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1 Summary

Biomolecular circuits with two distinct and stable steady states have been identified as essential compo-
nents in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to
their important bistable property. Understanding the differences between circuit implementations is an
important question, particularly for the synthetic biologist faced with determining which bistable circuit
design out of many is best for their specific application. In this work we explore the applicability of
Sturm’s theorem—a tool from 19th-century real algebraic geometry—to comparing “functionally equiva-
lent” bistable circuits without the need for numerical simulation. We consider two genetic toggle variants
and two different positive feedback circuits, and show how specific topological properties present in each
type of circuit can serve to increase the size of their operational range. The demonstrated predictive power
and ease of use of Sturm’s theorem suggests that algebraic geometric techniques may be underutilized in
biomolecular circuit analysis.
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3 Introduction

The field of synthetic biology has rapidly matured to the point where it is now possible to produce complex
synthetic networks with prescribed functions and level of performance [1]. As in other fields of engineering,
advances have been enabled by the use of small interchangeable modules that are “functionally equivalent”
from an input-output perspective [2]. Bistable circuits—which play a role in essential biological processes
including cell fate specification [3], cell cycle progression [4], and apoptosis [5]—make up a particularly
large and diverse functionally equivalent set [6]. Effectively characterizing and comparing these biocircuits
is crucial for determining which architecture is in some sense optimal for a particular context.

Ordinary differential equation (ODE) models can be powerful tools for contrasting different biocircuits’
“dynamic phenotypes” (see, e.g., [7]); however, as circuit size increases, the usefulness of such models can be
limited by their complexity. Many of the relevant parameters are often unknown, and while computational
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techniques have advantages, analytical criteria that focus on topology can provide a more exact assessment
of a module’s properties [8, 9]. A novel analytical tool that can provide topology-based insights can be
found in Sturm’s theorem [10], developed in 1835 as a solution to the problem of finding the number of
real roots of an algebraic equation with real coefficients over a given interval. Despite its predictive power,
this “gem of 19th century algebra and one of the greatest discoveries in the theory of polynomials” [11]
remains unexploited as a tool for synthetic biology.

In this work we demonstrate an approach to bistable circuit discrimination based on Sturm’s theorem
that gives boundaries of the regions of bistability as exact analytic expressions, eliminating the need for
numerical simulation. We compare the regions of bistability for two variants of the classic double-negative
toggle switch as well as two positive feedback circuits, one of which is based on the bacteriophage λ
promoter PRM. Overall our results highlight a new use for Sturm’s theorem for identifying potential
differences between functionally equivalent bistable biocircuits, and serve as a (re-)introduction to the
method as a general tool for studying polynomial models of biological systems.

4 Mathematical preliminaries

4.1 Sturm’s theorem

Sturm’s theorem gives the number of distinct real roots of a univariate polynomial f(x) in a particular
interval. To apply the theorem, we must first construct the Sturm sequence, a set of polynomials F =
{f0, f1, . . . , fm} defined as:

f0 = f(x),

f1 = f ′(x),

f2 = −rem(f0, f1),

f3 = −rem(f1, f2),

...

fm = −rem(fm−2, fm−1),

0 = −rem(fm−1, fm),

where rem(fi, fi+1) is the remainder of the polynomial long division of fi by fi+1. The sequence ends at
fm, when fm−1 divided by fm gives a remainder of zero. For a polynomial of degree n, there are m ≤ n+1
Sturm polynomials in the sequence.

Theorem 1 (Sturm’s theorem) Let f(x) be a real-valued univariate polynomial and a, b ∈ R∪{−∞,+∞},
with a < b and f(a), f(b) 6= 0. Then the number of zeroes of f(x) in the interval (a, b) is the difference

var(F , a)− var(F , b) ,

where F is the Sturm sequence of f(x), and the variations var(F , a) and var(F , b) are the number of

times that consecutive nonzero elements of the Sturm sequence—evaluated at a and b, respectively—have

opposite signs. (Adapted from [12].)

4.2 Number of steady states and bistability

Our approach involves identifying regions of bistability by finding conditions that lead to three steady
states, without requiring numerical determination of the exact values or stability of the equilibrium points.
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While it is in general not possible to draw conclusions on the stability properties of equilibria by simply
counting their number, the circuits under consideration enjoy two important properties—namely, they
are dissipative and their linearizations are positive—that allow us to relate their degree and number of
equilibria to the stability properties of each equilibrium (see Supporting Information). For such circuits,
when three equilibria are present, two of them must be stable and one must be unstable.

5 Results

5.1 Genetic toggle circuit comparison

A recent study identified a set of eleven minimal bistable networks (MBNs), simple two-gene circuits with
the capacity for bistability that do not also contain a smaller bistable subcircuit [13]. One of these MBNs,
a double-negative toggle switch consisting of two dimeric repressors (Fig. 1A, top), was among the very
first synthetic biocircuits built and modeled [14]. dimer-dimer (DD) toggle architecture has since gone
on to be used in a wide range of synthetic biological applications, including the manipulation of fluxes
of the E. coli metabolic network [15] and coupling to an intercellular signaling system for programmed
autonomous cellular diversification [16]. A second MBN of particular interest, herein referred to as the
monomer-dimer (MD) toggle, is a double-negative switch variant in which one of the repressors functions
as a monomer (Fig. 1A, bottom). To our knowledge no MD toggle circuit has been constructed; however,
transcription-activator-like effectors (TALEs) and CRISPR/Cas nucleases that function as monomers have
been engineered as transcriptional repressors [17,18], and thus the components necessary for implementa-
tion of this design exist. Beyond the DD and MD switches, there are still other exotic toggle-like circuit
architectures that can be found among the MBNs. An a priori understanding of functional differences be-
tween toggle architectures can be an important early step in the circuit design process, in particular because
of the significant amount of time and effort often required for the development of new biocircuits.
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Figure 1: (A) Dimer-dimer (top) and monomer-dimer (bottom) toggle switches. (B) Bistable regions for
the monomer-dimer and dimer-dimer toggles.

As a first demonstration of our approach to circuit discrimination, we apply Sturm’s theorem to the DD

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2015. ; https://doi.org/10.1101/008581doi: bioRxiv preprint 

https://doi.org/10.1101/008581
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

and MD toggle circuits. Beginning with a chemical reaction network formulation and assuming mass-action
kinetics we derive ODE models of the two toggles (Eqs. (S1) and (S2)). At equilibrium the concentrations
of P1 and P2 in the MD system are given by

P1eq =
β1X1tot

1 + (P2eq/K2)2
, P2eq =

β2X2tot

1 + (P1eq/Kmd)
, (1)

and in the DD system,

P1eq =
β1X1tot

1 + (P2eq/K2)2
, P2eq =

β2X2tot

1 + (P1eq/Kdd)2
, (2)

whereXitot is the total amount of gene i, βi = kbasi/kdegi is the ratio of basal production rate to degradation
rate for protein i, Kxd = {Kmd,Kdd} is the Michaelis constant for P1 (different for the MD and DD toggle
cases), and K2 is the Michaelis constant for P2 (see Supporting Information for details). Systems (1) and
(2) may be written in terms of P1eq alone, as:

(
P1eq

Kmd

)3

−
(
β1X1tot

Kmd

− 2

)(
P1eq

Kmd

)2

−
(
2
β1X1tot

Kmd

−
(
β2X2tot

K2

)2

− 1

)(
P1eq

Kmd

)
− β1X1tot

Kmd

= 0 (3)

and
(
P1eq

Kdd

)5

− β1X1tot

Kdd

(
P1eq

Kdd

)4

+ 2

(
P1eq

Kdd

)3

− 2
β1X1tot

Kdd

(
P1eq

Kdd

)2

+

((
β2X2tot

K2

)2

+ 1

)(
P1eq

Kdd

)
− β1X1tot

Kdd

= 0

(4)

With the following scaling of the DNA and protein concentrations:

X̂1tot = β1(X1tot/Kxd) , X̂2tot = β2(X2tot/K2) (5)

and

P̂1eq = P1eq/Kxd , P̂2eq = P2eq/K2 , (6)

we may write Eqs. (3) and (4) as nondimensional polynomials in P̂1eq :

P̂1

3

eq −
(
X̂1tot − 2

)
P̂1

2

eq −
(
2X̂1tot − X̂2

2

tot − 1
)
P̂1eq − X̂1tot = 0 (7)

and

P̂1

5

eq − X̂1totP̂1

4

eq + 2P̂1

3

eq − 2X̂1totP̂1

2

eq +
(
X̂2

2

tot + 1
)
P̂1eq − X̂1tot = 0 , (8)

for the MD and DD toggles, respectively. Every positive root of these equilibrium polynomials gives
a positive steady state concentration for every other circuit component as well. To find the regions of
bistability in the plane of X̂1tot and X̂2tot, we construct the Sturm sequences Fx associated with Eqs. (7)

and (8), evaluate Fx at P̂1eq → 0 and P̂1eq → +∞, and find the conditions leading to a variation difference
var(Fx, 0) − var(Fx,+∞) = 3. We note that, for the DD toggle, it is necessary to generate two different

sequences from Eq. (8)—one with X̂1tot 6=
√
5 and another with X̂1tot =

√
5—so that all Sturm polynomial

denominators are nonzero and the sequence does not terminate prematurely. Sturm sequences are given
in the Supporting Information.

The MD toggle Sturm sequence Fmd has a maximum possible variation of 3 and only one combination of
inequalities that can give rise to bistability: when var(Fmd, 0) = 3 and var(Fmd,+∞) = 0. In contrast,
the DD toggle sequence Fdd could in principle yield five or four positive steady states; however, only three
are admitted as there are no combinations of inequalities that have a variation difference of 5 or 4 and

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2015. ; https://doi.org/10.1101/008581doi: bioRxiv preprint 

https://doi.org/10.1101/008581
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

are logically consistent. All possible inequality sets for the DD toggle are listed (in the compact form
{±± · · · ±}) along with their allowabilities in Tables 1 and 2. ‘Allowed’ refers to the logical consistency of
the inequality set (i.e., whether all inequalities can be simultaneously satisfied). For simplicity of notation
we only show + and − in the various sequence positions, even though a particular Sturm polynomial may
be equal to zero without affecting the total number of sign changes; for example, both {− + − − +−}
and {−+ 0−+−} give a variation of 4. (Recall that Sturm’s theorem is only concerned with consecutive
nonzero elements and zeroes are ignored.) When zeroes were valid options for the sequence, otherwise
strict inequalities were made nonstrict (e.g., ‘>’ → ‘≥’).

var(Fdd, 0) sign(Fdd, 0) Allowed? var(Fdd,+∞) sign(Fdd,+∞) Allowed?

5 {−+−+−+} N 2 ...
...

4

{−+−+−−} N

1

{+++++−} N
{−+−−+−} Y {++++−−} N
{−++−+−} Y {+++−−−} Y
{−+−++−} Y {++−−−−} Y

3 ...
... 0 {++++++} N

Table 1: Sturm sequence inequality sets for the DD toggle when X̂1tot 6=
√
5. The signs of the first

two polynomials are fixed at P̂1eq → 0 and P̂1eq → +∞. Neither var(Fdd, 0) = 5 nor var(Fdd,+∞) =
0 represent logically consistent sets, eliminating the need to consider sets with var(Fdd,+∞) = 2 or
var(Fdd, 0) = 3 as candidates for bistability.

var(Fdd, 0) sign(Fdd, 0) Allowed? var(Fdd,+∞) sign(Fdd,+∞) Allowed?

4 {−+−+−} N 1 ...
...

3
{−+−++} N

0 {+++++} Y{−++−+} Y
{−+−−+} N

Table 2: Sturm sequence inequality sets for the DD toggle when X̂1tot =
√
5. The signs of the first two

and three polynomials are fixed at P̂1eq → 0 and P̂1eq → +∞, respectively. The set with var(Fdd, 0) = 4
is not logically consistent, eliminating the need to consider sets with var(Fdd,+∞) = 1 as candidates for
bistability.

The analytic expressions for the two regions of bistability are Eq. (S14) (MD toggle) and the intersection
of Eqs. (S15) and (S16) (DD toggle). We find that the DD toggle operates as a bistable switch over
a substantially greater range of (normalized) DNA concentrations than does the MD toggle (Fig. 1B),
indicating that the DD architecture is more functionally robust to variations in DNA concentrations and
rate parameters. Furthermore, the DD switch can operate with significantly lower concentrations of DNA:
a >50% reduction in X̂2tot and >75% reduction in X̂1tot.

5.1.1 Computational support

Recognizing that certain mathematical tools used may be unfamiliar, some computational validation of our
results may be of value. For both toggle circuits, and for each of the valid combinations of sign(F , 0) and
sign(F ,+∞), 1000 random values of X̂1tot and X̂2tot were selected from inside and outside of the predicted
bistable regions and plugged in to the appropriate equilibrium polynomial (Eq. (7) or (8)) which were

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2015. ; https://doi.org/10.1101/008581doi: bioRxiv preprint 

https://doi.org/10.1101/008581
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

then solved numerically. In all cases the number of equilibria found matched the number determined by
Sturm’s theorem: three equilibria were found inside the bistable regions and only one equilibrium was
found outside. It is worth noting that the time required to test {X̂1tot, X̂2tot} pairs scales linearly with the
number of pairs, so while testing a small number can be done relatively quickly, as the number of pairs
becomes appreciable the time can be significant—up to 3 hours to test 600,000 random values of X̂1tot and
X̂2tot.

We may also check the stability of the various steady states using the circuits’ Jacobian J and characteristic
polynomial pJ(λ) = det (λI − J). It was recently shown that if all off-diagonal components of the Jacobian
are nonnegative (that is, it is a Metzler matrix), or if the Jacobian may be transformed to have such a
form, then any equilibrium is unstable if and only if the constant term of pJ(λ) has a sign opposite to that
of all other terms in pJ(λ) [19]. We use this condition on the constant term of pJ(λ) to confirm that each
bistable solution set contains one and only one unstable steady state.

The inequalities that satisfy the pJ(λ) constant term condition are:

P̂1

4

eq + 4P̂1

3

eq + 2P̂1

2

eq(X̂2

2

tot + 3)

+ P̂1eq

(
4− 2(X̂1tot − 2)X̂2

2

tot

)
− 2(X̂1tot − 1)X̂2

2

tot + X̂2

4

tot + 1 < 0 (9)

and
(
P̂1

4

eq + 2P̂1

2

eq + X̂2

2

tot + 1
)2

− 4P̂1eq(P̂1

2

eq + 1)X̂1totX̂2

2

tot < 0 (10)

for the MD and DD toggles, respectively. For each bistable solution set found we substituted the values
X̂1tot, X̂2tot, and P̂1eq into Eqs. (9) and (10) and confirmed that only one of the three solutions satisfies the
appropriate instability condition.

5.2 Single gene circuit bistability

The single gene system consisting of bacteriophage λ repressor and its promoter PRM (with its three
operator sites OR1, OR2, and OR3) also exhibits bistability [20]. We can compare the bistability region
of this multi-operator circuit with that of a simple positive feedback circuit containing only one operator
site.

A dimensionless model of the λ single gene system is given in [20]. At steady state the concentration of
protein satisfies

γσ1σ2P
7
eq + γσ1P

5
eq − ασ1P

4
eq + γP 3

eq − P 2
eq + γPeq − 1 = 0 , (11)

where γ is the rescaled degradation rate constant, α represents the increase in protein production resulting
from dimer binding to OR2, and σ1 and σ2 are the relative (to OR1) affinities for OR2 and the negatively-
regulating OR3, respectively. (For simplicity we set the gene copy number equal to one.) With σ1 = 2 and
σ2 = 0.08 [20], the associated Sturm sequence FPRM

has only two sign sets with var(FPRM
, 0) = 5 and one

set with var(FPRM
,+∞) = 2 that are logically consistent and together give bistability (Table 3).

In contrast, for a single gene positive feedback system with one operator site for its dimeric protein (MBN
kqw in [13]), rescaled as in Eq. (11), we have:

γP 3
eq − αP 2

eq + γPeq − 1 = 0 . (12)

As with the MD toggle, this polynomial also has a maximum possible variation of 3 and thus only a single
combination of inequalities that give rise to bistability, in the region given by Eq. (S17).
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var(FPRM
, 0) sign(FPRM

, 0) Allowed? var(FPRM
,+∞) sign(FPRM

,+∞) Allowed?

6 {−++−+−+−} N 3 ...
...

5

{−++−+−++} N

2

{++−−++++} N
{−++−++−+} Y {++−−−+++} Y
{−++−+−−+} N {++−−−−++} N
{−++−−+−+} Y {++−−−−−+} N

4 ...
... 1 {++−−−−−−} N

Table 3: Sturm sequence inequality sets for the λ repressor–PRM system. The first four Sturm polyno-
mials have fixed signs at Peq = 0 and Peq = +∞. Neither var(FPRM

, 0) = 6 nor var(FPRM
,+∞) = 1

represent logically consistent sets, eliminating the need to consider sets that with var(FPRM
,+∞) = 3 or

var(FPRM
, 0) = 4 as candidates for bistability.

The bistable regions (in α–γ space) for these single gene systems are shown in Fig. 2A. It can be seen that
the λ repressor circuit is bistable over a larger range and with lower values of the degradation rate constant.
Interestingly, with α = 11 ( [20] and references therein) the single operator circuit would just barely function
as a bistable circuit, and any small fluctuation in circuit parameters would render it nonfunctional.
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Figure 2: (A) Bistable regions for the single operator positive feedback circuit and the λ repressor–PRM

system with relative affinities σ1 = 2 and σ2 = 0.08. (B) Region of bistability for the λ–PRM system as a
function of protein production enhancement α, protein degradation rate γ, and relative affinity for OR3
σ2.

Sturm’s theorem may also be used to determine how the strength of the negative feedback (σ2) affects
bistability. Keeping σ1 = 2, and using α = 11 and γ = 4.5 (centered in the bistable region at α = 11; see
Fig. 2A), we find that σ2 can increase twelve-fold to ∼ 0.96 before bistability is lost. In general, significant
increases in σ2 require similar increases in α for bistability to be maintained, with the range of allowable
γ narrowing as a result (Fig. 2B).
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6 Discussion

In this work we have for the first time applied Sturm’s theorem in the analysis of biocircuit behavior;
specifically, to analytically compare and contrast bistable biocircuit topologies. Though relatively little-
known within the biological sciences, Sturm’s theorem has already found applicability in a number of other
areas where polynomials play an important role, including computational mathematics [21], dynamical
systems [22, 23], robotics [24], and finance [25]. Additional biological applications are also possible. One
use of Sturm’s theorem of particular interest is as a tool to predict new bistable topologies or rule out those
circuits that do not have this capacity (like Chemical Reaction Network Theory, previously [13,26]), since
only those circuits with a variation difference var(F , 0)− var(F ,+∞) = 3 for some sets of parameters can
be bistable.

More broadly, algebraic geometry has a considerable amount to offer synthetic biology, with recent applica-
tions in optimization and control theory [27], model discrimination [28], and the study of chemical reaction
networks [29, 30] and multisite phosphorylation systems [31], among many others. This latter paper is
particularly relevant to our own work, not only because it further demonstrates how mathematical meth-
ods from algebraic geometry can yield insights into biological problems, but also because it highlights the
importance of treating parameters symbolically without specifying their numerical values, thereby avoiding
the so-called “parameter problem” [32]. (In our case, most parameters are removed through a rescaling
of the system variables and remaining parameters of interest, with the bistability regions given as sets of
exact inequalities of the resulting nondimensionalized quantities.)

We take advantage of the fact that the circuits considered here are dissipative and positive in their lineariza-
tion, which allows us to ascertain the stability of their equilibria without computation. It is important to
emphasize that these are not unique properties of these particular circuits; indeed, many real systems share
these properties. And for any such system, once the number of steady-states is determined—by Sturm’s
theorem or by other methods—the stabilities are known as well.

So following our analysis, can it be said that some topologies are in some sense “better” than others? In
comparing two different genetic toggle variants, we see that one consisting of two dimeric repressor species
functions as a bistable switch over a wider range of DNA concentrations than one composed of one dimeric
and one monomeric repressor when rate parameters are fixed. This result provides a strong motivation
for choosing a DD toggle over a MD toggle in any application where there is considerable uncertainty or
variability in parameter values or DNA concentrations (e.g., when DNA is in the form of plasmids without
strict copy-number control). Our results also demonstrate the benefit of additional operator sites in a
single gene positive feedback system: without both OR1 and OR2 in the λ repressor–PRM system, the
enhancement α = 11 would barely be sufficient for bistability. Interestingly, the negative feedback at OR3
is not strong enough to significantly affect bistability. Taken together, these two results suggest that the
promoter architecture of the λ system may have evolved to allow for both robust bistability due to the
positive feedback as well as reduced variability or other benefit of the small negative autoregulation.

Our approach can be directly applied to systems that at steady state are described by univariate polyno-
mials with integer exponents. Integers are typically used in simplified explanatory models and to describe
multiple ligand binding reactions with a high degree of positive cooperativity [33]—a situation which may
be considered equivalent to strong transcription factor multimerization taking place off of the regulated
DNA promoter, as in this work. However, when functional relationships are modeled with Hill functions
fit to empirical data [34–36], generalised polynomials with real non-integer exponents may result. In lim-
ited cases such a generalised polynomial with fractional exponents can be turned to a proper polynomial
with a simple substitution that does affect the number of zeros (e.g., u = x1/N , if all exponents of x are
multiples of 1/N). Such a modified polynomial would then be amenable to analysis with Sturm’s theorem.
An extension to the related Descartes’ rule of signs can also be used for counting zeros of generalised
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polynomials [37]. For multivariate models, extensions of Sturm’s Theorem and algorithms based on it have
been developed [12, 38], as has a multivariate version of Descartes’ rule of signs [39, 40]. (It is important
to note that although the Descartes’ rule of signs method may be simpler to apply than Sturm’s theorem,
it is definitively less powerful in that (1) it can only give an upper bound on the number of real roots of
a polynomial, and (2) the multivariate version has been shown to be applicable only to certain classes of
systems.)
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S1 Chemical reaction networks

With the exception of the model for the multiple-operator PRM promoter of bacteriophage λ, the various
circuits highlighted in the main text were initially predicted to exhibit bistability using a chemical reaction
network (CRN)-based topological survey [1]. Each of these CRNs contains reactions representing basal
protein production and degradation:

X1

kbas1−−⇀ X1 + P1 , X2

kbas2−−⇀ X2 + P2 , P1

kdeg1−−⇀ ∅ , P2

kdeg2−−⇀ ∅

for genes Xi and proteins Pi. The other reactions that uniquely define each circuit are:

X2 + P1

kcF−−⇀↽−−
kcR

X2P1

2P2

kkF−−⇀↽−−
kkR

P2P2

X1 + P2P2

knF−−⇀↽−−
knR

X1P2P2

2P1

kiF−−⇀↽−−
kiR

P1P1

2P2

kkF−−⇀↽−−
kkR

P2P2

X1 + P2P2

knF−−⇀↽−−
knR

X1P2P2

X2 + P1P1

koF−−⇀↽−−
koR

X2P1P1

2P2

kkF−−⇀↽−−
kkR

P2P2

X2 + P2P2

kqF−−⇀↽−−
kqR

X2P2P2

X2P2P2

kw−−⇀ X2P2P2 + P2

Monomer-dimer (MD)

toggle
Dimer-dimer (DD) toggle

Single-operator

positive feedback circuit

PiPi represent dimeric species, and XiPj and XiPjPj represent monomers and dimers bound to the gene
promoters. The various ODE sets were derived from these CRNs under the assumption of mass action
kinetics and simplified using the fact that the total concentrations of each gene (in bound and unbound
form) are conserved.
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S2

S2 Ordinary differential equation models

From the chemical reaction network formulation and assuming mass-action kinetics we can derive the
following sets of ordinary differential equations (ODEs) that describe the circuit dynamics. For the MD
toggle:

P1
′(t) = −kdeg1P1(t)− kcFX2(t)·P1(t) + kbas1X1(t) + kcR(X2tot −X2(t)) (S1a)

P2
′(t) = −2kkFP2(t)

2 − kdeg2P2(t) + 2kkRP2P2(t) + kbas2X2(t) (S1b)

P2P2
′(t) = kkFP2(t)

2 − kkRP2P2(t)− knFP2P2(t)·X1(t) + knR(X1tot −X1(t)) (S1c)

X1
′(t) = knR(X1tot −X1(t))− knFP2P2(t)·X1(t) (S1d)

X2
′(t) = kcR(X2tot −X2(t))− kcFP1(t)·X2(t) , (S1e)

the DD toggle:

P1
′(t) = −2kiFP1(t)

2 − kdeg1P1(t) + 2kiRP1P1(t) + kbas1X1(t) (S2a)

P1P1
′(t) = kiFP1(t)

2 − kiRP1P1(t)− koFP1P1(t)·X2(t) + koR(X2tot −X2(t)) (S2b)

P2
′(t) = −2kkFP2(t)

2 − kdeg2P2(t) + 2kkRP2P2(t) + kbas2X2(t) (S2c)

P2P2
′(t) = kkFP2(t)

2 − kkRP2P2(t)− knFP2P2(t)·X1(t) + knR(X1tot −X1(t)) (S2d)

X1
′(t) = knR(X1tot −X1(t))− knFP2P2(t)·X1(t) (S2e)

X2
′(t) = koR(X2tot −X2(t))− koFP1P1(t)·X2(t) , (S2f)

and single-operator positive feedback circuit:

P2
′(t) = kbas2X2(t)− kdeg2P2(t)− 2kkFP2(t)

2 + 2kkRP2P2(t) + kw(X2tot −X2(t)) (S3a)

P2P2
′(t) = kkFP2(t)

2 − kkRP2P2(t)− kqFP2P2(t)·X2(t) + kqR(X2tot −X2(t)) (S3b)

X2
′(t) = kqR(X2tot −X2(t)) − kqFP2P2(t)·X2(t) , (S3c)

where the variable names are as in [1]: Xi is the concentration of free (i.e., unbound by repressor) gene
i, Xitot is the total amount of Xi in the circuit (bound and unbound), and Pi and PiPi represent the
monomeric and dimeric forms of protein i, respectively. The various kx are the reaction rates, and in the
positive feedback circuit, kw > kbas2 is assumed.

S3 Derivation of the toggle circuit equilibrium polynomials

Using (S1) and (S2), with the left-hand sides set equal to zero, we can derive the univariate equilibrium
polynomials used in the application of Sturm’s theorem.

For the DD toggle, we subtract (S2d) from (S2e):

0 = knR(X1tot −X1)− knFP2P2 ·X1

− kkFP
2
2 + kkRP2P2 + knFP2P2 ·X1 − knR(X1tot −X1)

=⇒ P2P2 =
kkF
kkR

P 2
2 =

P 2
2

kkD
, (S4)

where for simplicity of notation we use Xi, Pi, and PiPi to mean the equilibrium concentrations. We then
plug this expression into (S2e) to get

0 = knR(X1tot −X1)− knF (P
2
2 /kkD)·X1

= (X1tot −X1)− (P 2
2 /(kkDknD))·X1

=⇒ X1 =
kkDknDX1tot

kkDknD + P 2
2

. (S5)
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S3

Similarly we subtract (S2b) from (S2f)

0 = koR(X2tot −X2)− koFP1P1 ·X2

− kiFP
2
1 + kiRP1P1 + koFP1P1 ·X2 − koR(X2tot −X2)

=⇒ P1P1 =
kiF
kiR

P 2
1 =

P 2
1

kiD
(S6)

and plug the resulting expression back into (S2f) to get

0 = koR(X2tot −X2)− koF (P
2
1 /kiD)·X2

= (X2tot −X2)− (P 2
1 /(kiDkoD))·X2

=⇒ X2 =
kiDkoDX2tot

kiDkoD + P 2
1

. (S7)

Substituting Eqs. (S4)–(S7) into (S2a) and (S2c) gives the equilibrium concentrations of P1 and P2 in the
DD toggle shown in the main text:

P1eq =
(
1 + (P2eq/K2)

2
)
−1

β1X1tot , P2eq =
(
1 + (P1eq/Kdd)

2
)
−1

β2X2tot , (S8)

where βi = kbasi/kdegi is the ratio of basal production rate to degradation rate for protein i, and the
Michaelis constants Kdd = (kiDkoD)

1/2 and K2 = (kkDknD)
1/2 represent the protein concentrations that

yield 50% of the maximum production rate of their respective targets. The combination of these two
expressions, with rescaling as described in the main text, gives the DD equilibrium polynomial.

For the MD toggle, we have again that

P2P2 =
P 2
2

kkD
(S9)

and

X1 =
kkDknDX1tot

kkDknD + P 2
2

, (S10)

but also (from Eq. (S1e)) that

X2 =
kcDX2tot

kcD + P1

. (S11)

Substituting Eqs. (S9)–(S11) into (S1a) and (S1b) gives the equilibrium concentrations of P1 and P2 in the
MD toggle shown in the main text:

P1eq =
(
1 + (P2eq/K2)

2
)
−1

β1X1tot , P2eq =
(
1 + (P1eq/Kmd)

)
−1

β2X2tot . (S12)

As previously, βi is the ratio of basal production rate to degradation rate for protein i, and the Michaelis
constants Kmd = kcD and K2 = (kkDknD)

1/2 represent the protein concentrations that yield 50% of the
maximum production rate of their respective targets. The combination of these two expressions, again
with rescaling as described in the main text, gives the MD equilibrium polynomial.
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S4 Sturm polynomials

Sturm polynomials can be rather long and complicated functions; however, they can be easily generated
using software capable of symbolic manipulation, e.g., Mathematica. We present here the Sturm sequences
for the MD toggle, DD toggle, and single-operator positive feedback circuit. For simplicity of notation
we have used x as our variable in the Sturm polynomials below, rather than the P̂1eq used in the main
text.

The Sturm polynomials associated with the MD toggle equilibrium polynomial are:

f0(x) = (x− X̂1tot)(x+ 1)2 + xX̂2

2

tot

f1(x) = X̂2

2

tot + (x+ 1)(3x− 2X̂1tot + 1)

f2(x) =
1

9

(
2(x+ 1)(X̂1tot + 1)2 − (6x+ X̂1tot − 2)X̂2

2

tot

)

f3(x) =
9X̂2

2

tot

(
− 4X̂2

4

tot + (X̂1tot(X̂1tot + 20)− 8)X̂2

2

tot − 4(X̂1tot + 1)3
)

4
(
(X̂1tot + 1)2 − 3X̂2

2

tot

)2 .

The DD Sturm polynomials are:

f0(x) = (x2 + 1)2(x− X̂1tot) + xX̂2

2

tot

f1(x) = (x2 + 1)(5x2 − 4xX̂1tot + 1) + X̂2

2

tot

f2(x) =
1

25

(
4(x2 + 1)

(
x(X̂1

2

tot − 5) + 6X̂1tot

)
− X̂2

2

tot(20x+ X̂1tot)
)

f3(x) =
1

q3

(
X̂2

2

tot

(
2X̂1

2

tot − 4 + 4x2(X̂1

2

tot − 5)− 3xX̂1tot(3 + X̂1

2

tot)
)
− 4(x2 + 1)(X̂1

2

tot + 1)2
)

f4(x) =
1

q4
4(X̂1

2

tot − 5)2X̂2

6

tot(20x+ X̂1tot)− (X̂1

2

tot − 5)2X̂2

4

tot

(
x(9X̂1

4

tot + 35X̂1

2

tot − 64)− 2X̂1tot(X̂1

2

tot − 62)
)

+ 16(X̂1

4

tot − 4X̂1

2

tot − 5)2X̂2

2

tot(X̂1tot − x)

f5(x) =
1

q5

(
256X̂1

6

tot − 3X̂1

4

tot(9X̂2

4

tot + 32X̂2

2

tot − 256)− 96X̂1

2

tot(X̂2

4

tot + 29X̂2

2

tot − 8) + 256(X̂2

2

tot + 1)3
)

× 25
(
(X̂1

2

tot + 1)2 + (X̂1

2

tot − 5)X̂2

2

tot

)2

where

q3 =
4

25
(X̂1

2

tot − 5)2

q4 = 100
(
(X̂1

2

tot − 5)X̂2

2

tot + (X̂1

2

tot + 1)2
)2

q5 = (X̂1

2

tot − 5)2
(
16(X̂1

2

tot + 1)2 + (9X̂1

4

tot + 35X̂1

2

tot − 64)X̂2

2

tot − 80X̂2

4

tot

)2
.

For all values of X̂1tot 6=
√
5, the sequence consisting of the fi(x) above may be used to determine the

number of steady states. However, when X̂1tot →
√
5, the sequence terminates prematurely (since f4(x) →

0) and there are problematic zeroes in the denominators of f3(x) and f5(x). We thus set X̂1tot =
√
5 in

the equilibrium polynomial to get

P̂1

5

eq −
√
5P̂1

4

eq + 2P̂1

3

eq − 2
√
5P̂1

2

eq + P̂1eqX̂2

2

tot + P̂1eq −
√
5 = 0 , (S13)
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and generate a second Sturm sequence to use at X̂1tot =
√
5 only:

f0(x) = x5 −
√
5x4 + 2x3 − 2

√
5x2 + xX̂2

2

tot + x−
√
5

f1(x) = 5x4 − 4
√
5x3 + 6x2 − 4

√
5x+ X̂2

2

tot + 1

f2(x) =
1

25

(
24

√
5x2 − 20xX̂2

2

tot −
√
5X̂2

2

tot + 24
√
5
)

f3(x) = − 5

1728

(
40

√
5xX̂2

6

tot − 168
√
5xX̂2

4

tot − 288
√
5xX̂2

2

tot + 10X̂2

6

tot − 285X̂2

4

tot + 1440X̂2

2

tot

)

f4(x) = −27(256X̂2

6

tot − 387X̂2

4

tot − 15552X̂2

2

tot + 55296)

40
√
5
(
5X̂2

4

tot − 21X̂2

2

tot − 36
)2 .

The single-operator positive feedback circuit Sturm sequence contains the following polynomials:

f0(x) = αx2 − γ
(
x3 + x

)
+ 1

f1(x) = 2αx− γ
(
3x2 + 1

)

f2(x) =
1

9

(
−2α2x

γ
+ α+ 6γx− 9

)

f3(x) =
9γ
(
4α3 − α2γ2 − 18αγ2 + 4γ4 + 27γ2

)

4 (α2 − 3γ2)
2

.

Recall that γ is the rescaled degradation rate constant for the λ repressor and α represents the increase in
protein production resulting from repressor dimer binding to OR2.

S5 Analytic expressions for regions of bistability

The regions of bistability were determined by combining the valid inequality sets and reducing to a single
pair of inequalities in the plane of the relevant variables. Reduction was done using Mathematica.

There is only one combination of inequalities that can give rise to bistability for the MD toggle: when

var(Fmd, 0) = 3 and var(Fmd,+∞) = 0. This gives the region of bistability in X̂1tot–X̂2tot space as

X̂1tot > 8

1

8

(
20X̂1tot + X̂1

2

tot − 8− f(X̂1tot)

)
≤ X̂2

2

tot ≤
1

8

(
20X̂1tot + X̂1

2

tot − 8 + f(X̂1tot)

)
,

(S14)

with f(X̂1tot) = (X̂1tot − 8)3/2(X̂1tot)
1/2.

In the case of the DD toggle, there are two different Sturm sequences we need to consider depending
on the value of X̂1tot (see Section ‘Sturm polynomials’ above). When X̂1tot 6=

√
5, the Sturm sequence

Fdd contains six polynomials, and there are three sets of inequalities with var(Fdd, 0) = 4 and two with

var(Fdd,+∞) = 1 that are logically consistent (Table 1). When X̂1tot =
√
5, the sequence Fdd contains

five polynomials, and only one set of inequalities with var(Fdd, 0) = 3 and one with var(Fdd,+∞) = 0 are
allowed (Table 2). These inequalities may be combined to give a continuous region of bistability as the
intersection of

X̂1tot > 4

0 < X̂2

2

tot ≤
1

160

(
9X̂1

4

tot + 35X̂1

2

tot − 64 + 3
(
9X̂1

8

tot + 70X̂1

6

tot + 577X̂1

4

tot + 640X̂1

2

tot + 1024
)1/2

)
(S15)
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and

256

(
X̂1

6

tot + (X̂2

2

tot + 1)3
)

< 3X̂1

4

tot

(
9X̂2

4

tot + 32X̂2

2

tot − 256

)
+ 96X̂1

2

tot

(
X̂2

4

tot + 29X̂2

2

tot − 8

)
. (S16)

As with the MD toggle, the equilibrium polynomial for the single-operator positive feedback circuit also has
a maximum possible variation of 3, which means that the circuit exhibits bistability only in the region

α > 9

1

8

(
α2 + 18α− 27− (α− 9)3/2(α− 1)1/2

)
≤ γ2 ≤ 1

8

(
α2 + 18α− 27 + (α− 9)3/2(α− 1)1/2

)
.

(S17)

With the exception of the DD toggle at X̂1tot =
√
5 (which was treated by analyzing a second Sturm

sequence; see ‘Sturm polynomials’ section above), none of the potential zeroes in the Sturm polynomial
denominators required special treatment nor did they present any problems in determining the regions of
bistability.

S6 Circuit Jacobians

The Jacobian matrices for the MD toggle, DD toggle, and single-operator positive feedback circuit are:

Jmd =




−kdeg1 − kcFX2(t) 0 0 kbas1 −kcR − kcFP1(t)
0 −kdeg2 − 4kkFP2(t) 2kkR 0 kbas2
0 2kkFP2(t) −kkR − knFX1(t) −knR − knFP2P2(t) 0

0 0 −knFX1(t) −knR − knFP2P2(t) 0

−kcFX2(t) 0 0 0 −kcR − kcFP1(t)


 (S18)

Jdd =




−kdeg1−4kiF P1(t) 2kiR 0 0 kbas1 0

2kiF P1(t) −kiR−koF X2(t) 0 0 0 −koR−koF P1P1(t)

0 0 −kdeg2−4kkF P2(t) 2kkR 0 kbas2

0 0 2kkF P2(t) −kkR−knFX1(t) −knR−knFP2P2(t) 0

0 0 0 −knFX1(t) −knR−knFP2P2(t) 0

0 −koF X2(t) 0 0 0 −koR−koF P1P1(t)


 (S19)

Jpf =



−kdeg2 − 4kkFP2(t) 2kkR kbas2 − kw

2kkFP2(t) −kkR − kqFX2(t) −kqR − kqFP2P2(t)
0 −kqFX2(t) −kqR − kqFP2P2(t)


 (S20)

Each of the Jacobian matrices J may be transformed to Metzler matrices JM with a similarity transforma-
tion: JM = P−1JP . (The P matrices for the MD toggle, DD toggle, and single-operator positive feedback
circuit Jacobians are Pmd = diag(−1, 1, 1,−1, 1), Pdd = diag(−1,−1, 1, 1,−1, 1), and Ppf = diag(1, 1,−1),
respectively.) The Jacobians are also row equivalent to the identity matrix (as confirmed with Mathemat-
ica) and thus invertible—det(J) 6= 0 for all (positive) parameters and equilibria.

S7 Number of steady states and stability analysis

S7.1 Preliminaries

Definition 1 (Positive systems) A linear system ẋ = Ax is positive if for every nonegative initial state
the solution x(t) is nonnegative.
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The following is a well known condition for positivity [2]:

Theorem 1 A linear system ẋ = Ax is positive if and only if matrix A is a Metzler matrix, i.e., its
elements satisfy: aij ≥ 0, ∀(i, j) such that i 6= j.

Since the Jacobian matrices (shown above) are, for any choice of parameters, similar to Metzler matrices
via linear transformations, the linearizations of systems (S1), (S2), and (S3) are positive.

The general definition of dissipativity (see, e.g., [3]) is based on the existence of compact, forward invariant
subsets of Rn

+ that absorb the system trajectories. The following definition (from [4]) is equivalent and
easier to verify:

Definition 2 (Dissipative systems) A system ẋ = f(x) is dissipative if its solutions are eventually
uniformly bounded, i.e., there exists a constant k > 0 such that:

lim
t→+∞

supxi(t) ≤ k.

Systems (S1), (S2), and (S3) are dissipative. As an example, we verify the definition for the MD toggle
model (S1). Because the total mass of each of the DNA species X1 and X2 is constant, we know that
X1(t) ≤ Xmax and X2(t) ≤ Xmax ∀ t, where Xmax = max{X1tot,X2tot}. The concentration of P1 can be
upper bounded as follows:

P1
′(t) = −kdeg1P1(t)− kcFX2(t)·P1(t) + kbas1X1(t) + kcR(X2tot −X2(t))

≤ −kdeg1P1(t)− kcFX2(t)·P1(t) + kbas1Xmax + kcRXmax

≤ −kdeg1P1(t) + kbas1Xmax + kcRXmax

≤ −aP1(t) + b ,

where a = kdeg1 and b = (kbas1 + kcR)Xmax. The right hand side of the last inequality above is a linear,
asymptotically stable system whose solution is eventually uniformly bounded (b is a finite constant). Using
the comparison principle [5], we conclude that P1(t) is bounded and can find a constant k that satisfies
the definition.

P2 may be similarly upper bounded. We first consider the dynamics of P f
2 (t) = P2(t)+ 2P2P2(t), the total

amount of unbound P2 in the system:

P f
2

′(t) = −kdeg2P2(t)− 2knFP2P2(t)·X1(t) + 2knR(X1tot −X1(t)) + kbas2X2(t)

≤ −kdeg2P2(t)− 2knFP2P2(t)·X1(t) + (2knR + kbas2)Xmax

≤ −kdeg2P2(t) + (2knR + kbas2)Xmax .

The dynamics of monomeric P2 satisfy:

P2
′(t) = −2kkFP2(t)

2 − kdeg2P2(t) + 2kkRP2P2(t) + kbas2X2(t)

≤ −kdeg2P2(t) + 2kkRP2P2(t) + kbas2Xmax

≤ −kdeg2P2(t) + kkR
(
P2(t) + 2P2P2(t)

)
+ kbas2Xmax .

Together, we have:

(
P2

′(t)

P f
2

′(t)

)
≤
(
−kdeg2 kkR
−kdeg2 0

)(
P2(t)

P f
2 (t)

)
+

(
kbas2Xmax

(2knR + kbas2)Xmax

)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2015. ; https://doi.org/10.1101/008581doi: bioRxiv preprint 

https://doi.org/10.1101/008581
http://creativecommons.org/licenses/by-nc-nd/4.0/


S8

The variables P f
2 (t) and P2(t) are upper bounded by a linear system with eigenvalues

λ1,2 =
1

2

(
−kdeg2 ±

√
k2deg2 − 4kkRkdeg2

)
,

whose real part is always negative for any value of the (positive) parameters. Being upper bounded by an

asymptotically stable linear system, the concentrations P2 and P f
2 are eventually uniformly bounded. It

follows that P2P2 is also eventually uniformly bounded, since P2P2 ≤ P f
2 .

Therefore, the ODE model of the monomer-dimer toggle system is dissipative. Note that the same con-
clusion cannot be reached in the absence of degradation (kdeg2 = 0) since the total amount of protein will
grow unbounded. Similar proofs can be provided for systems (S2) and (S3).

S7.2 Stability of equilibria

Sturm’s theorem applied to the polynomial equilibrium conditions for systems (S1), (S2), and (S3) reveals
that each system admits three positive equilibria. The stability properties of these equilibria can be
determined by degree theory [4].

Definition 3 (Regular equilibrium) An equilibrium point x̄ of system ẋ = f(x) is regular if det(J(x̄)) 6=
0 (in other words, J(x̄) must be invertible; alternatively, J(x̄) must not have eigenvalues at the origin).

Definition 4 (Index of an equilibrium point) The index of a regular equilibrium point x̄ is the sign
of the determinant of −J(x̄):

ind(x̄) = sign
(
det
(
−J(x̄)

))

Definition 5 (Degree of a system) The degree of a dynamical system ẋ = f(x), over a set U ∈ R
n,

having equilibria x̄i, i = 1, ...,m, is defined as:

deg(f) =
m∑

i=1

{ind(x̄i), x̄i ∈ U, f(x̄i) = 0} ,

where x̄i are regular equilibria.

Theorem 2 A dissipative dynamical system ẋ = f(x) defined on R
n has degree +1 with respect to any

bounded open set containing all its equilibria.

Since systems (S1), (S2), and (S3) are dissipative, by Theorem 2 all have degree +1. We further note that
the Jacobian matrices of our systems are row equivalent to the identity matrix and thus always invertible for
any choice of (positive) parameters and equilibria. Therefore, all equilibria are regular. To determine the
index of each equilibrium point, we need not know the value of the equilibrium itself, since in general

ind(x̄) = sign
(
det
(
−J(x̄)

))
= sign

(
det
(
λI − J(x̄)

))
, withλ = 0.

Therefore, the index of an equilibrium corresponds to the sign of the constant term in the system’s charac-
teristic polynomial pJ(λ) = det

(
λI − J(x̄)

)
. For any choice of the parameters (reaction rates) in systems

(S1), (S2), and (S3), the pJ(λ) have coefficients that are all positive except the constant term, which may
be positive or negative. Thus, the sign of the constant term determines the index of the corresponding
equilibrium. Finally, we note that the sign of the constant term in the characteristic polynomial also
determines the stability properties of the corresponding equilibrium due to the particular structure of the
Jacobians under consideration; we can state the following lemma [6]:
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Lemma 1 Any single equilibrium of systems (S1), (S2), and (S3) is unstable if and only if the constant
term of the characteristic polynomial pJ(λ) is negative. Instability can only be driven by a simple, real
(positive) eigenvalue.

Proof The linearization of systems (S1), (S2), and (S3) define positive linear systems, where the Jacobians
Jmd, Jdd, and Jpf (given above as (S18), (S19), and (S20)) are similar to Metzler matrices. Therefore,
these Jacobians always have a real dominant eigenvalue, i.e. λmax > Re(λi), ∀λi ∈ J [7].

The coefficients of characteristic polynomials pJmd(λ), pJdd(λ), and pJpf (λ) are all real and all positive
with the exception of the constant terms, which can be positive or negative. If the constant term of each
pJ(λ) is negative, then we know that pJ(0) < 0 and it is real. In the limit λ → ∞, pJ(λ) > 0 because
all other coefficients are positive. Thus, there must be at least one point in the right half plane that is a
root of pJ(λ), all our systems are unstable, and because the various Js are similar Metzler matrices, their
largest roots must be real.

If a system is unstable, then its characteristic polynomial must have at least one root with positive real
part. Ab absurdo, suppose the constant term is positive. Then instability can only occur with a pair of
complex conjugate eigenvalues with positive real part. This is impossible because the Jacobian is a Metzler
matrix and the dominant eigenvalue must be real. Thus, the constant term of the characteristic polynomial
must be negative. �

We can now finish our stability analysis. Our systems all have degree +1 (Theorem 2), thus when three
equilibria are present their indices must be equal to +1, +1, and -1 so that their sum is +1 (we recall that
all equilibria of our systems are regular). Since the index is equal to the sign of the constant term in the
characteristic polynomial, a positive index is associated with a stable equilibrium and a negative index is
associated with an unstable equilibrium, and we can conclude that, with three equilibria, our systems are
bistable. Note that the unstable point does not admit local oscillatory behaviors, because local instability
is driven by a real eigenvalue (Lemma 1). As an alternative argument, we can also simply note that
our systems are monotone—for any choice of parameters the Jacobians are similar to Metzler matrices,
a property that defines a monotone system with respect to the positive orthant [8, 9]—and a monotone
system does not admit oscillatory behaviors.
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