic and environmental perturbations in order to arrive at a comprehensive
understanding how physiological regulation is accomplished with highly heteroge-
neous and disperse components.
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