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26 Abstract

27 Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of
28 effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV
29 populations, combined with the reality of suboptimal treatment adherence, make drug
30 resistance a major clinical and public health concern. We develop a general model incorporating
31 viral dynamics and pharmacokinetics/pharmacodynamics to assess how suboptimal adherence
32 affects resistance development and clinical outcomes. We derive design principles and adaptive
33 treatment strategies, identifying a high-risk period when missing doses is particularly risky for de
34 novo resistance, and quantifying the number of additional doses needed to compensate when
35 doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk
36 of resistance can be reduced substantially by applying these principles to a combination
37 therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient
38 characteristics to the risk of resistance, these findings show the potential of rational treatment
39 design.

40

41 Introduction

42 Hepatitis C virus (HCV) affects approximately 170 million people and chronic infections can lead
43 to cirrhosis and hepatocellular carcinoma (Lavanchy 2009; Thomas 2013). Recently, development
44 of direct acting antivirals (DAAs) against HCV infection has revolutionized the field of HCV
45 treatment, because of their high potency, broad applicability and mild side effects (Gane 2011;
46 Scheel and Rice 2013). Combination therapies of DAAs have achieved remarkably high rates of
47 sustained virological response in clinical trials (Lok, Gardiner et al. 2012; Pol, Ghalib et al. 2012;
48 Afdhal, Zeuzem et al. 2014; Feld, Kowdley et al. 2014; Kowdley, Gordon et al. 2014; Zeuzem,
49 Jacobson et al. 2014). However, due to the relatively low genetic barriers of most DAAs
50 (Pawlotsky 2011; Robinson, Tian et al. 2011; Qi, Olson et al. 2014), the high intrinsic mutation
51 rate of HCV (Powdrill, Tchesnokov et al. 2011; Ribeiro, Li et al. 2012), and the high viral diversity
52 (Pybus, Charleston et al. 2001; Simmonds 2004; Thomas 2013), combined with the reality of
53 suboptimal treatment adherence (Lo Re, Teal et al. 2011; Lieveld, van Vlerken et al. 2013), viral
54 resistance represents a major clinical and public health concern (Sarrazin and Zeuzem 2010;
55 Pawlotsky 2011). Indeed, resistance to single DAAs has already been observed frequently for
56 many candidate DAAs, and patients must be treated with combination therapies to avoid
57 treatment failure. If not properly managed, resistance could quickly develop to combination
58 therapies and render these new DAAs useless, as observed for other antimicrobial treatments,
59 squandering the potential health gains from these recent breakthroughs (DiMasi, Hansen et al.
60 2003; Roberts, Hota et al. 2009; Smith, Okano et al. 2010).

61

62 Suboptimal patient adherence to dosing regimens is a crucial risk factor for resistance
63 development in both HIV and HCV treatments (Paterson, Swindells et al. 2000; Bangsberg, Perry
64 et al. 2001; Lo Re, Teal et al. 2011; Lieveld, van Vlerken et al. 2013). Although high rates of
65 sustained virological response have been achieved in clinical trials, adherence levels may vary
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66 substantially among the vast population of infected patients, owing to long treatment periods
67 and complicated regimens associated with DAA combination therapies (Weiss, Brau et al. 2009;
68 Lo Re, Teal et al. 2011; Evon, Esserman et al. 2013; Gordon, Yoshida et al. 2013; Lieveld, van
69 Vlerken et al. 2013). Rational design of combination therapy regimens, enabling individualized
70 regimens based on the genetic composition of a patient’s infection and real-time adjustments for
71 missed doses, is a top research priority to avoid resistance (Spellberg, Guidos et al. 2008; Gelman
72 and Glenn 2010; zur Wiesch, Kouyos et al. 2011; Lieveld, van Vlerken et al. 2013). Mathematical
73 models are well suited to address this problem. Previous modeling studies for HIV infections
74 have illuminated potential mechanisms underlying treatment failure and explained puzzling
75 clinical observations (Wahl and Nowak 2000; Rosenbloom, Hill et al. 2012). However, HCV is a
76 curable disease and its infection, goal of treatment and mechanism of resistance differ from HIV
77 in many respects (Soriano, Perelson et al. 2008), including no known latent reservoir and a finite
78 treatment period to eradicate the virus. Here, by integrating
79 pharmacokinetics/pharmacodynamics (PK/PD) and viral dynamics into mathematical models, we
80 develop the first general theory to assess the impacts of suboptimal adherence on the outcome
81 of DAA-based therapies for HCV infection. We derive design principles that can be generalized to
82 therapies involving different classes and different numbers of drugs. Using large-scale data from
83 in vitro resistance assays and human clinical trials, we apply this framework to a combination
84 therapy of daclatasvir and asunaprevir (Suzuki, lkeda et al. 2012), and derive evidence-based
85 adaptive treatment strategies for treatment protocols over time according to resistance profiles
86 and adherence patterns.

87

ss Results

89 Resistance to antiviral treatments can develop through selection of preexisting mutants or de
90 novo generation of new mutants. A core principle for designing effective combination therapy is
91 that, if patients fully adhere to the treatment regimen, the treatment must suppress all
92 preexisting mutants and de novo resistance should be unlikely (Ribeiro and Bonhoeffer 2000).
93 Missing doses, however, can lead to suboptimal drug concentrations, allowing growth of some
94 preexisting mutants with partially resistant phenotypes. Growth of these mutants allows the viral
95 population to survive longer, possibly generating further mutations that contribute de novo
96 resistance against the full combination therapy. For example, consider a combination therapy of
97 two DAAs, A and B, as shown in Fig. 1A. If missed doses and pharmacokinetics lead to a drop in
98 the concentration of drug A, this allows growth of the preexisting mutant, AB’, (which is already
99 resistant to drug B), thus opening opportunities to generate the fully resistant mutant, A'B’.
100 Therefore, the dynamics of the subset of preexisting mutants that have a high level of resistance
101 against single DAAs determine resistance evolution and treatment outcomes for combination
102 therapies. In the following, we denote these mutants as ‘partially resistant” mutants.
103

104 The effective viral fitness, Rez(t)

105 The fitness of a particular strain in a treated patient is determined by the PK/PD of the drug, the
106 level of resistance of the strain, and the availability of target cells, i.e. uninfected hepatocytes for
3
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107 HCV (Fig. 1B). We can integrate all these factors (for any class of DAA therapy) into a single
108 number, the effective reproductive number under treatment, Reg(t) (Fig. 1C). Reglt) is the average
109 number of cells infected by viruses produced by a single infected cell. It acts as a measure of viral
110 fitness, and can be calculated as:

111 R, (t)=(1-€(0)* R, h(t) M

112 where tis time since treatment starts, tis the time since last dose, £(7) is the efficacy of the drug
113 combination at time t during the dosing cycle, Rq is the reproductive number of the virus in the
114 absence of treatment, and h(t) is the normalized abundance of target cells (see Supplementary
115 Materials). Under effective treatment, the availability of target cells, h(t), increases quickly to
116 reach the infection-free level (Rong, Dahari et al. 2010), and therefore, the overall viral fitness
117 increases over time as h(t) increases under effective treatment (Fig. 1B,C). When adherence is
118 optimal, the value of R.s for a partially resistant mutant is always less than 1 (i.e. viral
119 suppression); however, if doses are missed, drug concentration declines exponentially and Res
120 can become greater than 1 (i.e. viral growth) (Fig. 1C).

121

122 The growth of partially resistant mutants and the need for extended treatment

123 We now consider how suboptimal adherence impacts the dynamics of partially resistant mutants.
124 As an illustration, we contrast simulations assuming perfect adherence versus suboptimal
125 adherence. Missing doses leads to rapid decreases in drug concentration, and thus increases in
126 Resr of a partially resistant mutant (Fig. 2A-C). This means that extra doses are needed to
127 compensate for the missed doses to suppress the mutant to extinction (Fig. 2D), and also that
128 the number of newly infected cells rises substantially, which increases the opportunity for de
129 novo resistance (Fig. 2E).

130

131 We approximate the time-varying values of Rey(t) during periods when doses are missed, by
132 calculating the average effective reproductive number, Rgvem, as (see Materials and Methods):

133 R, .()~(-g,, ) R h(t) (2)

134 where t is the time when the patient starts to miss doses, m is the number of consecutive doses
135 missed and &gem is the average drug inhibition during the period when m consecutive doses are
136 missed. This allows us to generalize our theory to any DAA combinations for which &gem can be
137 either estimated from pharmacokinetics/pharmacodynamics data or calculated from mutant
138 resistance profiles (Wahl and Nowak 2000).

139

140 We then ask, if m consecutive doses are missed beginning at time t, how many extra doses, N,,,
141 are needed to compensate? This number, which we denote ‘compensatory doses’, can be
142 approximated as (see Materials and Methods):

143 N, (t)=m-R

ave,m(t)zm.(l_g )Roh(t) (3)

ave,m

144 This allows us to estimate the total duration of treatment needed to clear infection for a given
145 adherence pattern. Furthermore, since h(t) increases over time under effective treatment (Rong,
146 Dahari et al. 2010), Eqn. 3 shows that a higher number of extra doses are needed to eliminate
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147 the infection if doses are missed later in treatment.
148

149  De novo generation of fully resistant mutants

150 To assess the risk that a partially resistant lineage will give rise to full resistance, we calculate the
151 expected number of target cells, ®,, that become infected by fully resistant mutant viruses due
152 to de novo mutation during a period when m consecutive doses are missed. This quantity is the
153 product of the cumulative number of cells newly infected by a partially resistant mutant and the
154  effective mutation rate from that mutant to the fully resistant mutant, . (see Materials and
155 Methods):

o(t)

R (1 o
156 D@, ()=, I(t)'—R “”E’E"t())1'(e(R”"f"”’(’) omT _7y (4)

cumulative number of cells newly infected by a partially resistant mutant

157 where [(t) is the number of cells infected by the partially resistant mutant at time t when the first
158 dose is missed, and O(t) represents the potential to generate new infections. J is the death rate
159 of infected hepatocytes, and T is the scheduled interval between two doses. ®@,, quantifies the
160 risk that a fully resistant mutant infects target cells, but whether it emerges and becomes
161 established within the host depends on its fitness and the stochastic dynamics of invasion
162 (Alexander and Bonhoeffer 2012; Loverdo, Park et al. 2012; Loverdo and Lloyd-Smith 2013).

163

164 The strong dependence of ®@,, on u.; predicts that designing combination therapies to increase
165 the genetic barrier to full resistance, e.g. using DAAs with higher genetic barrier or adding an
166 extra drug into the combination, can reduce ®,, by orders of magnitude or more, thus it would

167 lead to drastic reductions in the probability of generating full resistance (compare trajectories a
168 and b in Fig. 3A).
169

170 Eqn.4 also allows us to assess when during treatment it is most risky to miss doses, which can
171 inform treatment guidelines. Changes in two quantities, /(t) and ©(t), determine changes in @,
172 over the course of a treatment regimen. For as long as adherence is perfect, /(t) decreases
173 exponentially, while ©(t) increases over time since Rgyem(t) increases as the abundance of target
174 cells rises over time (Fig. 3B). Thus the value of ®,, first increases (due to rapid recovery of target
175 cells) and then decreases exponentially (due to decrease of infected cells). This leads to a
176 high-risk window period, during which missing doses is especially risky for generating full
177 resistance (Fig. 3A). This qualitative finding is robust to changes in model parameters, though
178 quantitative predictions of the risk of full resistance depend on the fitness of the mutant (R,), the
179 half-life of infected cells (), and the rate at which the target hepatocytes become available upon
180 treatment (Fig.S1).

181

182  Design principles and adaptive treatment strategy for DAA combination therapy

183 These results suggest principles for rational optimization of treatment outcomes. Individualized
184 therapies could be designed for patients with risk factors for low adherence, by selecting drug
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185 combinations that impose a higher genetic barrier than required to suppress all preexisting
186 mutants, to reduce the risk of de novo resistance.

187

188 Adaptive treatment strategies could be developed based on the theoretical findings shown
189 above. For a particular combination therapy, the high-risk window period for missing doses can
190 be calculated by integrating the values of ®,, for all partially resistant mutants present in a
191 patient. Then, for patients with risk of low adherence, supervised dosing during the high-risk
192 window period would reduce the risk of resistance and treatment failure. Another alternative is
193 to treat the patient using a higher number of DAAs in combination during the high-risk period,
194 and then switch back to a combination with a lower number of DAAs afterwards. If doses are
195 missed during treatment, the patient should be treated with extra doses, computed as the
196 maximum value of the N,, values calculated for all partially resistant mutants. For the lowest risk
197 of de novo resistance, the prescribed number of compensatory doses (N,,) should be taken,
198 uninterrupted, immediately after doses are missed. Otherwise the infected cell population may
199 rebound to a high level, which can make further missed doses very risky for resistance.

200

201  Case study: combination therapy of daclatasvir and asunaprevir

202 To demonstrate the practical applicability of our theory, we consider a recently developed
203 interferon-free combination therapy based on an NS5A inhibitor, daclatasvir, and an NS3
204 protease inhibitor, asunaprevir (Suzuki, lkeda et al. 2012). In clinical trials, a large proportion of
205 patients infected with HCV genotype-1b achieved sustained virological response (i.e. viral
206 eradication) when treated with daclatasvir and asunaprevir for 24 weeks, although viral
207 breakthrough and viral relapse occurred in a small fraction of patients (Karino, Toyota et al. 2013;
208 Kosaka, Imamura et al. 2014).

209

210 We first consider patients with the wild-type virus at baseline, i.e. the wild-type virus is the
211 dominant strain before treatment. Using the PK/PD data for each drug (Eley, Pasquinelli et al.
212 2010; Nettles, Gao et al. 2011; Ke, Loverdo et al. 2014) and the resistance profiles data measured
213 for genotype-1b HCV (Fridell, Qiu et al. 2010; Fridell, Wang et al. 2011), we predicted which
214 mutants are potentially fully-resistant to this combination therapy and calculated the values of
215 N, and @,, for each of the partially resistant mutants (Fig. 4A,B) (see Supplementary Materials
216 for more detail). Choosing the highest values of N, and ®,, among all the partially resistant
217 mutants allows us to project the overall risk arising from missed doses over the course of
218 treatment, and we found required numbers of compensatory doses were modest and the risk of
219 de novo resistance is low (Fig. S2A). To demonstrate that the theoretical approximations
220 represent the full viral dynamics accurately, we simulated a multi-strain viral dynamics model
221 (see Materials and Methods), assuming 1-3 day blocks of consecutive doses are missed randomly
222 within a treatment regimen lasting 24 weeks. The model predicts that relapse of L31M+Y93H or
223 L31W would be observed when overall adherence is less than 90% (Fig. 4C,D). Indeed, the
224 L31M+Y93H mutant has already been detected in one relapse patient in a clinical trial (Karino,
225 Toyota et al. 2013). There is excellent agreement between simulation results and theoretical
226 predictions (based on Egn.3 and 4) for the number of cells infected by different mutants after 24
227 weeks of treatment and the cumulative number of cells infected by partially resistant mutants
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228 over the treatment period (Fig. 4D and S3).

229

230 We then simulated outcomes when the doses are guided by the adaptive treatment strategy
231 (guided dosing). Because the risk of de novo resistance when doses are missed is low, there is no
232 high-risk period for de novo resistance in this case (Fig. 4B). If patient dosing is guided, i.e. all the
233 required doses and the extra doses to compensate for the missed doses are taken, the infection
234 can be cleared successfully (Fig. 4E). Again, we find excellent agreement between simulation
235 results and theoretical predictions (Fig. 4F).

236

237 Many patients bear the Y93H mutation at baseline and this mutation reduces the genetic barrier
238 to full resistance by one nucleotide(Karino, Toyota et al. 2013). Our theory suggests that
239 reducing the genetic barrier to full resistance will drastically increase the risk of treatment failure.
240 We repeated our analysis for patients with Y93H at baseline, to test how our adaptive treatment
241 strategy works when the risk of resistance is high. As predicted, many more days of treatment
242 are needed to compensate for missed doses, and the risks of generating full resistance de novo
243 are high (>0.01) during the first 3 weeks of effective treatment if 2 consecutive doses are missed
244 (or first 4 weeks if 3 doses are missed; Fig. 5A,B and S2B). De novo full resistance is likely if doses
245 are missed randomly and adherence is less than 90% (dark red area in Fig. 5C). The predicted
246 number of infected cells agrees well with simulation, except when adherence is very low such
247 that viral load rebounds back close to the pre-treatment level (Fig. 5D and S4-S6). In stark
248 contrast, when doses are guided, the risk of de novo resistance becomes much lower (compare
249 Fig. 5C with 5E). Again, for patients who do not clear infection after 24-week treatment,
250 extended periods of treatment as predicted by our theory (using Eqn.3) can clear infection with
251 low risk of resistance. The efficacy of the adaptive treatment strategy is robust across different
252 parameter values (Fig. S7-S12 and Supplementary Materials). Therefore, our treatment strategy
253 can improve clinical outcomes substantially by adjusting on-going treatment based on patient
254 adherence patterns.

255

256 Discussion

257 With the prospect of interferon-free combination therapies becoming available to the HCV
258 infected population (Lok, Gardiner et al. 2012; Pol, Ghalib et al. 2012; Scheel and Rice 2013;
259 Thomas 2013; Afdhal, Zeuzem et al. 2014; Feld, Kowdley et al. 2014; Kowdley, Gordon et al. 2014;
260 Zeuzem, Jacobson et al. 2014), there is an urgent need to design treatment strategies that will
261 prevent or delay the development of resistance to DAAs. Extensive laboratory efforts have
262 characterized the PK/PD parameters and mutant resistance profiles of DAAs (Eley, Pasquinelli et
263 al. 2010; Fridell, Wang et al. 2011; Nettles, Gao et al. 2011; McPhee, Friborg et al. 2012; Qi, Olson
264 et al. 2014). In this study, we integrate PK/PD parameters and viral dynamics into a unified
265 framework to assess the impacts of suboptimal treatment adherence on the risk of treatment
266 failure. This framework also enables adaptive management of DAA treatments. Using simulations
267 incorporating PK/PD and resistance profile data collected previously (Fridell, Qiu et al. 2010;
268 Fridell, Wang et al. 2011; Nettles, Gao et al. 2011), we showed that treatment outcomes of

269 combinations therapies of daclatasvir and asunaprevir can be greatly improved by this adaptive
7
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270 treatment strategy, especially when the Y93H mutant is the dominant strain before treatment
271 begins.

272

273 For therapies with low genetic barriers to resistance, we have identified a high-risk window
274 period during which de novo resistance is likely if doses are missed. Intervention efforts should
275 focus on enhancing patients’ adherence during this period. Additional complementary strategies
276 could further reduce the risk of treatment failure. First, if doses are missed during the high-risk
277 window, the immediate addition of another drug with a different mechanism of action from
278 existing drugs may eliminate any low level of fully resistant mutants that has arisen. Alternatively,
279 a patient could be treated preemptively using additional drugs during the entire high-risk period
280 and switched to fewer drugs afterwards. Our theory also predicts the number of compensatory
281 doses (N,,) needed to compensate for missed doses, in order to eliminate preexisting mutants.
282 Interestingly, clinical trials have shown that adherence levels tend to decrease over time (Weiss,
283 Brau et al. 2009; Lo Re, Teal et al. 2011); we show that more doses are needed to compensate
284 for missed doses that occur later in treatment because of the rebound of target cells. Overall,
285 these results highlight the importance of viral genotype screening and adherence monitoring.
286 While many previous studies have focused on average adherence (Wahl and Nowak 2000; Weiss,
287 Brau et al. 2009; Lo Re, Teal et al. 2011; Evon, Esserman et al. 2013; Gordon, Yoshida et al. 2013;
288 Lieveld, van Vlerken et al. 2013), we emphasize that the timing of the missed doses is also a
289 critical determinant of treatment outcome and the risk of resistance.

290

291 There exist substantial heterogeneities among patients owing to variation in HCV genotypes,
292 patient viral loads, death rates of infected cells (Neumann, Lam et al. 1998; Rong, Dahari et al.
293 2010) and effectiveness of drug penetration (Ke, Loverdo et al. 2014). Our analysis has identified
294 several factors that influence the impact of suboptimal adherence, particularly the rebound rate
295 of target cells under treatment, the half-life of infected cells and the overall viral fitness, Ry. We
296 used the best available estimates of these parameters, but further empirical work is needed. If
297 resistance profiles and viral parameters could be measured directly from a specific patient, then
298 our framework linking these factors could be tailored to give patient-specific guidelines.

299

300 Certain model assumptions reflect uncertainties in our current knowledge of HCV infection. First,
301 our prediction about time to viral extinction should be treated cautiously. We predict the time of
302 extinction (as in other models (Snoeck, Chanu et al. 2010; Guedj and Perelson 2011)) by
303 assuming that infected cells decline at a rate set by their death rate, and infection is cleared
304 when the number of infected cells is below one. However, factors such as pressures from the
305 immune system and infections in different tissue compartments may influence the extinction
306 threshold. Furthermore, if DAA treatment causes intracellular viral RNA to decay with negligible
307 replication (Guedj, Dahari et al. 2013), the decline of infected cells may result from a
308 combination of cell recovery and death of infected cells. Indeed, sustained virological response
309 has been observed in clinical trials of DAA combination therapies with shorter durations of
310 treatment (Poordad, Lawitz et al. 2013). Our model can be adjusted easily once the decay
311 dynamics of infected cells are understood better. Second, our model captures the main features
312 of pharmacodynamics and viral dynamics by assuming quasi-equilibrium for viral populations and
313 drug penetration into liver cells. Further work that incorporates detailed intracellular interactions
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314 (Guedj, Dahari et al. 2013) and different body compartments may improve model accuracy, once
315 pertinent parameters are measured. However, a more detailed model may become analytically
316 intractable.

317

318 This quantitative framework is a step towards developing a tool (for example, see Ref. (Garg,
319 Adhikari et al. 2005)) for clinicians to design combination therapies and adaptively manage
320 treatment regimens to achieve favorable clinical outcomes. It highlights the importance of
321 characterizing resistance profiles of HCV, screening for resistant mutations before treatment,
322 and monitoring adherence patterns during treatment, so that treatment can be designed and
323 adjusted in an evidence-based manner. This framework can be adapted easily to combination
324 therapies based on other DAA candidates, or treatments of other curable diseases without a
325 reservoir.

326

327 Materials and Methods

328  HCV model and Viral fitness in the presence of drug, Res(t)

329 To analyze the dynamics of the virus, we constructed an ordinary differential equation (ODE)
330 model to describe the long-term within-host dynamics of a single HCV strain under drug
331 treatment, based on an established model developed by Neumann et al.(Neumann, Lam et al.
332 1998) (see Supplementary Material). In the model, ¢ represents the proportion by which the
333 therapy reduces viral growth (¢ is in the range of 0 and 1). Then, the fitness of the virus, Reg(t), is
334 the product of the complement of the therapy’s efficacy (1-£(t)), the reproductive number of the
335 virus, Ro, and the availability of target cells, h(t) (Eqn. 1).

336

337  Average effective viral fitness when m doses are missed, Raye,m

338 To approximate the time-varying viral fitness, Rey(t), during the period when m consecutive
339 doses are missed, we assume that the abundance of target cells stays constant. This is a good
340 approximation, because the length of the period when consecutive doses are missed tends to be
341 short compared to the time scale of target cell rebound. Then the only time-varying quantity in
342 Egn. 1 is &(t). We can calculate the average level of drug inhibition during the period when m
343 doses are missed, &mem, by incorporating parameters for pharmacokinetics and
344 pharmacodynamics (for example, see Wahl and Nowak(Wahl and Nowak 2000)). Then the
345 time-average effective reproductive number, Rqem(t), for a mutant when m consecutive doses
346 are missed starting at time t can be expressed as Eqn. 2. In practice, because the precise number
347 of target cells at time t is hard to estimate, we can approximate Rqye,m by setting h(t)=1, and then

348 Rgyem becomes R, (1)=(l-¢,,,) R,. Because h(t)<1, this always overestimates the viral

ave,m

349 fitness and thus is a conservative estimate in terms of guiding treatment.
350

351  The number of compensatory doses needed (N,,)

352 To calculate N, for each mutant, we make the simplifying assumption that the dynamics of the
9
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353 viral populations are at quasi-equilibrium, because changes in the viral populations occur much
354 faster than changes in infected hepatocytes. Then, the dynamics of the number of cells infected
355 by mutant viruses, I(t), are described by:

dl(t)

356 =R, (- 1)-8-1(t) (5)

357 where ¢ is the death rate of infected hepatocytes. If we approximate Reg(t) using the constant
358 Rave,m for the period when doses are missed, Eqn. 5 can be solved analytically. Then, the number
359 of infected cells after missing m consecutive doses starting at time to can be expressed as:

360 I(t,+m-T)=1(1)) exp((R,,,, (t,)-1)-6-mT) (6)

ave,m

361

362 We now consider the situation when m consecutive doses are missed, and ask how many
363 uninterrupted doses (compensatory doses) must be taken so that the number of cells infected by
364 the mutant is suppressed to a same number as if the m doses had not been missed. We first
365 calculate the number of infected cells if the m consecutive doses are taken, i.e. if dosing is
366 optimal:

367 Lypinat (tg +mT) = 1(t,) exp((R,,.(t,)~1)*6-m-T) (7)

368 where [(to) is the number of cells infected by the mutant at time to, Rave0 is the average effective
369 reproductive number of the mutant when all doses are taken, and T is the scheduled interval
370 between doses.

371

372 We then analyze the situation where a patient skips m consecutive doses, starting at time t,, and
373 then takes N,, compensatory doses immediately afterwards. In this case, assuming the number
374 of target cells does not change much during this period, we can approximate the number of cells
375 infected by the mutant at the end of the N,,, doses as:

376 L ypopina (g +m T +N, -T)= I(to)-exp((Raveqm(to)— 1):-6-m- T)-exp((Rm,E’O(to)—l)-é-Nm -T)

377 (8)
378 By equating the right hand sides of Eqn. 7 and 8 and solving the equation, we derive the
379 expression for N,:

Rave,m (tO ) - Rave,() (tO ) -m
1 - Rave,O (tO)

(9)

380 N, (1,) =

381 For potent therapies, usually R, (#,) =0 .Then we get Eqn. 2.

382

383 In the derivation above, we have assumed that the target cell abundance stays constant during
384 the period under consideration. This would be a good approximation if only a few days of doses
385 are missed or if the target cell has already rebounded to the infection-free level. If the
386 abundance of target cells changes considerably during the period under consideration, an
387 alternative, conservative approach would be to assume h(t)=1 and take

388 N, (@) =m-(1-¢,,,) R, compensatory doses after missing m consecutive doses of

ave,m
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389 treatment.
390

391  The number of doses to eradicate a mutant (N...q) and the number of cells infected
392 by a mutant (I(t))

393 One important application of N, is to predict the number of remaining doses needed to
394 eradicate a mutant, N, in a patient during treatment. This number can be calculated as follows.
395 If adherence is perfect, the number of infected cells declines exponentially at a rate set

396  approximately by the death rate of infected cells, 6: I(t)=1,-exp(-3-t), where Iy is the

397 number of cells infected by a mutant of interest before treatment. If we assume that a mutant
398 goes extinct if the expected number of infected cells in a patient goes below 1, the number of
399 doses needed to eradicate a mutant before treatment (assuming adherence is perfect), Nerad,o, is
log(/y)

o-T

400 calculated as: N

erad 0 =

401

402 When doses are missed during treatment, it is clear from the calculation of N, above that N,,—m
403 extra doses of treatment are needed to eradicate the virus. Therefore, if a patient has taken a
404 total of x doses and has had k instances of missing doses before time t, with m; days of doses
405 missed in the i™ instance (i=1,2,...,k), then the number of remaining doses needed to eradicate
406 the mutant is calculated as:

k
407 Nerad = Nerad,O —-X+ E(Nm,,' - m,‘) (10)
i=1

408 We can use Egn. 10 to predict the number of cells infected by a mutant as:

409 I(t)=exp(0-N,,,(t):T). In our model, and a patient is cleared of infection when all mutants

410 are driven to extinction. The accuracy of this approximation is shown in Figs. 4D,F and 5D,F.
411
412

413  The risk of full resistance if doses are missed (®,)

414 To calculate the risk of full resistance during the period when m doses are missed, we first
415 calculate the number of cells newly infected by a partially resistant mutant when m doses are
416 missed, Qn,(t). Again, we use Ry m(t) to approximate Regt), the total number of cells infected by
417 the mutant virus, starting at time t. Q,,(t) can be expressed as an integration of new infections
418 during the period of missing doses (according to Eqn.5):

t+m'T R t NS
419 Q0= Ry (10" [ 1) = 1) 222y ()

420 The expected number of target cells that become infected by fully resistant mutant viruses, @,
421 is a product of the effective mutation rate from the partially resistant mutant to the fully

422 resistant mutant (u.s) and the total number of cells infected by the partially resistant mutant
423 (Qm): @, (1) =u, A1), as shown in Eqn.4.

11


https://doi.org/10.1101/008466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/008466; this version posted August 27, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

424

425 Note that we track the population of newly infected cells to assess the risk of de novo generation
426 of full resistance. This assumes implicitly that the fully resistant mutant is selected only when it
427 enters a cell. This is a good assumption for DAAs that act on intracellular stages of the viral
428 life-cycle, such as viral genome replication or assembly. However, in situations where the drug
429 blocks viral entry into the cell, the mutant virus may have a selective advantage for entering a
430 cell. Then the viral population should be tracked instead, but the results presented here still can
431 be applied to drugs that block cell entry by multiplying with a simple scaling factor (Perelson and
432 Nelson 1999).

433

434  Stochastic-deterministic hybrid simulation of multiple strains of HCV

435 We constructed a simulation model considering the dynamics of the baseline virus and all the
436 potentially partially resistant mutants (see Supplementary Material). This simulation model
437 follows a hybrid approach used previously to simulate the evolutionary dynamics of HIV(Ke and
438 Lloyd-Smith 2012). It considers the dynamics of multiple strains of HCV deterministically (using
439 ODEs) while treating the extinction and mutation processes as stochastic events (see
440 Supplementary Material for detail).

441

442 In the simulation, a patient is treated for a total period of 24 weeks. We generate two types of
443 dosing patterns: random dosing and guided dosing. For the random dosing pattern, doses are
444 missed in blocks of 1-3 days at times chosen randomly with equal probability during the
445 treatment period. This probability is set as a constant in each run, but varied across runs such
446 that different overall levels of adherence are generated. In each simulation, we assume that at
447 least one-day treatment is taken immediately after each dose-skipping event (i.e. 1, 2 or 3
448 consecutive missed doses), to ensure that two dose-skipping events do not occur consecutively
449 (otherwise, longer blocks of doses would be missed than intended). For guided dosing, the
450 procedure is the same as for random dosing, except that we ensure that: 1) doses are always
451 taken during the high-risk window period predicted by our theory, and 2) after the window, a
452 sufficient number of uninterrupted doses (calculated as N,,) are always taken immediately after
453 missing doses, 3) if virus is not eradicated after the 24 weeks treatment period, a patient is
454 treated with an uninterrupted number of doses as predicted by our theory, to ensure eradication
455 of the virus. The outcome of the simulation at the end of the procedure is reported.

456

457

12
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594
595 Figure 1. The impacts of suboptimal adherence on viral fitness. (A) A schematic illustrating

596 how a non-preexisting mutant, A’B’, fully resistant to a combination therapy involving two drugs,
597 A and B, can be generated when adherence is suboptimal. Each black circle represents a mutant
598 on the parameter space of resistance levels to A and B. AB, A'B and AB’ are preexisting mutants
599 that are non-resistant, resistant to A only and resistant to B only, respectively. Colored areas
600 denote parameter regimes where mutants are fully resistant to the therapy (red), can grow if
601 doses are missed (pink), and do not grow (blue). Note that the pink area can grow or shrink on
602 the parameter space depending on the number of consecutively missed doses and drug PK/PD,
603 and mutants lying in the pink area are ‘partially resistant mutants’. (B) The dynamics of viral
604 strains under treatment are determined by several factors: drug concentration, [D], which
605 decreases with an increasing number of missed doses, m (upper panel); how viral replication is
606 affected by drug (1-& middle panel); and the relative number of target cells, h(t) (lower panel).
607 Upon effective treatment, h(t) increases to the infection-free level. (C) We integrate all these
608 factors into a single fitness parameter, Reg(t). Viral fitness increases as drug concentration drops
609 (indicated by shades of green) and as target cell abundance rises (the blue arrow). Values of Reg(t)

610 can exceed 1, i.e. positive growth, if doses are missed after a period of effective treatment.
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613 Figure 2. Suboptimal adherence prolongs treatment time needed to eliminate partially
614 resistant mutants and increases the risk of de novo evolution of fully resistant strains. Two
615 simulations assuming perfect adherence (dashed black lines) and imperfect adherence (solid red
616 lines) are shown. In the simulation assuming imperfect adherence, single doses are missed at day
617 5 and 15, and 3 consecutive doses are missed during days 22-24. (A) Drug concentration over
618 time normalized by the maximum drug concentration Cma. (B) The abundance of target
619 hepatocytes, which rebounds after the initiation of combination therapy. (C) Viral fitness of the
620 partially resistant mutant under consideration. Missing doses increases the value of Ry
621 especially when multiple consecutive doses are missed or when h(t) has increased to high levels.
622 (D) The dynamics of cells infected by the PM (on logio scale). The number of infected cells
623 declines almost exponentially when doses are taken. Missed doses allow the number of infected
624 cells to rebound. This means that an additional period of treatment is needed to suppress the
625 mutant below the extinction threshold level, i.e. to achieve viral elimination. (E) The number of
626 cells newly infected by the partially resistant mutants. Missed doses lead to substantial numbers
627 of additional new infections, especially when 3 consecutive doses are missed.

628
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631 Figure 3. There is a high-risk window early in treatment when missing doses is more likely
632 to cause de novo resistance. (A) The changes in the risk of de novo resistance, @, generated by
633 a partially resistant mutant over time. The two sets of trajectories, A and B, differ in that the
634 value of u.g for trajectory B is smaller by a factor of 10-5 (representing one additional nucleotide
635 mutation) than the value set for trajectory A. Each set of trajectories shows the risk when the
636 number of doses missed (m) is 1,2 or 3. (B) Dynamics of the two time-varying quantities in Eqn.4,
637 i.e. the number of cells infected by the partially resistant mutant relative to the initial number
638  before treatment (I(t)/I(0); blue dashed line), and the value of ©(t), green dotted lines, as
639 shown in Eqn.4. Under effective treatment, the number of infected cells I(t) decreases
640 exponentially, while the number of target cells rebounds to the infection-free level quickly,
641 causing an increase in Raem and thus ©(t). Together these changes cause ®,, to increase initially

642 and then to decrease exponentially at longer times (as seen in panel A).
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643
644  Figure 4. Adaptive treatment strategy improves treatment outcome substantially - a
645  case when the risk of de novo resistance is low (with wild-type genotype-1b HCV at
646  baseline). (A) Theoretical prediction of the treatment duration needed to eliminate each
647  partially resistant mutant under perfect adherence (gray bar), and the maximum number of
648  additional doses needed to compensate for missing doses, Ny, max (colored bars). Green, blue
649  and red denote results when 1, 2 and 3 consecutive daily doses are missed, respectively. The
650  symbols next to the bars for Ny, ma Show the type of mutant investigated in panels (B,D,F). (B)
651  Theoretical prediction of the risk of de novo resistance, ®, over time (as shown in Fig. 3d),
652  for the three mutants with highest risks of generating fully resistant mutants. The dashed
653  black line shows ©,=0.01. (C) Treatment outcomes 1-3 days of doses are missed randomly.
654  Colored areas denote the fractions of simulations with outcomes of viral relapse without full
655  resistance (light blue) and viral clearance (gray). (D) Comparison between theory
656  predictions and simulations of the number of cells infected by different mutants after 24
657  weeks of treatment. (E) Treatment outcomes if adaptive treatment strategy is followed. The
658  area above the black dashed line denotes the fraction of patients where virus is not cleared
659  after 24 weeks’ treatment. After 24 weeks, patients take the prescribed number of make-up
660  doses without missing further doses. White areas denote adherence levels that are not
661  allowed by the adaptive treatment strategy. (F) Same comparison as in panel (D) for the
662  guided dosing simulation.

663

20


https://doi.org/10.1101/008466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/008466; this version posted August 27, 2014. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

664
665

666
667
668
669
670
671
672
673
674
675

676

0
L31V+Q54H+Y93H { Hre) V
Q54H+Y93H |
Y93H+D168V ! _
Y93H+DI68A ! ]
L31V+Y93H [ meld %
L3IM+Y93H e =
L31F+Y93H | s
Baseline-Y93H F (9
0 10 15 20 25
Weeks under tr Weeks under treatment
c 1 D 15
o0
gﬂ 0.8 3 g
7 EZ 10 v
_8 £ 06 == A V@WW
= o
£ Z Ly ¥
o =04 33
=] o9 5
= =]
5 02 & 2 o
(a7 S .
0 S 0 e
0.6 0.7 0.8 0.9 22 0 5 10 153
Adherence No. of infected cells in Log,, (Theory prediction) %
=
=3
E 1 T GF 5 =
i 50
i )
BN 0.8 i =2
=] i R=I% ] {
‘B i 2
'8 E 0.6 | _:,’ =
ko) 2 i 5 §
S £o04 i 25
- H é L5
. — =3
= ) H £
5 0. ). 2
e s
0 Z 0
0.6 0.7 0.8 0.9 0 0.5 1
Adherence No. of infected cells in Log,, (Theory prediction)

Figure 5. Adaptive treatment strategy prevents de novo resistance and improves treatment
outcome substantially — a case when the risk of de novo resistance is high. Theoretical
prediction and simulation for patients with the Y93H mutant virus (genotype-1b) at baseline
under combination therapy of daclatasvir and asunaprevir. Thus, the mutants considered here all
have the Y93H mutation. The theoretical predictions and simulation results are plotted in the
same way as in Fig. 4. Dark red areas in panel (C,E) denote the fraction of patients with de novo
full resistance to the combination therapy. Note that the fraction of patients with de novo
resistance in the guided dosing scenario is very small (<0.1%). When doses are guided, so that

mutant viral load does not rebound to the pre-treatment level, the theoretical prediction agrees

well with simulation as shown in panel (F).
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s Supplementary Text

699 1. HCV model and derivation of viral fitness (Ro)

700 We first construct an ordinary differential equation (ODE) model to describe the long-term
701 within-host dynamics of a single HCV strain under drug treatment. This model is based on an
702 established model developed by Neumann et al.(Neumann, Lam et al. 1998). It considers the
703 dynamics of the target hepatocytes (H), the infected hepatocytes (I) and the HCV viruses (V).
704 Guedj et al. have recently shown that the dynamics of viral loads during the first few days of
705 treatment with direct acting antivirals (DAAs) are better described by a multi-scale model that
706 considers intracellular dynamics of HCV RNAs(Guedj, Dahari et al. 2013). However, since here we
707 are mostly interested in the longer-term dynamics of HCV infection, stretching for weeks or
708 months, the simpler model by Neumann et al. is a good approximation.

709
710 The ODE model describing the system is:
dH
E=/1—d-H—,8-H-V
dl
azﬁ-H-V—cg-I (s1)
dv
Ez(l—e)-p-l—c-v

711 Uninfected target hepatocytes are produced at constant rate, 4, and cleared at per capita rate d.
712 The infection rate for uninfected hepatocytes is proportional to V, with infection rate constant
713 [S.The per capita death rate of infected hepatocytes is . The virions are cleared at per capita rate
714 c. In the absence of drug treatment, viruses are produced from infected hepatocytes at rate p.
715 Under drug treatment, the production of viruses from infected cells is reduced to rate (1-¢)*p,
716 where ¢ is the efficacy of the drug of drug treatment.

717

718 It has been shown that the number of target hepatocytes increases quickly after initiation of
719 effective treatment (Rong, Dahari et al. 2010). In our model, this rebound rate is determined by
720 the parameters A and d, and the number of target hepatocytes in the absence of HCV infection,
721 Ho, is determined by the ratio of this two parameters, i.e. Hp=4/d. We chose values of A and d
722 such that the target hepatocytes increase on a similar timescale to the results of Rong et al.(Rong,
723 Dahari et al. 2010), while keeping the total number of target hepatocytes constant in the
724 absence of infection. To calculate R.4{t) (in the main text), we set h(t) as h(t)=H(t)/Ho, i.e. the
725 normalized abundance of target cells.

726

727 Based on Eqns. S1, we can calculate the reproductive number, Ry, in the absence of drug, as:

728 Ry=Hy f-p/(8-0) (S2)

729 We set Ro=10 in our main analysis, and this choice is in agreement with previous
730 studies(Neumann, Lam et al. 1998; Rong, Dahari et al. 2010).

731
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732 We assume there are 2*10™ hepatocytes in an infected liver(Rong, Dahari et al. 2010). It has
733 been shown that 1%-50% of all hepatocytes are infected in chronically infected patient(Liang,
734 Shilagard et al. 2009; Wieland, Makowska et al. 2014). Thus, we assume that only half of the
735 total hepatocytes can potentially be infected in the absence of treatment, i.e. Ho=1*10", as in
736 Rong et al.(Rong, Dahari et al. 2010). The value of p is set such that the reproductive number Rq
737 of the virus in the absence of drug is 10 (calculated above in Eqn. S2). The parameter values are
738 listed in Table S1.

739

740 Table S1. Parameter values in the HCV model.

Parameters Values Unit References
A 1.95*105 cells ml-! day-! See text
d 0.15 day-! See text
B 8.88*10-8 ml day-! Rong et al(Rong,
Dahari et al. 2010)
0 0.15 day-! Neumann et
al.(Neumann, Lam et
al. 1998)
289.76 day-! See text
c 22.3 day-! Guedj et al(Guedj,
Dahari et al. 2013)
741
742 2. Combination therapy of daclatasvir and
743 asunaprevir
744

745 Pharmacokinetics/Pharmacodynamics

746 In general, pharmacokinetics of HCV DAAs follow a characteristic pattern: drug concentration
747 increases quickly to a peak level after dosing and then decreases exponentially until the next
748 dose is administered. We use three pharmacokinetic parameters to describe this pattern: the
749 time to reach peak concentration after taking the drug (z), the peak drug concentration (Cpax)
750 and the minimum drug concentration before the next treatment (Cpi,). We assume the active
751 drug concentrations in the liver are related to the drug concentration in the plasma (where data
752 are measured) by a constant ratio 1. Then, the active tissue concentration of a drug, C(t),
753 between dosing intervals can be described using the following equation:

(Cin + &= ) - 0<E<T

(S3)
Crax " eXp(—w- (t—1))'n 1<t<T

754 C(t) = {

755 where Cpox and Cpi, are the maximum and minimum drug concentrations in the plasma, T is the

. . 1 Cmi .
756 interval between two consecutive doses, and w = — - log—"" . The value of w is calculated

T-tT Cmax

757 such that the drug concentration at the beginning is equal to the concentration at the end of a
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758 single dose.

759

760 The regimen used in clinical trials for the combination therapy of daclatasvir and asunaprevir is
761 60mg once daily for daclatasvir and 200mg twice daily for asunaprevir(Lok, Gardiner et al. 2012;
762 Pol, Ghalib et al. 2012). The value of liver-to-plasma ratio, 7, for daclatasvir is set as n = 0.094
763 for daclatasvir as shown in recent work(Ke, Loverdo et al. 2014). The value of liver-to-plasma
764 ratio for asunaprevir in human subject is still not clear, although this drug has been shown to
765 have a large liver-to-plasma ratio in animal models(McPhee, Sheaffer et al. 2012). Clinical data
766 from treated patients shows that mutant Q80L+D168V has ECqo(the drug concentration suppress
767 90% production) of 55 nM, and it is resistant to asunaprevir treatment in a patient (PT-29) with
768 trough plasma concentration of 18-33nM(Karino, Toyota et al. 2013). This suggests that the
769 tissue concentration of asunaprevir in the liver is at a similar level to its level in the plasma, and
770 therefore, we have set n = 1.0 for asunaprevir. The parameters used for the pharmacokinetics
771 of these two drugs are shown in Table S2.

772

773

774

775 Table S2. Pharmocokinetic parameter values for daclatasvir and asunaprevir treatment used in
776 the simulation model.

Parameter Daclatasvir Asunaprevir
(Nettles, Gao (Eley,
etal. 2011) Pasquinelli et
60mg QD al. 2010)
200mg BID
Cmax 1726 ng/ml 268 ng/ml
Cmin 255 ng/ml 35 ng/ml
T 1 day 0.5 day
1.5 hour 3.0 hour
0.094 1
777
778 Since daclatasvir and asunaprevir act independently on NS5A and NS3 genes, here in the model,
779 we calculate the inhibition of viral growth using Bliss independence(Bliss 1939):
780 &(t) = (1: Cdac® )1(1 Casu(t) ) (S4)
ECs0_dac ECs50_asu
781 where Cuoc(t) and Cuu(t) are the active tissue concentrations of daclatasvir and asunaprevir,
782 respectively, and ECsg_gac and ECsq 45, are the corresponding ECs values of  for the viral strain
783 under consideration. The average inhibition during the period when m doses are missed, £y,
784 is calculated numerically using Egqns. S3 and S4. Another model for pharmacological
785 independence is Loewe independence(Loewe and Muischnek 1926). Changing the model to
786 Loewe independence slightly changes our prediction about the fitness of each mutant under
787 treatment, but does not alter the conclusion of the model.
788
789 Characterizing preexisting mutants (PMs) and predicting the time needed to eradicate the PMs

25


https://doi.org/10.1101/008466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/008466; this version posted August 27, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

790 We first approximate the equilibrium level of cells infected by the baseline virus. The baseline
791 virus is the viral strain that dominates the population before treatment, i.e. either the wild-type
792 or the Y93H mutant in this study. Its equilibrium abundance before treatment can be derived
793 from the single strain model in Egn. S1, yielding:

= A c-d

0 — E - ﬂ
794 Under effective treatment, the population of infected cells declines exponentially, at a rate set
795 by the half-life of the infected cell (1/6). Then, the time needed to eradicate the baseline virus

796 under perfect adherence can be calculated as:
1 A d-c 1
797 teradbase = (log Iy — log Iext) ' s = (log(g - /?_p) - log Iext) ' 5 (S5)

798 where I, is the extinction threshold of infected cells below which the virus goes extinct. In our
799 model, we set l¢,:=1/15000 copy/ml (assuming there are 15L of extracellular fluid(Rong, Dahari et
800 al. 2010)).
801
802 If the fitness of a mutant relative to the wild-type is 1-s,,, then the frequency of resistant
803 mutant virus before treatment can be approximated as(Ribeiro, Bonhoeffer et al. 1998):

Hmut

e == Iy
mut

804 where tn,: is the mutation rate from the baseline virus to the mutant. Then the time needed to
805 eradicate the mutant virus, terqmut, can be calculated as:

1 Hmu 1
806 teradmut = (log Lypye — log Iext) B (log(smui *1p) — log Iext) s (S6)
807
808 In the model, the mutation rates are set as 2.85*10 and 1.5*10° per infection cycle in infected

809 cells for transitions and transversions, respectively (Loverdo et al, unpublished work). A mutant is
810 considered as a preexisting mutant if the number of infected cells calculated for the mutant is
811 above 1 copy in a patient, which corresponds to 1/15,000 copy/ml(Rong, Dahari et al. 2010). If a
812 mutant strain has a higher replicative fitness than the wild-type virus (as measured in the
813 replicon system), we set its relative fitness to 0.99 to ensure that the baseline virus is the
814 dominant strain before treatment. This assumption is required by definition of the baseline
815 strain, and reflects possible differences between fitnesses measured in replicon systems and in
816 vivo.

817

818 Characterizing fully resistant mutants

819 Since daclatasvir and asunaprevir act independently on different target genes (NS5A and NS3,
820 respectively), we define mutant viruses bearing resistance mutations, i.e. mutants show positive
821 growth under therapy, against both daclatasvir and asunaprevir as potentially fully-resistant to
822 the combination therapy.

823

824 To characterize these mutants, we first find mutations that cause resistance, i.e. positive growth,
825 under monotherapies of daclatasvir or asunaprevir, and we assume that daclatasvir and
826 asunaprevir concentrations are the same with the corresponding concentrations in the
827 combination therapy. For each mutant that have been reported to show higher resistance level

26


https://doi.org/10.1101/008466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/008466; this version posted August 27, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

828 than the wild-type, we calculated the effective reproductive number under daclatasvir and
829 asunaprevir monotherapies (Refdac max and Regrasu max, respectively) when the target cell
830 population is at its infection-free level (Table S3 and S4). We find that, if the wild-type virus is the
831 baseline strain before treatment, the preexisting mutants that are resistant to daclatasvir
832 monotherapy are L31M/V+Y93H, and the preexisting mutants resistant to asunaprevir
833 monotherapy are D168A/V (Table S3). Then, combinations of these mutations are potentially
834 fully resistant mutants, e.g. L31V+Y93H+D168V. If the Y93H mutant virus is the baseline strain
835 before treatment, the preexisting mutants that are resistant to daclatasvir monotherapy are
836 L31M/V+Y93H and L31V+Q54H+Y93H, and the preexisting mutants that are resistant to
837 asunaprevir monotherapy is the same with the case when the wild-type virus is at baseline, i.e.
838 D168A/V (Table S4).

839

840 Table S3. The resistance profile of genotype 1b mutants when the wild-type virus is at baseline.

Mutantt ECso to | ECso to | Relative Refrdac_max Refrasu_max

daclatasvir | asunaprevir | replication

treatment*® | treatment® | (1-Spue) *
WT 0.0026 0.86 1.0 0.0004 0.0716
L31M 0.0084 0.86 0.99** 0.0011 0.0708
L31V 0.0716 0.86 0.99** 0.0096 0.0708
L31W 0.2100 0.86 0.99** 0.0281 0.0708
Q54H 0.0032 0.86 0.83 0.0004 0.0594
Y93H 0.0621 0.86 0.27 0.0023 0.0193
D168A 0.0026 109 0.37 0.0001 1.6253
D168V 0.0026 241 0.29 0.0001 1.7968
L31F+Y93H 14.87 0.86 0.29 0.4673 0.0208
L31M+Y93H 18.23 0.86 0.70 1.3248 0.0501
L31V+Y93H 37.94 0.86 0.50 1.5923 0.0358
Q54H+Y93H 0.0243 0.86 0.22 0.0007 0.0157
L31V+Q54H+Y93H | 48.74 0.86 0.99** 3.6766 0.0708

841 t Bold names denote mutants that are preexisting in a patient.

842 * Data taken from Fridell et al.(Fridell, Qiu et al. 2010) and McPhee et al.(McPhee, Friborg et al. 2012).

843 ** The fitness values of these mutants relative to the wild-type are set to 0.99, because the values measured in
844 the replicon system were higher than 1.

845

846

847 Table S4. The resistance profile of genotype 1b mutants when the Y93H virus is at baseline.

Mutantt ECso to | ECsp to | Relative Reftdac_ max Refrasu_max
daclatasvir | asunaprevir | replication

treatment* | treatment* | (1-Spuc) *

Baseline-Y93H** 0.0621 0.86 1.0 0.0084 0.0716
L31F+Y93H 14.87 0.86 0.29 0.4673 0.0208
L31M+Y93H 18.225 0.86 0.70 1.3248 0.0501
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L31V+Y93H 37.935 0.86 0.50 1.5923 0.0358

Q54H+Y93H 0.0243 0.86 0.22 0.0007 0.0157

Y93H+D168A 0.0621 109 0.37 0.0031 1.6253

Y93H+D168V 0.0621 241 0.29 0.0024 1.7968

L31V+Q54H+Y93H 48.735 0.86 0.99*** 3.6766 0.0708
848 t Bold names denote mutants that are preexisting in a patient.

849 * Data taken from Fridell et al.(Fridell, Qiu et al. 2010) and McPhee et al.(McPhee, Friborg et al. 2012).

850 ** We assume that the baseline virus, Y93H mutant, has the highest fitness, set its relative fitness as 1.0.

851 *** The fitness value of this mutant relative to the wild-type is set to 0.99, because the value measured in the
852 replicon system is higher than 1.

853

854

855

856 3. Simulation of a hybrid multi-strain model

857 We construct a simulation model considering the dynamics of the baseline virus and all the
858 preexisting mutants that are shown in Table S3 and S4. This simulation model follows a hybrid
859 approach used previously for simulating HIV evolutionary dynamics(Ke and Lloyd-Smith 2012).
860 The model considers the dynamics of multiple strains of HCV deterministically, using ODEs, while
861 treating the extinction and generation of mutants as stochastic events. The model tracks the
862 population of uninfected and infected hepatocytes. Since the dynamics of viruses are much
863 quicker than those of infected cells, we assume that the virus population is at quasi-equilibrium
864 with respect to the dynamics of the infected cell population: the viral abundance is then given by
865 V(t)=(1—¢€) p-I(t)/c. Then, the ODEs describing the dynamics of the multi-strain system
866 become:

n
dH :
E=/1—d'H—ﬁ_p'H'Z(1—€i)']i
¢ = (S7)
al; B-p
d—;zT-H-(l—si)-li—(ﬁ-Ii

867 where H is the concentration of target hepatocytes, and /; is the concentration of hepatocytes
868 infected by viral strain i.

869

870 The mutation process is treated stochastically. During the simulation, the ODEs are first
871 simulated for a fixed time increment (At=0.01 day). At the end of each time increment, we
872 approximate the number of cells newly infected by viruses from cells infected by the i strain as

873 BT'p_ H-(1—¢g)-I;+L-At, where L is the total volume of the liver. Of these newly infected cells,
874 the number of cells in which the infecting viral lineage mutates from the i strain to the jth strain
875 can be drawn from a binomial distribution with probability of u;;, which is the mutation rate
876 from the i to the jth strain. We then convert the number to concentration by dividing the
877 number by L:

28


https://doi.org/10.1101/008466
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/008466; this version posted August 27, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Al = B('BTIP- H-(1—¢g) I, L- At u)/L
878 Each time step, the concentration of each strain is updated according to the values of Al; ;. We
879 then check the number of cells infected by each strain. If the number is less than 1 copy per
880 individual, we set it to 0 in the system, i.e. extinction. These procedures are iterated until all
881 infected cells are extinct or simulation time exceeds 24 weeks (for random dosing pattern) or
882 guided dosing period (for guided dosing).
883
884 The dosing pattern is generated according to the procedure described in Online Methods. Once
885 the dosing pattern is generated, the drug concentrations are calculated according to Egn. S3.
886

887 4. Sensitivity analysis

888 In the analytical derivations, the parameters that determine the values of N, and ®,, are: the
889 rate at which target hepatocytes become available under treatment (set by the values of
890 parameters A and d); the overall viral fitness, Rp; and the clearance rate of infected hepatocytes,
891 J. We performed two rounds of sensitivity analysis, first testing how changes in these parameter
892 values impact the clinical outcomes predicted by our theory, and then testing the robustness of
893 our adaptive treatment strategy to changes in these parameter values.

894

sos  Sensitivity of predicted clinical outcomes to changes in

896 parameter values

897

898 The overall viral fitness, Ry

899 The viral fitness parameter, Ry, has several impacts on the predictions of the model. To evaluate
900 the impact of changes in Ry on the time needed to eradicate the virus, we can substitute the

901 expression of Ry into Eqn. S5 as:
A 1 1
902 teradbase = (log(g ’ (1 - R_0>) — log Iext) s (S8)

903 From this equation it can be seen that, if A and  are kept constant, higher Ry leads to a higher
904 level of infected hepatocytes before treatment, and thus, a longer time needed to eradicate the
905 virus. However, this increase may be small, because t.4qpase Changes in proportion to the
906 logarithm of 1 — Rio.

907

908 The value of N, scales linearly with Ry (Eqn. 2 in the main text). Thus, the higher the value of Ry,
909 the more doses needed to compensate for any missed doses.

910

911 The value of ®,, increases almost exponentially with an increase in Ry (Eqn. 3 in the main text).

912 Therefore the risk of generating fully-resistant mutants increases drastically as Ry rises (see Fig.
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913 Sla,b). This is because the viral population of a mutant increases exponentially if Reg,m becomes
914 greater than 1, which leads to an exponential increase in the risk of generating fully resistant
915 mutants.

916

917 The clearance rate of infected hepatocytes, §

918 The clearance rate of infected hepatocytes, 6, influences our theoretical predictions in two ways.
919 First, the time needed to eradicate the virus depends linearly on the inverse of the clearance rate,
920 1/6 (Eqn. S5 and S6). The quicker the clearance rate of infected hepatoctyes, the shorter time
921 needed to eradicate the virus. Second, changes in the value of § affect the risk of generating fully
922 resistant mutants when doses are missed (Eqn. 3 in the main text). If we let the fitness of a virus,
923 Ro, unaffected by changes of 0, larger values of dlead to shorter half-lives of infected
924 hepatocytes, and higher risk of generating fully-resistant mutants, because the viral lineage
925 undergoes more rounds of replication during a fixed dosing period (Fig. Sic).

926

927 The rate at which target hepatocytes become available under treatment

928 N, is linearly dependent on the level of target hepatocytes (Eqn.2 in the main text), and thus,
929 slower rebound of target hepatocytes would decrease the number of compensatory doses
930 needed if doses are missed before the target hepatocyte population rebounds back to its
931 infection-free level.

932

933 The rebound rate of target hepatocytes also impacts ®,,, through its influence on the effective
934 viral fitness, Regem (Eqn. 3 in the main text). In our model, the rebound rate is set by the values of
935 parameters Aand d. If we keep the number of hepatocytes before treatment constant, by
936 keeping the ratio of A over d constant, then a slower rebound rate (lower value of both A and d)
937 results in a substantially reduced rate of generating de novo resistance (Fig. S1d).

938

939 Robustness of adaptive treatment strategy to variations in

940 parameter values

941 We first tested the robustness of adaptive treatment strategy to lower or higher values of Rg
942 (Ro=5 and Rg=15, as opposed to Ry=10 for our main results). When Ry=5, both the number of
943 compensatory doses (N,,) and the potential to generate de novo resistance (®,,) decrease
944 substantially, as predicted by our model (Fig. S6-S7). This leads to a shorter high-risk window
945 period when mutant Y93H is the baseline strain (Fig. S7) and lower adherence levels are required
946 to eradicate the virus. When Ry=15, we observe the opposite pattern: higher adherence levels
947 are required to eradicate the virus and there is a longer high-risk window period when mutant
948 Y93H is the baseline strain (Fig. S8-S9).

949

950 We then tested how well our adaptive treatment strategy works when the half-life of infected
951 hepatocytes is shorter. As shown in Fig. S10 and S11, the time needed to eradicate the virus
952 decreases substantially, to 12 weeks of effective treatment. Our adaptive treatment strategy

953 improves clinical outcome especially when Y93H mutant is at the baseline (Fig. S11).
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954

955 In general, we find our adaptive treatment strategy is robust against variations in key parameter
956 values. Under all parameter values tested, the adaptive treatment strategy delivers
957 substantially better patient outcomes than random dosing with the same overall adherence
958 levels.
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1006

1007 Figure S1. Sensitivity analysis of the risk of de novo resistance to variations of key parameter values,
1008 Ro,mut (panels A,B), d (panel C) and the rate of recovery of target cells upon treatment (panel D). In
1009 each panel, the trajectories show how the risk of de novo resistance (Log,o®,) changes over time if
1010 adherence is perfect. Figures are plotted using the same parameter settings as trajectories ‘a’ in Fig. 3
1011 in the main text, except that Romu=5 in panel A, Rgmus=15 in panel B, ¢=0.5 in panel C and
1012 a=1.95*104, d=0.015 in panel D. In the main results, i.e. Fig. 3, the parameter values used are
1013 Rgmu=10, 6=0.15, 1=1.95*10°, d=0.15.
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1015 Figure S2. The predicted number of additional days of doses needed to compensate for the
1016 first instance of missing 1 (green lines), 2 (blue lines) or 3 (red lines) consecutive days of doses
1017 (maximum N, for all partially resistant mutants), and the high-risk window period of de novo
1018 resistance (shaded area; ®@,>0.01 for any of the partially resistant mutants as shown in Fig. 4B).
1019 (A) Predictions for patients with the wild-type virus at baseline before treatment. The areas
1020 below the curves are white, indicating that the risk of de novo resistance is always low. (B)
1021 Predictions for patients with the Y93H mutant virus at baseline. The initial increases of the
1022 number of days of compensating doses are due to the increase of the number of target cells
1023 upon treatment, and the sudden drops during later periods of treatment are due to the
1024 elimination of particular partially resistant mutant lineages. Note that these curves are
1025 calculated under the assumption that adherence is perfect except for the 1-3 days of missed
1026 doses being considered, i.e. it is a prediction for the first instance of missed doses. For cases
1027 where multiple instances of missed doses have occurred, one needs to calculate the values of N,
1028 and @, for each mutant based on the adherence pattern, and then integrate them together by
1029 choosing the highest values of N,,, and ®,, for those mutants.
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1031 Figure S3. Theory correctly predicts the number of cells infected by two mutants (L31V and

1032 L31M+Y93H) generated in the hybrid model simulation when doses are missed randomly (panels
1033 A,B) or guided by adaptive treatment theory (panels C,D) for patients with the wild-type virus at
1034 baseline. L31V and L31M+Y93H are the two most likely mutants that generate full resistance. The
1035 axes are the theory prediction (x-axis) and model simulation (y-axis) of the Log;, of the number of
1036 mutants, which are calculated as the cumulative numbers of Logio @ m(t)/ tmu: for all missed doses.
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1039 Figure S4. The theory correctly predicts the number of cells infected by mutant viruses at the end of

1040 24-weeks’ treatment in the hybrid model simulation when adherence is greater than 70% (vertical
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1041 dashed lines) and doses are missed randomly, for patients with the Y93H mutant virus at baseline.
1042 The y-axis shows the log,o difference between the theory prediction and the model simulation at the
1043 end of the 24-weeks’ treatment. Note that when adherence is lower than 70%, the population of
1044 infected cells grows to high levels close to the pre-treatment level, where further growth is curtailed
1045 by target cell limitation. As a result, the theoretical prediction overestimates the number of cells
1046 infected by the mutant virus significantly because we assume the number of target cells is not limited.
1047
1048
1049
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1052

1053 Figure S5. Comparison between theory prediction and simulation of the numbers cells infected by
1054 three mutants (L31M+Y93H, L31V+Y93H, L31V+Q54H+Y93H ) generated when doses are missed
1055 randomly, for patients with the Y93H mutant virus at baseline. (A,B,C) The axes are the theory
1056 prediction (x-axis) and model simulation (y-axis) of the Log;q of the number of cells infected by
1057 different mutants, which are calculated as the cumulative numbers of Logiy @/ tm.: for all missed
1058 doses (L31M+Y93H in panel A; L31V+Y93H in panel B; L31V+Q54H+Y93H in panel C). (D,E,F) Our
1059 theory prediction is accurate for adherence greater than 70%, but overestimates the number of cells
1060 infected by the mutant virus significantly when adherence is lower than 70%, for the same reason as
1061 explained in the legend of Fig. S4.
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1068 Figure S6. Theory correctly predicts the number of cells infected by three mutants (L31M+Y93H,
1069 L31V+Y93H, L31V+Q54H+Y93H) generated in the hybrid model simulation when doses are guided by
1070 adaptive treatment theory, for patients with the Y93H virus at baseline. (A,B,C) The axes are the
1071 theory prediction (x-axis) and model simulation (y-axis) of the Log;o of the number of mutants
1072 (L31M+Y93H in panel A; L31V+Y93H in panel B; L31V+Q54H+Y93H in panel C), which are calculated as
1073 the cumulative numbers of Logiy ®@n(t)/tms for all missed doses. (D,E,F) the Logy, differences
1074 between theory prediction and model simulation as shown in panels (A,B,C). Note that our theory
1075 agrees very well for mutants L31M+Y93H and L31V+Y93H. For mutant L31V+Q54H+Y93H, the
1076 stochastic extinction and appearance of this mutant generates stochastic deviations of the simulation
1077 from theory prediction.
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1079
1080 Figure S7. The impact of lower viral fitness (Ro=5) on treatment outcomes and adaptive

1081 treatment strategies of combination therapy with daclatasvir and asunaprevir, with the
1082 wild-type virus at baseline. Panels A-F show the same plots as Fig. 4 in the main text, except that
1083 the fitness parameter Ry for the wild-type virus is assumed to be 5. The treatment outcome
1084 improves for all scenarios for this lower viral fitness (compare with Fig. 4 in the main text). Using
1085 the adaptive treatment strategy prevents viral relapse and de novo resistance if overall
1086 adherence is greater than 60% (panel E). Panel F is empty because all patients are cleared of
1087 infection after 24 weeks.
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1089
1090 Figure S8. The impact of lower viral fitness (Ro=5) on treatment outcomes and adaptive

1091 treatment strategies of combination therapy with daclatasvir and asunaprevir, with the Y93H
1092 virus at baseline. Panels A-F show the same plots as Fig. 5 in the main text, except that the
1093 fitness parameter Ry for the wild-type virus is assumed to be 5. The treatment outcome improves
1094 for all scenarios for this lower viral fitness (compare with Fig. 5 in the main text). Using adaptive
1095 treatment strategy reduced the risk of de novo resistance (panels E). Our theory correctly
1096 predicts the number of infected cells in a patient at the end of 24 weeks’ treatment.
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1100 Figure S9. The impact of higher viral fitness (Ro=15) on treatment outcomes and adaptive
1101 treatment strategies of combination therapy with daclatasvir and asunaprevir, with the
1102 wild-type virus at baseline. Panels A-F show the same plots as Fig. 4 in the main text, except that
1103 the fitness parameter Ry for the wild-type virus is assumed to be 15. The treatment outcome
1104 improves for all scenarios for this lower viral fitness (compare with Fig. 4 in the main text). Our
1105 theory correctly predicts the number of infected cells in a patient at the end of 24 weeks’
1106 treatment.
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Figure S10. The impact of higher viral fitness (Ry=15) on the treatment outcomes and adaptive
treatment strategies of combination therapy of daclatasvir and asunaprevir with the Y93H
virus at baseline. Panels A-F show the same plots with Fig. 5 except that in the analytical
derivation and model simulation, the fitness parameter R, for the Y93H mutant virus is assumed
to be 15. The risks of viral relapse and de novo resistance become higher when the viral fitness,
Ro, is higher. Using adaptive treatment strategy can prevent de novo resistance and improve
treatment outcomes (panels E and F). Our theory correctly predicts the number of infected cells
in a patient at the end of 24 weeks’ treatment when doses are guided (panels F). Our theory
does not predict the number of infected cells at the end of treatment well, when doses are
missed randomly and the adherence is low. This is because, when adherence is low, the viral load
often rebounds back to the pre-treatment level, where it is limited by target cell availability.
This phenomenon is not included in our theory, which overestimates the number of viruses as a

result.
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1123
1124 Figure S11. The impact of higher viral clearance rate (6=0.5) on the treatment outcomes and

1125 adaptive treatment strategies of combination therapy of daclatasvir and asunaprevir with the
1126 wild-type genotype 1b virus at baseline. Panels A-F show the same plots with Fig. 4 except that
1127 in the analytical derivation and model simulation, the viral clearance rate, 9§, is assumed to be 0.5
1128 instead of 0.15 in Fig. 4 (but note that Ry for the viruses is kept the same). When the viral
1129 clearance rate increases, it takes less time to eradicate the virus from a patient. However, when
1130 doses are missed, the population of mutant viruses expands more quickly, because the half-life
1131 of the infected cells is shorter and thus it undergoes a higher number of replication generations
1132 during the period of missed doses. Using the adaptive treatment strategy can prevent viral
1133 relapse and de novo resistance and improve treatment outcome (panels E). Our theory correctly
1134 predicts the number of infected cells in a patient at the end of 24 weeks’ treatment when doses
1135 are guided (panel D).
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1136
1137 Figure S12. The impact of higher viral clearance rate (6=0.5) on the treatment outcomes and
1138 adaptive treatment strategies of combination therapy of daclatasvir and asunaprevir with the
1139 Y93H virus at baseline. Panels A-F show the same plots with Fig. 5 except that in the analytical
1140 derivation and model simulation, we assume the viral clearance rate, §, is 0.5 instead of 0.15 (but
1141 note that Ry for the viruses is kept the same). As seen in Fig. S11 for the scenario with the
1142 wild-type virus at baseline, it takes less time to eradicate the virus from a patient for this higher
1143 viral clearance rate. However, when doses are missed, the population of mutant viruses expands
1144 more quickly, increasing the risk of viral relapse and de novo resistance. Using adaptive
1145 treatment strategy can prevent viral relapse, de novo resistance and improve treatment outcome
1146 (panels E and F). Our theory does not predict the number of infected cells at the end of
1147 treatment well, when doses are missed randomly and adherence is low. This is because, during
1148 the time period when doses are missed, the rebound of the viruses is quicker when ¢ is higher
1149 (because the viral generation time is shorter). When adherence is low, the viral load often
1150 rebounds back to the pre-treatment level, where it is limited by target cell availability. This
1151 phenomenon is not included in our theory, which overestimates the number of viruses as a
1152 result.
1153
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