
1

Sources of PCR-induced distortions in high-throughput
sequencing datasets
Justus M Kebschull1,2, Anthony M Zador2,∗

1 Watson School of Biological Sciences
2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
∗ E-mail: zador@cshl.edu

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2015. ; https://doi.org/10.1101/008375doi: bioRxiv preprint 

https://doi.org/10.1101/008375
http://creativecommons.org/licenses/by-nc/4.0/


2

Abstract

PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting
quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing.
However, there are errors associated with PCR-mediated amplification. Here we examine the effects of
four important sources of error — bias, stochasticity, template switches and polymerase errors — on
sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse
PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures
of each process. We further developed quantitative models for each process, and compared predictions
of these models to our experimental data. We find that PCR stochasticity is the major force skewing
sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become
very common in later cycles of PCR but have little impact on the overall sequence distribution as they
are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers.
Our results provide a theoretical basis for removing distortions from high-throughput sequencing data.
In addition, our findings on PCR stochasticity will have particular relevance to quantification of results
from single cell sequencing, in which sequences are represented by only one or a few molecules.

Introduction

DNA sequencing technologies have improved rapidly during the last two decades. Due to decreased cost
and increased speed, DNA sequencing is now a standard technique in molecular biology both for sequence
determination and quantification.

Before a DNA sample can be sequenced, a sequencing library must be prepared from the sample.
Although the steps in library preparation vary, the protocol almost always involves PCR amplification.
However, PCR is imperfect; it introduces both skews and new hybrid or erroneous sequences into the
pool of amplified DNA molecules. Our goal here is to obtain a quantitative understanding of various
artefacts introduced by PCR.

Here, using pools of carefully designed amplicons and Illumina sequencing, we theoretically and exper-
imentally investigate four processes known to cause sequence misrepresentation after PCR amplification.
First, we studied the effects of PCR bias focussing on variable PCR amplification efficiencies as a function
of the GC content of individual sequences. GC bias has often been considered a major source of sequence
misrepresentation after PCR. It has carefully been measured in high-throughput sequencing data, and
suggestions have been made as how to minimize GC bias [1–3]. Second, we studied the stochasticity with
which each DNA molecule is amplified at each cycle of PCR. A large body of theoretical work has fo-
cused on the stochastic nature of PCR [4–8], mostly concerning its implications for quantitative PCR [9].
Few experiments have addressed stochasticity in PCR amplification, however, and we know of no work
carefully considering the impact of the stochastic nature of PCR in sequencing data. Third, we studied
template switching, a process by which two templates combine to form a novel chimeric product during
amplification [10]. Template switching has previously received attention in the metagenomics commu-
nity, and tools have been developed to detect and remove such chimeric sequences from pyrosequencing
data [11]. While elegant, these tools do not provide a quantitative model of how and when template
switches occur, and therefore cannot inform future experimental designs. Finally, we studied polymerase
errors and their impact on sequencing results. Again, polymerase errors have long been recognized as
important, and tools have been developed to remove erroneous sequences from high throughput sequenc-
ing datasets; but little is known about the relative magnitude of polymerase errors compared with other
unintended effects of PCR [12–14].

For each of the four processes considered in this work, we formulated a mathematical framework,
looked for signatures of the process in sequencing data, and compared our theoretical predictions with
the experimental data. Our main conclusion is that PCR stochasticity is the most significant source
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of skewed sequence representation in our low-input, high-throughput sequencing datasets. Polymerase
errors are the next most important source of error. However, erroneous sequences are limited to small
copy numbers, and thus have only a small effect on overall sequence representation. GC bias and template
switches have only minor effects on sequence representation after amplification.

Materials and Methods

DNA oligos and PCR. We ordered four ultramers from Integrated DNA Technologies: three different
types of barcode pairs (BC1-BC1, BC2-BC2 and BC3-BC3) and an adapter oligonucleotide (Table 1).
BC1-BC1, BC2-BC2 and BC3-BC3 contain the Illumina P5-SBS3T sequence followed by a 20 nucleotide
barcode, the PhiC31 phage Attachment site L (AttL) sequence and another 20 nucleotide barcode (Fig 1
A). Whereas the barcodes of BC1-BC1 and BC2-BC2 have a balanced base composition, BC3-BC3 has
GC rich barcodes with an expected GC content of 80%. The adapter oligonucleotide is 5′ phosphorylated
and contains a 15 nucleotide barcode. This barcode acts as a varietal tag [15] and is used to count
the absolute copy number of input sequences. The 15 nucleotide barcode is followed by the reverse
complement of the Illumina P7-SBS8 sequence. The 3′ end of the adapter oligo is phosphorylated to
avoid circularization.

We pooled BC1-BC1 and BC2-BC2 in equal amounts and ligated them to the 3′ adapter using
CircLigase I ssDNA ligase (epicentre; previously sold as Thermophage ssDNA ligase) as previously de-
scribed [16]. For the high GC dataset ZL053 we additionally included BC3-BC3 in the ligation reaction
at a fivefold reduced concentration relative to BC1-BC1 and BC2-BC2. The ligation reaction was cleaned
up with Agencourt RNAClean XP beads (Beckman Coulter) according to the manufacturers instructions.
The ligated products were subjected to 25 cycles of PCR using 47µl Accuprime Pfx SuperMix (Invitro-
gen), 1µl of 10µM forward and reverse primers each (Table 1) and 1µl input. Cycling was performed in a
BioRad MyCycler Thermal Cycler using standard Accuprime protocol with 58◦C annealing temperature
and 30 seconds extension time. The PCR product was gel extracted and sequenced on a single lane of a
HiSeq 2000 machine at PE101 per dataset.

Data processing. Illumina sequencing resulted in 60, 215 and 224 million reads passing filter for
datasets ZL037, ZL052 and ZL053 respectively. We merged the paired end reads into their consensus
sequence with the Pear tool [17] using standard settings and requiring a consensus sequence of 101 nt.
We trimmed and preprocessed the remaining consensus reads using Matlab requiring a perfect match to
the constant AttL region, and used the remaining sequences for all subsequent analysis (Table 2) (pre-
processing.m). All original data files are freely accessible on the Sequence Read Archive under accession
SRP057767.

Data scaling The three datasets used in this study differ slightly in the number of input sequences
and in sequencing depth. To make direct comparison easier, we linearly scaled the x and y dimensions of
ZL052 and ZL053 to match ZL037 by minimizing the squared error between them. Scaling coefficients
are reported in Table 3. All further analysis was undertaken on the scaled datasets.

GC bias PCR efficiencies were determined as a function of GC content as described in the text. For
simulation of GC biased PCR, we calculated the average PCR efficiency for bins of 0.05 width, and
normalized to a PCR efficiency of 1.9 for the bin 0.5 to 0.55. We then randomly sampled a binomial
distribution to obtain the GC content for 2900 input sequences, and assigned to each sequence the PCR
efficiency of its corresponding bin. All sequences were amplified for 25 cycles, and the resulting molecule
numbers poisson sampled to simulate sequencing. We chose λ as to match the sum of all the reads in the
plateau of ZL037.
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Calculation of the probability distribution function of copy numbers after PCR. In PCR,
the number of offspring molecules of every sequence in every amplification cycle is drawn from a binomial
distribution. When molecule numbers are small, the binomial distribution is poorly approximated by a
Gaussian distribution. It is therefore essential to explicitly calculate the binomial distribution of offspring
molecules in the early cycles of PCR. However, later in PCR, when molecule numbers exceed around 20
copies, the binomial distribution is efficiently approximated by a Gaussian distribution (Law of large
numbers). In our analysis we exactly calculated the Probability Distribution Function (PDF) of copy
numbers after PCR for the first 15 cycles, and then switch to a Gaussian approximation for computational
ease.

To obtain the exact PDF for the first 15 cycles of PCR, we proceeded as follows. Let us use the vector
S to denote the distribution of copies of a given barcode-pair after j cycles. Each element S(i) of S is
the probability of having i− 1 copies. Thus, S(1) is the probability of having 0 copies, S(2) of having 1
copy, etc. If eg S(3) = 1, it means the probability distribution is a delta function at exactly two copies;
if S(2) = 0.5 and S(3) = 0.5, it means there is a 50-50 chance of having two or three copies. (Note that
the largest nonzero element of S must in general be ≤ 2j , so the length of S must be ≤ 2j+1.)

Our approach is to find an updating matrix M such that the distribution of copies S′ on the next
cycle is given by S′ = MS.

This formulation exploits the Markovian nature of the process, namely it does not matter how we
ended up with k copies on a given cycle; all that matters is we have k copies. To determine the elements of
M, we first consider an easier problem. Suppose there are k copies on a given cycle; what is the expected
distribution of copies on the next cycle? The number of new copies is given by a binomial distribution
with parameters k and P; the distribution of total number of copies is k + the number of new copies.
Thus, for cases of the distribution S where S(i) is a delta function (S(i)=1), we have B(i, P ) = MS(i)
where B(i,P) is a binomial shifted by i. This means that the ith column of M is B(i,P).

The calculation of the PDF after 15 cycles can be found in exactpdf.m.
To approximate the PDF after more than 15 cycles, we used the exact PDF after 15 cycles as a

starting point. For position n of the PDF after j − 1 cycles, we generated a Gaussian Gn with a mean of
n (1 + Pamp) and a standard deviation of

√
nPamp (1− Pamp). To generate the PDF of copy numbers

after j cycles, we calculated

pj(i) =

∑2j

n=1 pj−1(n)Gn(i)∑2j

i=1

∑2j

n=1 pj−1(n)Gn(i)
, (1)

where i is the number of copies after and pj(i) is the probability of having i molecules after j cycles.
We then iterated this step as required. Code for generating the approximate PDF can be found in
approxpdf.m.

To simulate stochastic PCR, we randomly sampled 2900 times from the approximate PDF after 25
cycles to obtain molecule numbers for 2900 input sequences after 25 cycles of stochastic PCR. We then
sampled from these molecule numbers to simulate sequencing as above.

Position of template switched reads. We identified half of all template switched reads by comparing
dinucleotide anchor sequences between the two barcodes in each barcode pair. We only considered reads
where every dinucleotide anchor was either RR or YY, and then checked for barcodes of type 1 joined to
barcodes of type 2 and vice versa (Fig 5 B). Using this method, we could identify switches only between
barcode classes (i.e. BC1-BC2 or BC2-BC1 type chimeras) and not within them. In our estimate of the
per molecule probability of template switching s0, we assumed that between and within class template
switches are equally distributed in the sequence profile. We calculated Jk as the ratio of reads from
detected template switched sequences to reads from input barcode pairs and derived the per molecule
probability of between class switching as described in the text. s0 is then simply double that probability.
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Position of single nucleotide errors. We approximated the overall rate of single nucleotide errors
in two ways: (1) by determining the minimum hamming distance of each sequence in the shoulder and
tail to the plateau sequence and (2) by identifying single nucleotide errors in the dinucleotide anchor
sequences, where we quantified the occurrence of RY or YR anchors, that by definition (and with the
exception of rare oligonucleotide synthesis errors) are not part of the input barcode pool.

As discussed in the text, we can attribute all errors in sequences with a read count ≥ 3 to polymerase
errors. At reads counts less than 3, we cannot be sure whether the observed base pair is due to a
polymerase error or just an Illumina sequencing error. When estimating the per molecule polymerase
error rate e from our data, we did not want to include sequencing errors into the estimate of Fk = Zk

Rk
,

the ratio of reads from erroneous sequences to reads from input sequences. We therefore poisson sampled
the sequencing data with λ = 0.1, effectively removing all low read sequences and estimated F25 from the
resulting sequence distribution. Such an approximation is valid, as read counts from both erroneous and
input sequences are equally affected by sampling, so that Fk remains constant. Indeed, our estimate of the
polymerase error rate e is robust against different values for λ (data not shown). To simulate erroneous
PCR on a background of perfect PCR, we simulated perfect PCR, where every molecule present at a given
cycle is amplified, and added new sequences caused by errors according to the experimentally derived per
molecule error rate, assuming that every new sequence introduced this way is unique. After 25 cycles,
we sampled the obtained molecule numbers to simulate sequencing as above.

Bootstrapping the position of template switched sequences and polymerase errors. To deter-
mine whether the distribution of template switched sequences or polymerase errors deviates statistically
significantly from a uniform distribution we used a bootstrapping approach. We sampled from the exper-
imental positions of switches or errors with replacement as many times as we found template switches or
polymerase errors in the analyzed window. We then calculated the median distance of the drawn posi-
tions from the centre of the analyzed window. Repeating this 100000 times, we build up a bootstrapping
distribution, and compared the experimentally observed median distance of switches or errors from the
centre of the analyzed window to this distribution to calculate the reported p-values.

Simulation of PCR stochasticity and polymerase errors. We simulated stochastic PCR with
polymerase errors using essentially the same model as for simulating erroneous PCR on the background
of perfect PCR, but assigned each input and each new sequence a final molecule count sampled from the
PDF of molecule counts after 25−x cycles of PCR, where x is the PCR cycle at which the sequence first
arose. We then sampled these molecule counts as above.

Results

Experimental system. To study the effects of PCR on sequence representation in Illumina libraries,
we designed an experiment in which sequencing library preparation consists of only a single set of PCR
on known, but diverse input sequences, thus removing possibly confounding steps like DNA shearing,
reverse transcription or adaptor ligation. We synthesized DNA oligonucleotides containing two regions of
random sequence, i.e. two barcodes, joined by a constant region. These barcode pairs are flanked by two
constant sequences that are required for Illumina sequencing, and which also act as PCR primer binding
sites during library preparation (Fig 1 A left).

We subjected about 5000 of these oligonucleotides to 25 cycles of PCR, and sequenced the resulting
library for two independent replicates (datasets ZL037 and ZL052; Table 2). We chose 25 PCR cycles
to avoid the plateau phase of PCR, while still ensuring sufficient PCR product to obtain a high quality
sequencing library. We selected AccuPrime Pfx as PCR enzyme for its superior accuracy, specificity and
robustness to GC rich sequences [1]. The relatively low number of input oligonucleotides ensures a high
sequencing depth of all input sequences, such that sampling effects during sequencing can be ignored.
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We expect every input molecule to have a unique sequence, as we used very few input molecules and
the combinatorial space of all possible barcode sequences is very large (40 random barcode nucleotides;
440 ≈ 1024 possible combinations). This implies that every barcode pair is present at equal abundance
in the input DNA pool (i.e. single copy) and should therefore be read out at approximately equal read
counts in the sequencing results.

We plotted the experimental sequencing read counts for every barcode pair (Fig 1 A right) sorted
from the most abundant to least abundant barcode, that is by sequence rank, where rank 1 is the most
abundant sequence. For each dataset, we find that the most abundant barcode pairs are present at similar
read counts, forming a plateau in the plot. This plateau is followed by a shoulder of barcode pairs with
intermediate abundance and a long tail of low abundance barcode pairs.

Given an equal abundance of all sequences before amplification, we would have naively expected
only a plateau. The presence of a shoulder and tail in the experimental data suggests that additional
mechanisms are at play. Conceptually, there are a variety of potential artifacts that can be introduced
by PCR, each of which will have a different impact on sequence representation after amplification (Fig 1
B-F). We will address each of these mechanisms in turn.

Perfect PCR. We first considered the sequence distribution we should expect given perfect PCR
amplification (Fig 1 B). Perfect PCR faithfully amplifies every molecule in the input DNA pool, simply
doubling molecules at every cycle. Relative abundances of different sequences will thus be preserved
during amplification.

Mathematically, perfect PCR can be summarized as

n(j) = N0 2j , (2)

where n(j) is the number of molecules of a particular amplicon after j cycles, and N0 is the initial copy
number of this amplicon.

If every amplicon is unique before amplification, then N0 = 1, and every sequence will be present
at n(j) = 2j copies after j cycles of PCR. Plotting copies against sequence rank results in a plateau of
height 2j reads. If sequencing is deep enough to overcome Poisson sampling effects, we expect a similar
plateau when plotting read counts against sequence rank for the Illumina sequencing results, but with a
plateau height that reflects sampling during sequencing.

The experimental data deviate substantially from this expectation. A trivial explanation for this
disparity is that some sequences were more abundant than others before PCR. We accounted for this
possibility by including varietal tags [15] (see Materials and Methods) in our experimental design, which
allow absolute quantification in high-throughput sequencing experiments. We were therefore able to count
the number of input molecules that carry a particular sequence, and found that all sequences from the
plateau were present exactly once before PCR (compare preprocessing.m). We therefore conclude that
the naive model of perfect PCR does not describe the experimentally observed data.

Below we consider four processes, two of which (PCR bias and PCR stochasticity) introduce skews into
the representation of input sequences, and two (template switching and polymerase errors) that generate
new sequences during PCR amplification. For easier comparison between the experimental datasets in
all subsequent analyses, we normalized the sequence rank plot in x and y to account for differences in
input molecule numbers and sequencing depth. The scaled datasets overlap very well (Fig 2; Table 3).

PCR bias. The efficiency with which PCR amplifies a sequence may vary from one sequence to the
next, depending on factors including sequence composition and secondary structure. A high fraction of
G or C can reduce amplification efficiency [1,3,18], causing uneven amplification of different sequences in
PCR. We therefore tested the possibility that PCR bias was responsible for underrepresented sequences
after amplification. Such a bias could contribute to the shoulder or tail in our plots, depending on how
strong it was (Fig 1 C).
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In equation 2 we assumed perfect amplification on each cycle. GC bias would manifest as a sequence-
dependent amplification efficiency. Assuming different amplification efficiencies for different sequences,
we can express the expected copy number E (nx(j)) of sequence x after j cycles of PCR as

nx(j) = N0,x c
j
x, (3)

where N0,x is the initial copy number of sequence x, 1 ≤ cx ≤ 2 is its PCR efficiency, and the number of
copies nx is large.

PCR bias, that is a PCR efficiency cx smaller than the average efficiency of all sequences 〈cx〉, has
been reported in sequences with a high GC content [1]. As GC bias causes uneven amplification of
different sequences, we tested whether molecules that were underrepresented after amplification (i.e. the
sequences in the shoulder) were rich in GC (Fig 3 A). If GC bias were causing the observed differences
in read counts, regions of high read counts should have lower GC contents than regions of low read
counts. The experimental distribution of GC content for plateau sequences (high read counts), shoulder
sequences (intermediate read counts) and tail sequences (low read counts) are overall very similar to each
other (Fig 3 B), suggesting that GC bias is not the primary force shaping the sequence rank curve. We
note that the average GC content of plateau, shoulder and tail are statistically significantly different
(p-value=1.9 × 10−4 using 2-way-ANOVA), but that the effect size is small; plateau sequences have a
mean GC content of 0.4463, compared to a mean GC content of 0.4656 and 0.4583 for the shoulder and
tail.

To investigate if even the observed small differences in GC content can result in sequence misrepresen-
tation, we directly measured the PCR efficiency cx as a function of GC content in our datasets. Because
each input sequence was present as only one molecule before PCR, we could quantify the relative PCR
efficiencies of all sequences. Briefly, we determined the GC content of all input sequences, i.e. of all
sequences found in the plateau, and calculated their relative abundance. We normalized the relative
abundance of each sequence to the mean abundance of all sequences with a GC content between 0.50
and 0.55 to obtain mx, which acts as an estimate for PCR efficiency. Assuming a PCR efficiency of 1.9
for sequences with a GC content between 0.50 and 0.55, we then calculated absolute PCR efficiencies to
each GC content bin using the following formula:

c25x = mx 1.925

⇔ cx = (mx 1.925)
1
25

(4)

The random design of our barcode sequences naturally leads to few GC rich sequences in the input
DNA pool. To improve our ability to calculate cx at high GC contents, we prepared a third dataset
(ZL053), similar to our initial datasets, but into which we spiked about 10% high GC barcode pairs
(BC3-BC3) that have an average GC content of 80% (Table 2, Supplemental Fig 1).

Drawing on all three datasets, we find that the PCR efficiency is almost constant across different GC
contents (Fig 3 C; linear regression resulted in slopes of 0.0009, 0.0011, and -0.0033 for the three datasets
respectively, with 95% confidence intervals < 0.008).

Using these empirically measured values for cx, we then simulated PCR and compared the resulting
trace to our experimental datasets (Fig 3 D). In agreement with the previous measurements, we find
that GC bias as observed in our dataset cannot explain a large amount of the skew observed in the
experimental data.

In conclusion, we find only weak evidence for GC bias in our experimental results. This shows that
GC bias is not an important force in skewing sequence representation under our experimental conditions.
We note, however, that in our experiments the maximum length of a GC biased stretch of nucleotides is
≤ 20nt — the length of a barcode. Longer GC biased regions might well introduce larger biases during
PCR. Notwithstanding this caveat, the observed shoulder and tail in our data are unlikely to be formed
by GC bias.
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Stochastic amplification of low copy number amplicons. A second source of uneven amplification
in PCR is stochasticity. If PCR were perfect, every single molecule would be replicated every cycle.
However, PCR is imperfect, so each molecule undergoes replication with a probability of less than 1. For
example, if Pamp = 0.9, then out of every ten molecules amplified per cycle, PCR will fail to replicate
one. This is not particularly concerning when PCR is used on DNA mixtures where every sequence is
present in high copy numbers. In this case, the expected 1+0.9∗1+0.1∗0 = 1.9 fold increase of molecule
number of per cycle is sufficient to describe the behaviour of PCR.

However, when sequences are present at very low copy numbers, stochastic amplification may have
a significant impact on sequence representation. Consider an example. First, consider a lucky amplicon
that undergoes replication on the first cycle, so that on cycle 2 there are 2 copies. Further suppose
that both copies are lucky and again undergo replication, so on cycle 3 there are 4 copies (Fig 4 A,
red). Compare this to an unlucky amplicon (Fig 4 A, blue), which fails to get copied both cycles (for
Pamp = 0.9, this happens (1 − p)2 = 0.12 = 0.01 or 1% of the time). If their luck evens out and both
amplicons get amplified equally during subsequent cycles, the lucky barcode will appear at a copy number
of about 4 times more than the unlucky one. This suggests that the distribution of copy numbers for
Pamp = 0.9 will range over more than a factor of 4. Stochasticity in PCR could therefore explain the
shoulder observed in the sequencing trace [9].

We can express this consequence of PCR stochasticity using the recursive expression

n(j + 1) = n(j) +B(n(j), Pamp), (5)

where B(n(j), Pamp) is a binomially distributed random variable with n(j) trials and Pamp is the
probability of success [5]. This expression is equivalent to modeling PCR as a Galton-Watson process, a
stochastic branching process. In this formulation, every node represents one copy of a certain sequence
and can give rise to one or two new branches, where each branch corresponds to success or failure of
amplification on a given cycle.

Assuming this branching model and a realistic Pamp = 0.9, we generated the exact PDF of the copy
number n of a single sequence, starting with a single molecule at cycle 0. After 15 cycles of PCR, the
PDF has a clear global maximum (Fig 4 B): As we would expect, most molecules are amplified most of
the time. Interestingly, two further local maxima are discernible at copy numbers of 0.5 and 0.25 of the
global maximum, corresponding to sequences that missed out on amplification during either one or two
of the first two cycles of PCR. The relative heights of these peaks are determined by Pamp.

During the first few cycles of PCR molecule numbers are low, and stochasticity has a large effect. We
therefore expected to find the origin of the observed local maxima in the early cycles of PCR. After one
cycle of PCR, the PDF is trivial (Fig 4 C). After two cycles, the PDF still shows only one maximum
corresponding to molecules amplified in both cycles. After three cycles, the PDF shows two peaks at
n = 4 and n = 8. To reach copy number 8, the molecules have successfully been amplified at every cycle as
23 = 8. To reach n = 4, molecules must have failed to replicate during one cycle. The biggest contribution
to the probability of n = 4 comes from paths where molecules missed out on the first amplification cycle.
This fact is immediately obvious when one considers all of the trees giving rise to four branches after
three cycles and keeping in mind that a failure to amplify is less likely than success. After 4 cycles, the
same structure as observed after 15 cycles becomes apparent. The PDF shows a global maximum at
copy number 16 and two local maxima at 0.5 (copy number 8) and 0.25 (copy number 4) of that copy
number. When we explicitly calculated the probabilities for these copy numbers, the dominating terms
are sequences that failed to amplify on either the first or first two cycles of PCR. A third local maximum
is apparent at n = 12, which is smoothed out in later cycles. This reasoning confirms that the local
maxima in the PDF after 15 cycles correspond primarily to molecules that did not amplify during the
first or first two cycles of the PCR reaction.

To test the hypothesis that stochasticity early in the PCR reaction could generate the observed
shoulder in the sequence trace, we approximated the PDF of copy numbers after 25 cycles of PCR with
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a set of constant PCR efficiencies. We sampled from the resulting PDFs to create a profile of read counts
vs sequence rank. With a simulated PCR input of 2900 different sequences, we were able to reproduce
a shoulder similar to the one observed in experimental data, with the best fit for Pamp = 0.9 (average
correlation coefficient of R2 = 0.8925 to the three datasets; Fig 4 D). However, the smooth transition of
shoulder to tail present in experimental data is missing.

In conclusion, PCR stochasticity has a large impact on sequence representation after PCR amplifica-
tion and could give rise to most of the experimentally observed shoulder but not the tail.

Template switching. We next investigated processes producing new sequences during library prepa-
ration. If a new species is generated during PCR amplification, it will likely be amplified in subsequent
PCR cycles like one of the original input sequences. It will, however, lag behind these original sequences
by at least one cycle, and will thus be observed less frequently after amplification than most input se-
quences. Generation of new sequences during PCR could therefore contribute to the shoulder and tail of
the sequence trace.

PCR template switching produces hybrid sequences of two sequences already present in the input
[10,19]. DNA polymerase can jump from one template to another in a region of complementarity without
aborting the nascent DNA strand during PCR. This nascent strand therefore has a new hybrid sequence,
where one piece is complementary to the old template and the other piece is complementary to the new
template. Similarly, nascent transcripts can be aborted before completion and then might act as primers
in a subsequent cycle of PCR, again resulting in a new hybrid species [10,19] (Fig 5 A).

To gain a quantitative understanding of template switching, we formulated a mathematical model of
the process on a background of otherwise perfect PCR. This model explicitly deals with hybrid sequences
produced by polymerase jumping, but mathematically applies equally well to template switching mech-
anisms where an aborted PCR product serves as an alternative PCR primer. We assume a bimolecular
reaction, so that the probability sj of forming a new product on cycle j is governed by the rate of col-
lisions between the two molecules. The collision rate in turn depends on the concentration of the two
species, which is proportional to the number Nj of molecules at cycle j. Assuming that the probability
of template switching following a collision is s0 and s0 � 1/Nj , then the total number Sj of template
switches on cycle j is

Sj = sj Nj

= s0N
2
j .

(6)

As template switched molecules undergo amplification in every cycle after their generation, the total
number of template switched molecules Qm after m cycles is

Qm =
m∑
j=1

Sj 2m−j

= s0N
2
0 2m

m∑
j=1

2j

≈ s0N2
0 22m+1.

(7)

The model predicts that the number of template switches per cycle grows with the square of the total
number of molecules in solution Nj . As Nj increases exponentially with j, the probability of template
switching increases exponentially with 2j. Accordingly, template switches will become increasingly com-
mon in late cycles of PCR, but will not accumulate to levels comparable to the original input sequences,
and should be detectable mostly in the tail of the sequence distribution.

To test this prediction experimentally, we searched for signatures of template switching in the sequenc-
ing results. Our barcode libraries contained two different classes of barcodes (Fig 5 B). Barcodes of type
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1 (BC1) are different from barcodes of type 2 (BC2) at six positions at which the sequence is restricted
to either a purine (R=A,G) or a pyrimidine (Y=C,T) base. Based on these anchors, BC1 and BC2 can
be reliably distinguished from each other. We started the PCR reaction with a pool of barcode pairs that
were either BC1-BC1 pairs or BC2-BC2 pairs for datasets ZL037 and ZL052. Note that BC3-BC3 pairs in
the high GC dataset ZL053 are lacking the anchor structure present in BC1 and BC2 and were therefore
excluded for this analysis. In the absence of template switching, we would expect to observe only the
initial barcode pair types in the sequencing dataset. However, when we detect a BC1-BC2 or BC2-BC1
pair, this barcode pair must have arisen from a template switch across the constant region between the
two barcodes. Using this detection method, we are able to detect half of all template switches.

We find that template switched reads are present only at low read counts in the tail of the experi-
mental sequence distribution (Fig 5 C), and that their distribution significantly departs from a uniform
distribution (p-values of 0 for all three datasets by bootstrapping). This is in agreement with the our
prediction that template switched sequences are created late in PCR. Accordingly, template switches, as
detectable by this metric, produce many new sequences (1234, 16190 and 48153 in ZL037, ZL052 and
ZL053, respectively), but make up only a small fraction of all reads (8.1×10−5, 7.8×10−4 and 2.6×10−3).
Note that our barcode design favours the the production of chimeras due to the constant region between
the two random barcodes.

We then estimated the per molecule probability of template switching s0 from the data. We define
Qk as the number of template-switched molecules after k cycles, which is smaller than the total number
Nk of molecules. Although we cannot measure Qk or Nk directly, we can obtain an estimate of their
ratio Jk,

Jk ,
Qk

Nk

=
s0N

2
0 c

2k+1

N0 ck
,

(8)

where c is the PCR efficiency. We can then solve for the per molecule probability of template switching
s0

s0 = Jk
1

N0 ck+1
. (9)

Assuming a PCR efficiency c = 1.9, For datasets ZL037, ZL052 and ZL053 after removal of high GC
barcodes we obtain a per molecule probability of template switching of s0 = 2.9×10−15, s0 = 1.3×10−15

and s0 = 3.3× 10−15 respectively.
Based on the mean value of s0 = 2.6 × 10−15 across our datasets, a simulation of perfect PCR with

template switching cannot account for the experimentally observed shoulder (Fig 5 D).
These results indicate that PCR template switching is a rare event in dilute solutions, and only be-

comes common late in PCR. By then, the newly generated sequences have lost out on many amplification
cycles and are present at much lower copy numbers than original sequences. They are therefore detected
at low copy numbers in sequencing. Template switched reads do not account for the observed shoulder,
and only a small fraction of the sequences in the tail.

Polymerase errors. A second source of new sequences during PCR are amplification errors. Dur-
ing synthesis of a new DNA strand, DNA polymerase makes errors including single nucleotide sub-
stitutions and, at a lower rate, small insertions or deletions [20]. Polymerase error rates strongly
depend on experimental conditions, and estimates of error rates vary with the method used to de-
termine polymerase errors. Wild type Taq polymerase is the best studied polymerase used in PCR
and is generally used as a relative standard for polymerase fidelity. Estimates of Taq fidelity vary,
but are on the order P (Error per nucleotide) = 10−4 [21, 22]. AccuPrime Pfx polymerase, as used in
our experiments, is estimated by the manufacturer to have a fidelity 26× higher than Taq polymerase
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(http://tools.lifetechnologies.com/content/sfs/brochures/711-021834%20AccuPrime%20Brochu.pdf ). We
therefore expect AccuPrime Pfx to introduce polymerase errors at a probability of roughly

P (Error per nucleotide) = 4× 10−6. (10)

The probability of one or more errors in the 2x20 barcode nucleotides is therefore

P (At least one error per barcode pair) = 1−
(
1− 4× 10−6

)40 ≈ 1.6× 10−4. (11)

Thus on average, out of every 6250 molecules, a new molecule with at least one error will be produced.
These new sequences are subsequently amplified during the remaining cycles of PCR just like any other
DNA molecule. However, because, by definition, they lag by at least one cycle of PCR, they are less abun-
dant than original sequences. Moreover, the probability of producing new sequences due to polymerase
errors is linearly dependent on the number of amplified molecules, and thus increases exponentially during
PCR. Taken together, these considerations suggest that polymerase errors are responsible for part of the
shoulder but become increasingly more abundant with low copy number. We therefore predict that the
lower part of the shoulder and parts of the tail are formed by polymerase errors (Fig 6 A).

To test this prediction experimentally, we used a Hamming distance metric to identify sequences that
arose from polymerase errors. The Hamming distance between two sequences is defined as the number
of substitutions necessary to go from one to the other. For example, a sequence with a single PCR
error will have a Hamming distance of one to its original parent sequence. Using this metric, we cannot
directly differentiate between polymerase errors and Illumina sequencing errors. However, if a sequence
appears more than twice in our dataset, it is unlikely that it arose due to an Illumina sequencing error
and therefore is either real or result of a template switch or a polymerase error: At a lower bound
quality score of Qphred = 30, that is a base calling error rate of 10−3 per nucleotide, the probability of
introducing the same sequencing error three times into different copies of the same 40nt barcode pair
is 40 ∗ 0.0013 = 4 × 10−8. At a coverage on the order of 104 for real sequences — that is, reads from
the plateau of the sequence trace — this implies that the probability of introducing the same sequencing
error three times into a real barcode pair is 4 × 10−8 ∗ 104 = 4 × 10−4. With only roughly 5000 real
barcode pairs, sequencing errors in sequences present three or more times are negligible. At fewer than
three counts per sequence, we cannot exclude the possibility that some of the observed mismatches arise
from sequencing errors, especially in the singlet region.

To further reduce the contribution of sequencing errors to our dataset, we sequenced using paired end
reads that each span the entire length of the barcode pair, so that every base was sequenced twice. We
then determined the consensus sequence of paired end reads using the PEAR tool [17], analyzing only
those reads for which a consensus over the whole molecule could be found. Assuming independence of
paired end reads, this procedure eliminates the majority of sequencing errors. Taking both read quality
and paired end matching arguments into consideration, we will assume that errors identified by the
Hamming distance metric arise exclusively from polymerase errors if the sequences have a copy number
of more than 2.

We defined the plateau sequences from scaled rank 1 to 2900 as original parent sequences, and find
that we can account for about 84% of all other sequences by a single nucleotide substitution in these
original sequences. In contrast, the minimum Hamming distances between all the parent sequences are
significantly different from each other, such that they could not be related to each other by polymerase
errors (Fig 6 B). Due to the length of the tail observed in the data, these findings suggest that the vast
majority of all unique sequences in the datasets are actually errors, but all occur at low abundance.
Indeed we find that while most of the tail sequences are the product of errors, only roughly 1% (1.1%,
1.6%, 1.5% for ZL037, ZL052 and ZL053, respectively) of all reads derive from errors.

To obtain an independent estimate of the polymerase error rate that does not depend on identifying
parent sequences, we quantified polymerase errors by scoring deviations from the expected sequence
features of BC1 and BC2 sequences. Each of the defined anchors in BC1 or BC2 is a pair of two
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purines or two pyrimidines. Any mixed anchor sequence, e.g. AT or CG, therefore must be the result of a
substitution. Using these mismatches as measure of polymerase errors, we find that polymerase errors are
depleted in the plateau region of the experimental sequence trace (Fig 6 C). The distribution of polymerase
errors in this window significantly differs from a uniform distribution as assessed by bootstrapping (p-
values=0 for ZL037, ZL052 and ZL053 after removal of high GC spike-ins).

To further quantify the effects of polymerase errors, we estimated the error rate of Accuprime Pfx
using our experimental data. Our estimation procedure began by assuming N0 initial sequences that are
amplified with PCR efficiency c. After j cycles, the total number of faithfully copied molecules Rj is

Rj = N0 c
j . (12)

Now let us assume a fixed probability e of making an error per molecule on each round. Then the expected
number Ej of new errors generated during the jth round is

Ej = eRj−1, (13)

where we use j − 1 since the jth round was produced from Rj−1 molecules on the previous round.
Erroneous sequences are amplified just like all other sequences. Thus after k cycles, there will be ck−j

copies of a erroneous sequence that arose on the jth cycle. Thus the total number Zk of molecules
containing a single error after k rounds of PCR is

Zk =
k∑

j=1

ck−j Ej

=
k∑

j=1

ck−j eN0 c
j−1

=
N0 e

c

k∑
j=1

ck

= N0 e k c
k−1.

(14)

Accordingly, the fraction of all sequences containing errors is

Fk =
Zk

Rk

=
N0 e k c

k−1

N0 ck

=
k e

c

(15)

After resampling our sequencing data to remove rare sequencing errors (see Materials and Methods),
we can approximate Fk by taking the fraction of all reads in the tail that have a Hamming distance of one
to the plateau (the errors) over all reads in the plateau of our data (the original sequences). Therefore, we
can solve the above equation for e and obtain an estimate for the per molecule error rate in our data. For
the three datasets ZL037, ZL052 and ZL053 we obtained values of 0.0008, 0.0012 and 0.0011 respectively.
These values correspond to a per nucleotide error rate of 2.0×10−5, 2.9×10−5 and 2.8×10−5, respectively.
Note that this experimental polymerase error rate is about 6 times higher than our above estimate based
on the manufacturers information and traditional lacZ complementation assays [21,22].

Based on the relatively steady rate of polymerase errors outside the plateau, we hypothesized that most
sequences found at the bottom of the plateau and in the tail of the sequence trace arose from polymerase
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errors. To test this hypothesis, we simulated erroneous PCR with an overall amplification efficiency of
c = 1.9 in a deterministic model. Assuming that every individual error is rare, we simulated 25 cycles of
PCR on an input of 2900 sequences using the average measured error rate of P (Error per nucleotide) =
2.7 × 10−5. The resulting sequence rank plot shows a plateau followed by a steep drop off which then
softens into a long tail (Fig 6 D). This simulation does not account for the experimentally observed
smooth top of the shoulder, but does agree closely with the experimentally observed trace at the bottom
of the shoulder.

Taken together, these data confirm our theoretical predictions. Polymerase errors are relatively com-
mon, but in absolute numbers happen predominantly late in PCR, and thus are confined to the tail of
the sequence distribution, where they make up a large fraction of sequences.

Stochasticity and polymerase errors explain much of the observed PCR errors. From the
above analyses, we expected stochasticity of amplification and polymerase errors to explain most of the
observed sequence distribution. To test this hypothesis we simulated PCR by a Galton Watson process,
and added polymerase errors at the experimentally observed rate of P (Error per nucleotide) = 2.7×10−5

(Fig 7). Again we assumed that each individual error is rare. Simulation and experimental data show
a very good fit, confirming that the observed distribution can be explained by PCR stochasticity and
polymerase errors alone.

Discussion

We set out to systematically investigate potential sources of sequence misrepresentation in next-generation
sequencing libraries, focussing on bias, stochasticity, template switching and errors introduced by PCR.
Studying four processes in the same system allowed us to compare their relative importance directly.
Using a carefully designed set of amplicons and mathematical models, we find that PCR stochasticity in
the first two or three cycles of PCR greatly affects sequence representation of low copy number sequences
after amplification. Polymerase errors, and to a lesser extent template switches, generate new sequences
which occur predominantly at low read counts, producing the observed tail in the read distribution. GC
bias makes only a minor contribution to the observed sequence misrepresentation in the data.

Our findings provide a framework for understanding PCR-induced misrepresentations in sequencing
data. Our results on PCR stochasticity have direct relevance for any high-throughput sequencing assay
with limited starting material, and are of particular relevance to the single cell sequencing community,
where the copy number of target sequences is often equal to one. Our findings emphasize the limits
imposed by counting statistics in the low input limit on the quantification of RNA or DNA sequences
through sequencing. Stochastic amplification in the first rounds in PCR amplification may contribute to
the uneven coverage observed in copy number analyses of single cells [23] or variation of transcript abun-
dance in single cell RNAseq [24,25]. Indeed, variation of transcript abundance increases with decreasing
copy number [24].

To overcome the limits imposed by stochasticity, a number of quantitative tools have been developed to
assess and even deconvolve technical and biological noise in single cell RNAseq studies [25,26]. In parallel
to these computational efforts, experimental techniques have been developed to minimize PCR induced
distortions in low input sequencing experiments. Techniques like multiple displacement amplification [27],
antisense RNA amplification [28] or multiple annealing and looping-based amplification cycles [29] aim
to minimize the use of PCR. These approaches exploit linear or quasilinear amplification to minimize the
rapid accumulation of errors and biases that arise during exponential PCR amplification and therefore
allow for better post-amplification quantification of nucleic acids. In contrast, single molecule barcoding
techniques [15] still rely on PCR, but compensate for misrepresentations after sequencing. Individual
molecules are uniquely labeled before amplification, so that the number of input molecules can be precisely
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quantified. Our results underscore the importance of such strategies in cases where copy numbers < 8
must be quantitatively resolved.

The introduction of new sequences, through polymerase errors or template switches, are of particular
interest in environmental genomic applications where the 16S rRNA gene from a diverse pool of microbes
is sequenced to determine the composition of the population. These studies aim to to determine the
true number of different 16S rRNA sequences in the dataset, which act as a measure of the number
of distinct microbial species in the pool. Algorithms have been developed to remove single nucleotide
polymerase and sequencing errors [12,13], as well as chimeric sequences [11], from high-throughput data.
However, because the goal of these algorithms is to identify and remove errant sequences, they do not
quantitatively address the distortions in the representation of single molecules that arise from high-
throughput sequencing. Our work aims to close this gap, and to provide a quantitative and mechanistic
basis for updated experimental designs and analyses. Our data suggest that polymerase errors have
a clear signature and, given sufficient sequencing depth, are easily distinguished even from rare input
sequences by abundance after amplification. We were further able to measure the critical parameter for
a model of template switching, so that we can predict how much we have to dilute our input samples to
limit chimeric sequences to an acceptable level.

Although GC bias has previously been reported to introduce misrepresentations into sequencing data
[1], we find that it explains little of the observed sequence misrepresentation under our conditions. One
reason for this discrepancey may be that effects of GC bias are minimized in our experimental system by
the short length of our barcodes. Additionally, we expect that the use of Accuprime polymerase, and of
a thermocycler with relatively slow ramp rates (2.5 deg/sec), further diminishes the detrimental effects
of GC bias [1].

We designed the experimental system used in this study to disentangle different sources of PCR
induced misrepresentation in sequencing datasets. The artificial design of our PCR amplicons allowed us
to carefully measure the magnitude of different distorting effects in PCR in a well controlled setting. At
the same time, however, this design means that our system differs from many real world applications of
high throughput sequencing, so further work will be needed to assess how our findings generalize.
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Figures

Figure 1. Errors and biases in PCR and their theoretical impact on sequence
representation. (A) Left: structure of the amplicons used in this study. Two 20nt barcodes flank a
constant sequence (AttL), forming a barcode pair. They are in turn flanked by Illumina P5 and P7 sites
as well as sequencing primers (SolI and SolII). Right: sequence rank plot of experimental dataset
ZL037. A plateau, a broad shoulder and a long tail (partially visible) are apparent. Schematic
representation of perfect (B) and different modes of skewed forms of PCR as well as their expected
impact on sequencing data. PCR bias (C) and PCR stochasticity (D) skew the relative abundance of
input sequences, but do not add any new sequences to the dataset. In contrast, PCR template
switching (E) and polymerase errors (F) generate novel sequences.
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Figure 2. PCR can grossly affect sequence representation in Illumina library generation.
Sequence rank plot of replicate datasets ZL037 and ZL052 before (A) and after (B) linear scaling in x
and y to compensate for different input amounts and sequencing depth. Scale factors for the x and y
dimensions can be found in Table 3.
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Figure 3. GC Bias. (A) Schematic of two cycles of GC biased PCR. A sequence with balance
sequence composition (red) is readily amplified, whereas a GC rich sequence (green) does not amplify
well. (B) Cumulative distribution of GC content = /− s.d. for 1500 sequences in plateau, shoulder and
tail of the sequence trace of ZL037 and ZL053. No striking differences can be observed. However, the
mean GC contents of the three distributions are statistically significantly different. (C) Relative PCR
efficiencies as a function of GC content as measured in the plateau of all three datasets, normalized to
an efficiency of 1.9 for GC contents of 0.5 to 0.55. Linear fits are plotted as lines. PCR efficiencies are
roughly constant across the observed range of GC contents, including the high GC barcode pairs of
ZL053 (green). (D) Simulation of PCR with using PCR efficiencies as derived in (C), compared to
ZL037 and ZL052. The simulation fails to capture the shape of the data, confirming that GC bias is
insufficient to explain the observed sequence distribution.
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Figure 4. PCR stochasticity. (A) Schematic of two cycles of stochastic PCR amplification. A lucky
barcode pair (red) gets amplified at every cycle, whereas an unlucky barcode pair (blue) fails to get
amplified at all. A barcode pair with mediocre luck is depicted in purple. (B) The exact probability
distribution of sequence copy number after 15 cycles of PCR with Pamp = 0.9. Arrows indicate two
local maxima in the PDF at roughly half and quarter of the molecule numbers as the global maximum.
(C) Probability distribution of sequence copy number after 1 to 7 cycles of PCR (blue fading through
orange to red). The birth and evolution of the two local maxima observed in (B) is visible. The
probability distributions after j = 1..7 cycles were normalized to sum to 2j to aid visualization. (D) A
sample of 2900 sequences of the approximate probability distribution after 25 cycles of PCR with
Pamp = 0.9 (red) correlates closely with the 2900 most abundant sequence reads of the experimental
data. Simulations for Pamp = 0.8, Pamp = 0.85, Pamp = 0.95 and Pamp = 0.99 are plotted in dashed
lines.
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Figure 5. Template switching. (A) Schematic of one cycle of PCR with template switching. During
amplification of the blue barcode pair, the polymerase switches to the red barcode pair in the constant
region, producing a blue-red chimera. (B) The barcode libraries contain two classes of barcode pairs
(BC1-BC1 and BC2-BC2), that are distinguishable by purine and pyrimidine anchors (top). If a
BC1-BC2 or BC2-BC1 barcode pair is detected, it must have been formed by a template switch. Such
inter-class switches should make up half of all template switches. (C) Abundance of detected template
switched sequences +/− s.d. in sequence rank space. Template switches are rare in abundant
sequences, but become more frequent as copy numbers reach one. (D) A simulation of template
switching on a background of perfect PCR (red) captures little of the empirical sequence distribution.
The only free parameter in our model of template switching, the per molecule rate of template
switching s0, was independently estimated from the data.
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Figure 6. Polymerase errors. (A) Schematic of two cycles of PCR with polymerase errors.
Polymerase errors introduce mutations into an input barcode pair (red), effectively producing novel
sequences (orange, lavender, yellow). (B) Histogram of the minimum Hamming distance +/− s.d. from
sequences in the plateau to other plateau sequences (blue) and sequences from shoulder and tail (scaled
rank 2900 to 10000) to plateau sequences (green). In contrast to plateau sequences, the majority of
sequences from shoulder and tail are within a Hamming distance of one (i.e. one base change) from the
parent plateau sequences. (C) Position of errors detected using mismatches to anchor sequences in the
barcodes in sequence rank space +/− s.d. While the plateau is depleted of polymerase errors, shoulder
and tail sequences show a large increase in error frequency. (D) A simulation of polymerase errors on a
background of perfect PCR (red) recapitulates the shoulder to tail transition of the observed sequence
distribution. The polymerase error rate used for the simulation was independently estimated from the
data.
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Figure 7. Polymerase errors and stochasticity appear to explain a large fraction of
observed data. (A) PCR is simulated as a Galton Watson process with polymerase errors added at
the average experimental rate. Simulated (red) and observed sequence profile (light and dark blue)
match closely.
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Supplemental figures

Figure S1. Sequence rank plot of replicate datasets ZL037, ZL052 and high GC dataset ZL053 before
(A) and after (B) linear scaling in the x and y to compensate for different input amounts and
sequencing depth. Scale factors for the x and y dimensions can be found in Table 3.
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Tables

Table 1. DNA oligonucleotides used

Name Sequence
BC1-BC1 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT

CCG ATC TNR NNN NNY YNN NNR RNN NYY ACG CCC CCA ACT GAG AGA ACT
CAA GGG CAC GCC CTG GCA CCC GCA CRR NNN YYN NNN RRN NNN NYN

BC2-BC2 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT
CCG ATC TNY NNN NNR RNN NNY YNN NRR ACG CCC CCA ACT GAG AGA ACT
CAA GGG CAC GCC CTG GCA CCC GCA CYY NNN RRN NNN YYN NNN NRN

BC3-BC3 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT
CCG ATC TSN SNS NSS SNS SSN SNS NSN ACG CCC CCA ACT GAG AGA ACT CAA
GGG CAC GCC CTG GCA CCC GCA CSN SNS NSS SNS SSN SNS NSN

adapter /5Phos/ NNN NNN NNN NNN NNN AGA TCG GAA GAG CGG TTC AGC AGG AAT GCC
GAG ACC GAT CTC GTA TGC CGT CTT CTG CTT G /3Phos/

F primer AAT GAT ACG GCG ACC ACC GAG ATC T

R primer CAA GCA GAA GAC GGC ATA CGA GAT C

Table 2. Sequencing datasets

Name BC1-BC1 BC2-BC2 BC3-BC3 reads pass filter PEAR consensus reads
ZL037 + + − 60 ∗ 106 15.7 ∗ 106

ZL052 + + − 215 ∗ 106 21.2 ∗ 106

ZL053 + + + 224 ∗ 106 19.6 ∗ 106

Table 3. Scale factors

scale factor in x scale factor in y
ZL037 1 1
ZL052 0.5402 1.3424
ZL053 1.1481 0.7089
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Table 4. Variables

variable section first used meaning
j Perfect PCR PCR cycles
N0 Perfect PCR initial copy number
n(j) Perfect PCR number of molecules after j cycles
N0,x PCR bias initial copy number of sequence x
nx(j) PCR bias number of molecules with sequence x after j cycles
cx PCR bias PCR efficiency of sequence x
mx PCR bias estimated PCR efficiency of sequence x
Pamp Stochastic amplification probability of amplification per cycle
s0 Template switching per molecule probability of switching
sj Template switching probability of template switching on cycle j
Sj Template switching total number of template switched on cycle j
Qm Template switching total number of template switched molecules after m cycles
Nk Template switching total number of molecules after k cycles

Jk Template switching approximation of Qk

Nk
from the data

c Polymerase errors PCR efficiency
Rj Polymerase errors number of faithfully copied molecules after j cycles
e Polymerase errors probability of making one error per molecule per cycle
Zk Polymerase errors total number of molecules containing a single error after k cycles
Fk Polymerase errors fraction of all sequences containing errors
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