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Abstract 

Omics Pipe (https://bitbucket.org/sulab/omics_pipe) is a computational platform that automates 

multi-omics data analysis pipelines on high performance compute clusters and in the cloud. It 

supports best practice published pipelines for RNA-seq, miRNA-seq, Exome-seq, Whole 

Genome sequencing, ChIP-seq analyses and automatic processing of data from The Cancer 

Genome Atlas.  Omics Pipe provides researchers with a tool for reproducible, open source and 

extensible next generation sequencing analysis. 
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Main 

Next generation sequencing (NGS) has presented researchers with the opportunity to 

collect large amounts of sequencing data1, which has accelerated the pace of genomic research 

with applications to personalized medicine and diagnostics2. This has resulted in the 

development of a large number of computational tools and analysis pipelines, necessitating the 

creation of best practices and reproducible integrative analysis frameworks3.  The Nature 

Protocols journal has attempted to create one solution to establish best practices, by publishing 

step-by-step directions for well-established NGS analysis pipelines.  In addition, The Broad 

Institute has outlined best practices for variant calling using the Genome Analysis Toolkit 

(GATK)4, ENCODE has recommended experiment guidelines and best practices for 

personalized genomic medicine are emerging5.  Several automated pipelines have been 

developed to tie together individual software tools2, although many of these tools focus on a 

single NGS platform, require computational expertise, require commercial licenses and/or are 

poorly documented3.  

 To address these issues, we developed Omics Pipe 

(https://bitbucket.org/sulab/omics_pipe), an open-source, modular computational platform that 

automates best practice multi-omics data analysis pipelines with built-in version control for 

reproducibility (Figure 1). It currently supports two RNA sequencing (RNA-seq) pipelines 6,7, 

variant calling from whole exome sequencing (WES) and whole genome sequencing (WGS) 

based on GATK 4, two ChIP-seq pipelines 8,9 and custom RNA-seq pipelines for personalized 

cancer genomic medicine reporting and analysis of The Cancer Genome Atlas (TCGA) datasets10 

(Supplementary Figure 1).  
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Omics Pipe is distributed as a lightweight Python package that can be installed on a 

compute cluster, a local installation or in the cloud. It is hosted on PyPi for direct download for 

local and cluster installation, and it is also hosted as an Amazon Machine Image (AMI) in 

Amazon Web Services (AWS) Elastic Compute Cloud (EC2).  The AWS distribution of Omics 

Pipe runs on MIT’s StarCluster (http://star.mit.edu/). The AMI is preconfigured with all of the 

required software dependencies to run best practice next generation sequencing analyses, 

providing a valuable computational resource to the scientific community.  A Docker container 

(https://www.docker.com/) is provided to configure and boot up StarCluster with the 

preconfigured Omics Pipe AMI and preinstalled third-party software dependencies. Detailed 

tutorials (http://pythonhosted.org/omics_pipe/), documentation and source code are hosted in an 

open source repository that will allow community contribution to the source code as well as 

transparency for reproducibility and accuracy (https://bitbucket.org/sulab/omics_pipe). 

The Omics Pipe framework is modular, which allows researchers to easily and efficiently 

add new analysis tools with scripts in the form of Python modules that can then be used to 

assemble a new analysis pipeline. Omics Pipe depends upon the Python package Ruffus11 to 

pipeline the various analysis modules together into a parallel, automated pipeline.  This also 

allows for the restarting of only the steps in the pipeline that need updating in the event of an 

error. In addition, Sumatra 12 is built into the Omics Pipe framework, which provides version 

control for each run of the pipeline, increasing the reproducibility and documentation of the 

analyses.  

Omics Pipe automatically submits, controls and monitors jobs on a Distributed Resource 

Management system, such as a compute cluster, MIT’s StarCluster or Grid computing 

infrastructure. This allows samples and steps in the pipeline to be executed in parallel in a 
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computationally efficient, distributed fashion, without the need to individually schedule and 

monitor individual jobs. For the RNA-seq analysis pipelines, an analysis summary report will be 

generated as an HTML report using the R package knitr13.  The summary report provides quality 

control metrics and visualizations of the results for each sample to enable researchers to quickly 

and easily interpret the results of the pipeline.    

One advantage of a robust and simple to use pipeline is the ability to easily reanalyze 

existing data sets using the most recent algorithms and annotations. To illustrate this point, we 

used Omics Pipe to reanalyze a subset of the breast invasive carcinoma RNA-seq dataset (N = 

100) paired tumor-normal samples generated by the TCGA Research Network 

(http://cancergenome.nih.gov/) using the count-based differential expression analysis best 

practice protocol6 and updated UCSC RefSeq annotations (V57). Omics Pipe automatically 

downloaded the desired TCGA samples and ran the selected pipeline on a high throughput 

compute cluster.  We performed paired differential expression analysis, signaling pathway 

impact analysis and consensus clustering analysis using the Bioconductor packages edgeR14, 

SPIA15 and ConsensusClusterPlus16, respectively.  We then compared the results of the 

reanalysis to the original TCGA RNAseq V2 Workflow (UCSC RefSeq General Annotation 

Format 2011), by downloading the raw counts for the same samples from TCGA and performing 

the analyses described above.  

The updated UCSC RefSeq V57 annotations contained 3,475 additional genes compared 

to the UCSC RefSeq General Annotation Format from 2011 used to originally analyze the 

TCGA data (Figure 2a).  The reanalysis of the TCGA breast invasive carcinoma samples using 

Omics Pipe revealed 761 differentially expressed (DE) genes compared to the original TCGA 

analysis, which resulted in 410 DE genes (Supplementary Tables 1 & 2).  There were 394 DE 
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genes shared between the two analyses (Figure 2b).  In the reanalyzed dataset, 367 DE genes 

were unique, 14 of which were due to new annotations.  One of the newly annotated DE genes, 

DSCAM-AS1, was upregulated 256x in tumor versus normal samples, which has been 

implicated in the malignant progression of carcinomas by an estrogen-independent mechanism17.  

Consensus clustering of the original TCGA counts resulted in four clusters, with each 

cluster containing both tumor and normal samples (Supplementary Figures 2 & 3).  Consensus 

clustering of the reanalyzed counts resulted in 10 clusters, with tumor and normal samples 

clustering separately, with the exception of one normal sample clustering with two tumor 

samples in Cluster 7 (Supplementary Figures 2 & 3).  These results indicate that the addition of 

the 3,475 genes in the new annotation provides additional information to improve the separation 

of tumor and normal samples.  Twenty significantly dysregulated pathways were identified from 

the DE genes from the original TCGA counts, and 29 significantly dysregulated pathways were 

identified in the reanalyzed dataset, 11 of which were new pathways primarily related to RNA 

polymerase activity (Supplementary Tables 3 & 4).  The reanalysis of the TCGA data using a 

best practice pipeline and updated annotations demonstrates the utility of Omics Pipe as a tool 

for conducting reproducible NGS analyses that can lead to novel biological insights.  

In conclusion, Omics Pipe is an automated and reproducible computational framework 

that can be used to efficiently analyze newly generated data or to reanalyze publically available 

data, such as TCGA. It currently supports several best practice pipelines for RNA-seq, WES, 

WGS and ChIP-seq. This list of pipelines will continue to be updated, and we invite the broader 

community to participate in the continued development of Omics Pipe through our open source 

code repository. Pull requests for new components and new pipelines will be properly reviewed. 

In addition, the built-in version control system allows for the reproducibility of analyses 
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performed within the Omics Pipe framework, which is important as new versions of software 

tools and annotation are released.  It can be easily extended as new tools become available, and it 

can be implemented on a local machine, a computer cluster or the cloud.  The goal of Omics Pipe 

is to democratize NGS analysis by dramatically increasing the accessibility and reproducibility 

of best practice computational pipelines, which will enable researchers to generate biologically 

meaningful and interpretable results. 

 

Methods 

Methods and associated references are available in the online version of the paper.  

 

ONLINE METHODS 

 

The Omics Pipe Framework 

Omics Pipe is a Python package that pipelines shell scripts into an automated, version 

controlled, parallelized pipeline of steps based on the Python package Ruffus11 for running the 

pipeline steps, Sumatra12 for version control and run tracking, and Python DRMAA 

(https://github.com/drmaa-python) for distributed computing. Omics Pipe is distributed as a 

standalone Python package for installation on a local cluster already containing the third-party 

software dependencies and reference databases.  Omics Pipe is also distributed as an Amazon 

Machine Image (AMI) in Amazon Web Services (AWS) Elastic Compute Cloud (EC2) that 

contains all necessary third-party software dependencies and databases.  The AWS distribution 

of Omics Pipe runs on MIT’s StarCluster (http://star.mit.edu/).  A Docker container 
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(https://www.docker.com/) is provided to configure and boot up StarCluster with the 

preconfigured Omics Pipe AMI. 

Omics Pipe requires the user to specify which supported pipeline to execute at the 

command line or specify the path to a custom Python script containing a custom pipeline. The 

user also must supply a parameter file in YAML format to feed in relevant parameters for 

running the pipeline, including the command line options for each of the tools and other 

customizable settings.  All of the parameters have default values to enable the user to run the 

supported pipelines with minimal start up time. More advanced users can customize every option 

possible from each of the pipelined tools.   

Omics Pipe can be extended by the user to create custom pipelines from built-in modules 

and by creating modules for new tools. It is language agnostic, so existing shell scripts written in 

any programming language can be included as an Omics Pipe module. Omics Pipe executes the 

shell scripts on the cluster or in the cloud using DRMAA to allocate resources and manage job 

execution.  Omics Pipe checks that the job finished successfully and creates a flag file upon 

successful completion, allowing the user to rerun only out of date steps in the pipeline.  Ruffus11 

provides functionality for parallel execution of pipeline steps.  Each time Omics Pipe is 

executed, Sumatra12 creates a database entry to log the specifics of the run, including the 

parameters, input files, output files and software versions for version control and run tracking.  

 

Supported Best Practice Pipelines 

Omics Pipe currently supports six published best practice pipelines. These include two RNA 

sequencing (RNA-seq) pipelines for both mRNA and miRNA6,7, variant calling from whole 

exome sequencing (WES) and whole genome sequencing (WGS) based on GATK4, and two 
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ChIP-seq pipelines8,9.  It also includes custom RNA-seq pipelines for personalized cancer 

genomic medicine reporting and analysis of The Cancer Genome Atlas (TCGA) datasets10. The 

steps in each method have been adapted exactly as described in the associated publications, 

allowing the user to implement these methods on their own datasets. The command-line options 

for each tool in each pipeline are exposed to the user in the parameters file.   

 

Using Omics Pipe to Automatically Analyze TCGA data 

We used Omics Pipe to reanalyze 100 paired tumor/normal samples from 50 patients in the 

TCGA breast invasive carcinoma dataset to demonstrate its utility for efficiently processing 

samples using best practice pipelines.  We automatically downloaded the raw RNA-seq fastq 

files and processed the files using the count-based differential expression analysis best practice 

protocol6 to quantify gene expression.  

Briefly, sequencing reads were aligned to the human genome (hg19) using the STAR 

aligner18. Gene expression quantification was performed at the exon level using the htseq-count 

function within the Python HTSeq analysis package19 with UCSC RefSeq hg19 annotation 

(Release 57).  Nonspecific filtering was applied to the raw count data and the 50% most variable 

genes were used in the differential expression analysis after TMM normalization. Differential 

gene expression was performed using a paired design matrix with the Bioconductor package 

edgeR14.  Genes with a False Discovery Rate (FDR) < 0.01 and log2(FoldChange) > |2| were 

considered differentially expressed.   

We also downloaded the raw count files generated from the TCGA UNC V2 RNA-seq 

Workflow for the same 100 samples.  These counts were generated using the UNC V2 RNA-seq 
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Workflow and were based on the UCSC RefSeq hg19 Generic Annotation File from June 2011.  

We performed differential expression analysis of these raw counts as described above.  

 

Identification of Novel Genes, Pathways and Clustering in TCGA Breast Invasive 

Carcinoma 

We compared the differentially expressed genes in the reanalysis of the TCGA dataset 

using Omics Pipe to the raw counts processed by TCGA to assess the utility of rerunning 

previous analyses with updated gene annotations and algorithms.  We updated the gene 

identifiers provided with the original raw count data using the R package mygene.R 

(https://bitbucket.org/sulab/mygene.r) and we extracted newly annotated differentially expressed 

genes identified in the reanalyzed dataset.  

We performed a Signaling Pathway Impact Analysis (SPIA) to identify significantly 

dysregulated pathways with the Bioconductor packages SPIA15 and Graphite21 based on the 

Biocarta, KEGG, NCI and Reactome databases.  We performed this analysis once on each 

dataset, using the differentially expressed genes in each dataset as input, and setting the 

background genes to all genes included in the differential expression analysis for each dataset.  

We identified patterns of relationships among the samples in each dataset using the 

Bioconductor package ConsensusClusterPlus16 with 80% resampling from 2 to 20 clusters and 

1,000 iterations of hierarchical clustering based on a Pearson correlation distance metric. We 

compared the differentially expressed gene sets, pathways and clusters between the previously 

published results and the current analysis using updated annotations to identify novel 

differentially expressed genes and pathways relevant to breast cancer.   
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Figures 

 

Figure 1.  Schematic diagram of Omics Pipe.  

 

Figure 2. Comparison of the number of genes annotated in two different UCSC RefSeq releases 

and the number of differentially expressed (DE) genes identified by different algorithms and 

annotations (a) Venn diagram of the number of genes annotated in the UCSC RefSeq hg19 2011 

Generic Annotation File and the UCSC RefSeq hg19 2013 annotation (Release 57) (b) Venn 

diagram of the comparison of the number of DE genes identified between raw counts generated 

with the TCGA UNC V2 RNA-seq Workflow using the UCSC RefSeq hg19 2011 Generic 

Annotation File and raw counts generated with the count-based pipeline in Omics Pipe using the 

UCSC RefSeq hg19 2013 annotation (Release 57).  

 

Supplementary Tables & Figures 

 

Supplementary Figure 1.  Pre-built best practice pipelines and the third party software tools 

supported by Omics Pipe. Users can easily create custom pipelines from the existing modules 

and they can create new modules supporting additional third party software tools.  

 

Supplementary Figure 2. Consensus clustering analysis of the TCGA breast invasive carcinoma 

paired tumor-normal samples performed with the reanalyzed count data (a)-(d) and the original 

raw counts downloaded from TCGA (e)-(h) for cluster sizes of k=2, k=3, k=4 and k=10. The 

blue and white heat map displays sample consensus.  
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Supplementary Figure 3. Measurements of consensus for different cluster sizes (k) from the 

consensus clustering analysis on the reanalyzed (a)-(c) and original counts (d)-(f) from the 

TCGA paired tumor-normal breast invasive carcinoma samples. The empirical cumulative 

distribution (CDF) plots (a) and (d) indicate at which k the shape of the curve approaches the 

ideal step function.  Plots (b) and (e) depict the area under the two CDF curves.  Item consensus 

plots (c) and (f) demonstrate the mean consensus of each sample with all other samples in a 

particular cluster (represented by color). 

Supplementary Table 1. Differentially expressed genes (FDR < 0.01 and log2(FoldChange) > 

|2|) resulting from the reanalysis of the paired tumor-normal samples from the TCGA breast 

invasive carcinoma dataset using the count-based best practice pipeline with UCSC RefSeq V57 

annotation in Omics Pipe.  

Supplementary Table 2. Differentially expressed genes (FDR < 0.01 and log2(FoldChange) > 

|2|) resulting from differential expression analysis of the original raw counts from the paired 

tumor-normal samples from the TCGA breast invasive carcinoma dataset.  

Supplementary Table 3. Significantly dysregulated pathways in the reanalysis of the paired 

tumor-normal samples from the TCGA breast invasive carcinoma dataset using the count-based 

best practice pipeline with UCSC RefSeq V57 annotation in Omics Pipe.  

Supplementary Table 4. Significantly dysregulated pathways from differential expression 

analysis of the original raw counts from the paired tumor-normal samples from the TCGA breast 

invasive carcinoma dataset.   
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