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Abstract

PCR allows the exponential and sequence specific amplification of DNA, even from minute starting
quantities. Today, PCR is at the core of the most successful DNA sequencing technologies and is a
fundamental step in preparing DNA samples for high throughput sequencing. Despite its importance,
we have little comprehensive understanding of the biases and errors that PCR introduces into pools of
DNA molecules. Understanding PCRs imperfections and their impact on the amplification of different
sequences in a complex mixture is particularly important for a proper understanding of high-throughput
sequencing data. We examined the effects of bias, stochasticity, template switches and polymerase errors
introduced during PCR on sequence representation in next-generation sequencing libraries. Using Illumina
sequencing results of a pool of diverse PCR, amplicons with a defined structure, we searched for signatures
of each process. We further developed quantitative models for each process and compared predictions
of these models to our experimental data. We find that PCR stochasticity is the major force skewing
sequence representation after amplification of a pool of unique DNA amplicons. PCR errors become very
common in later cycles of PCR but have little impact on the overall sequence distribution as they are
confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our
results will have particular relevance to single cell sequencing, in which sequences are represented by only
one or a few molecules.

Author summary

High throughput sequencing technologies are used both qualitatively to determine the genomic sequence
of an organism and quantitatively to measure the amount of specific DNA sequences present in complex
mixtures. To prepare a sample for high throughout sequencing, the input DNA needs to be amplified by
PCR. Amplification can introduce skews, biases and errors into the DNA pool leading to misrepresentation
of the amounts of sequences in the sequencing results. Here we investigated four potential sources of such
misrepresentation and find that, when molecule numbers are low early in PCR, the random amplification
of some sequences and not others has a large impact on sequencing results.

Introduction

DNA sequencing technologies have rapidly improved during the last two decades. Due to decreased cost
and increased speed, DNA sequencing is now a standard technique in molecular biology both for sequence
determination and quantification.

Before a DNA sample can be sequenced, a sequencing library must be prepared from the sample.
Although the steps in library preparation vary, the protocol invariably involves PCR amplification.
Understanding and accurately quantifying sequencing results thus depends critically on understanding the
effects of PCR.

Surprisingly, no study has comprehensively investigated sources of sequence misrepresentation in
sequencing datasets, nor has there been a coherent theoretical and experimental investigation of more than
one source of sequence misrepresentation after PCR. A recent paper experimentally investigates the effects
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of extreme base composition on Illumina sequencing and pinpoints PCR during library preparation as a
critical source of the observed sequence bias [1]. Similarly detailed studies of other unintended properties
of PCR are necessary.

Here, using pools of carefully designed amplicons and Illumina sequencing, we theoretically and
experimentally investigate several processes known to cause sequence misrepresentation after PCR
amplification. First, we studied the effects of PCR bias focussing on variable PCR, amplification efficiencies
as a function of the GC content of individual sequences. Second, we investigated stochasticity with
which each DNA molecule is amplified at each cycle of PCR. Third, we focussed on template switching
during PCR as a process producing novel sequences during amplification. Lastly, we studied PCR errors
and their impact on sequencing results. For each process, we formulated a mathematical framework,
looked for signatures of the process in sequencing data, and compared our theoretical predictions with the
experimental data.

We find that PCR stochasticity is the major force skewing sequence representation after amplification
of a pool of unique DNA amplicons. PCR errors become very common in later cycles of PCR but have
little impact on the overall distribution as they are confined to small copy numbers. Template switches
are rare.

Materials and Methods

DNA oligos and PCR. We ordered three ultramers from Integrated DNA Technologies: BC1-BC1,
BC2-BC2 and the adapter (Table|l). BC1-BC1 and BC2-BC2 contain the Illumina P5-SBS3T sequence
followed by a 20nt barcode, the AttL sequence and another 20nt barcode. The adapter is 5’ phosphorylated
and contains a 15nt barcode followed by the reverse complement of the Illumina P7-SBS8 sequence.
We pooled the two types of barcode pairs in equal proportions and ligated them to the 3’ adapter
using CircLigase ssDNA ligase (epicentre; previously sold as Thermophage ssDNA ligase) as previously
described [2]. The ligation reaction was cleaned up with Agencourt RNAClean XP beads (Beckman
Coulter) according to the manufacturers instructions. The ligated products were subjected to 25 cycles of
PCR using 47ul Accuprime Pfx SuperMix (Invitrogen), 1ul of 10uM forward and reverse primers each
(Table|l)) and 1ul input. Cycling was performed in a BioRad MyCycler Thermal Cycler using standard
Accuprime protocol with 58°C' annealing temperature and 30 seconds extension time. The PCR, product
was gel extracted and sequenced on a single lane of a HiSeq 2000 machine at PE101.

Data processing. Illumina sequencing resulted in 60 million reads passing filter. We merged the paired
end reads into their consensus sequence with the Pear tool [3] using standard settings and requiring a
consensus sequence of 101 nt. We trimmed and preprocessed the remaining 15 million consensus reads
using Matlab requiring a perfect match to the constant AttL region and detected 152798 unique sequences
(preprocessing.m). Code for the analysis of GC content, position of candidate biased sequences and
simulation of biased PCR can be found in bias.m.

Calculation of the PDF of copy numbers after PCR. It is computationally prohibitive to calculate
the exact PDF of copy numbers after 25 cycles of PCR. Instead we approximated the PDF by starting
with the exact PDF after 15 cycles. Let us use the vector S to denote the distribution of copies of a given
barcode-pair after j cycles. Each element S(7) of S is the probability of having ¢ — 1 copies. Thus, S(1) is
the probability of having 0 copies, S(2) of having 1 copy, etc. If eg S(3) = 1, it means the probability
distribution is a delta function at exactly two copies; if S(2) = 0.5 and S(3) = 0.5, it means there is a
50-50 chance of having two or three copies. (Note that the largest nonzero element of S must in general
be < 27, so the length of S must be < 27F1))

Our approach is to find an updating matrix M such that the distribution of copies S’ on the next
cycle is given by S’ = MS.
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This formulation exploits the Markovian nature of the process, namely it does not matter how we
ended up with k copies on a given cycle; all that matters is we have k copies. To determine the elements of
M, we first consider an easier problem. Suppose there are k copies on a given cycle; what is the expected
distribution of copies on the next cycle? The number of new copies is given by a binomial distribution
with parameters k and P; the distribution of total number of copies is k + the number of new copies.
Thus, for cases of the distribution S where S(i) is a delta function (S(i)=1), we have B(i, P) = MS(4)
where B(i,P) is a binomial shifted by i. This means that the i** column of M is B(i,P).

The calculation of the PDF after 15 cycles can be found in exactpdf.m.

To approximate the PDF after more than 15 cycles, we used the exact PDF after 15 cyles and applied
a Gaussian with a mean of n x 1.9 and a standard deviation of vn % 0.9 x 0.1 to every copy number value
n. We added the resulting Gaussians weighted by the probability of the copy number to which they were
applied for every cycle. Code for this approximate PDF can be found in approzpdf.m.

Position of template switched reads. We identified half of all template switched reads by comparing
dinucleotide anchor sequences between the two barcodes in each barcode pair. We only considered reads
where every dinucleotide anchor was either RR or Y'Y, and then checked for barcodes of type 1 joined to
barcodes of type 2 and vice versa. Code can be found in tempswitch.m.

Position of single nucleotide errors. We approximated the overall rate of single nucleotide errors
in two ways: (1) by determining the minimum hamming distance of each sequence in the shoulder and
tail to the plateau sequence and (2) by identifying single nucleotide errors in the dinucleotide anchor
sequences, where we quantified the occurrence of RY or YR anchors, that by definition are not part of the
input barcode pool. Code can be found in PCRerrors.m. Code for Supplemental figure 1 can be found in
mismatchvhamming.m.

Simulation of PCR stochasticity and errors. The simulation was performed as described in the
main text. Details and code can be found in G Wanderrors.m.

Results

Experimental system. To study the effects of PCR on sequence representation in Illumina libraries,
we designed an experiment in which we reduced sequencing library preparation to a single PCR on known,
but diverse input sequences. We synthesized DNA oligonucleotides containing two regions of random
sequence, i.e. two barcodes, joined by a constant region. These barcode pairs are flanked by two constant
sequences that are required for Illumina sequencing and also act as PCR primer binding sites during
library preparation (Fig[1] A).

We subjected about 3000 of these oligonucleotides to 25 cycles of PCR and sequenced the resulting
library. The combinatorial space of all possible barcode sequences is large enough (40 random barcode
nucleotides; 4%° ~ 10%* possible combinations) that we expect every input molecule to have a unique
sequence. This implies that every barcode pair is present at equal abundance in the input DNA pool and
should therefore be read out at approximately equal read counts in the sequencing results.

We plotted the experimental sequencing read counts for every barcode pair (Fig [1| B) sorted from the
most abundant to least abundant barcode, that is by sequence rank where rank 1 is the most abundant
sequence. The most abundant barcode pairs are present at similar read counts, forming a plateau in the
plot. This plateau is followed by a shoulder of barcode pairs with intermediate abundance and a long tail
of low abundance barcode pairs.

Given an equal abundance of all sequences before amplification, we would have naively expected a flat
sequence trace only. The presence of a shoulder and tail in the experimental data suggests that PCR
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amplification or Illumina sequencing has introduced sequence misrepresentation into the dataset. As
sequencing is essentially linear and thus less likely to introduce large shifts in the sequence distribution, we
suspected inaccurate PCR amplification was the source of the observed misrepresentation. Conceptually,
there are a variety of potential artifacts that can be introduced by PCR, each of which will have a different
impact on sequence representation after amplification (Fig . We will address each possibility in turn.

Perfect PCR. For comparison, we first considered the sequence distribution we should expect given
perfect PCR amplification. Perfect PCR faithfully amplifies every molecule in the input DNA pool, simply
doubling molecules at every cycle. Relative abundances of different sequences will thus be preserved
during amplification.

Mathematically, perfect PCR can be summarized as

n(j) = No2J (1)

where n(j) is the number of molecules of a particular amplicon after j cycles and Ny is the initial copy
number of this amplicon.

If every amplicon is unique before amplification, then Ny = 1 and every sequence will be present at
n(j) = 27 copies after j cycles of PCR. Plotting copies against sequence rank results in a plateau of height
27 reads. If sequencing is deep enough to overcome Poisson sampling effects, we expect a similar plateau
when plotting read counts against sequence rank for the Illumina sequencing results but with a plateau
height that reflects sampling during sequencing (Fig [2| C).

The experimental data deviate substantially from this expectation. A trivial explanation for this
disparity is that not all sequences were present at equal proportions in the input DNA pool. We
experimentally controlled for this possibility by ligating a large excess of a third barcode to the 3’ end
of the DNA oligonucleotides before amplification. Every individual oligonucleotide is therefore uniquely
labeled with a random sequence, making it possible to count how many copies of each sequence were
present before amplification [4]. We found that all sequences from the plateau were present at a single
copy before PCR (compare preprocessing.m). We therefore conclude that the naive model of perfect PCR
does not describe the experimentally observed data.

PCR bias. PCR amplification efficiencies are not identical for every sequence. Sequence composition
and secondary structure can introduce amplification biases. A high fraction of G or C can reduce
amplification efficiency |1}5}/6], causing uneven amplification of different sequences in PCR. PCR bias
could therefore give rise to underrepresented sequences after amplification. These would appear on a
sequence trace as a shoulder or tail (Fig[2| D).

Assuming different amplification efficiencies for different sequences, we can express the expected copy
number of sequence x after j cycles of PCR as

E(n.(4)) = Noxc; (2)

where ¢, = [1,2] is the PCR efficiency of sequence x. PCR bias, that is a PCR efficiency ¢, smaller than
the average efficiency of all sequences (c,.), has been reported in sequences with a GC content higher than
65 %, although this value depends on cycling conditions and the specific polymerase used [1].

For large n, we can approximate PCR as continuous in n, (7). Under this assumption, we can define

nz(]) = NO,ngc (3)

As GC bias causes uneven amplification efficiencies, we speculated that molecules that were underrepre-
sented after amplification (i.e. the sequences in the shoulder) would be rich in GC (Fig[3] A). If GC bias
were causing the observed differences in read counts, regions of high read counts should have lower GC
contents than regions of low read counts. However, the experimental distribution of GC contents is not
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significantly different from a simple binomial sampling model in both plateau (high read counts), shoulder
(intermediate read counts) and even tail sequences (low read counts) (Fig|3| B).

Sequences with a GC content as low as 65% may be subject to greatly reduced amplification efficiency [1].
A priori we expect about 2% of all input sequences to show such a high GC content. To investigate
whether GC bias is acting on these extreme sequences, we focus on the position of these sequences in
the experimental sequence trace. Assuming the worst case scenario, in which sequences with GC content
less than 65% are all perfectly amplified and all sequences with a GC content greater than 65% are all
equally poorly amplified, we would expect to find all poorly amplified sequences in the shoulder and tail.
However, we find that the location of sequences with a GC content greater than 65% in the 10000 most
abundant barcode pairs is not different to a random shuffling of these positions in the experimental data
(Fig|3| C). This is in stark contrast to a simulation of the described worst case scenario, where all GC
biased sequences are found in the tail region (Fig[3]C and D).

In conclusion, we find no indication of GC bias in our experimental results. This shows that GC bias is
not an important force in skewing sequence representation, although we note that in our experiments we
implicitly minimized the contribution of GC bias by designing barcodes with an equiprobable distribution
of bases. The observed shoulder and tail are therefore unlikely to be formed by GC bias.

Stochastic amplification of low copy number amplicons. A second source of uneven amplification
in PCR is stochasticity. If PCR were perfect, every single molecule would be replicated every cycle.
However, PCR is imperfect, so each molecule undergoes replication with a probability of less than 1. For
example, if Pyypiification = 0.9, per cycle then out of every ten molecules amplified, PCR fails to replicate
one. This is not particularly concerning when PCR is used on DNA mixtures where every sequence is
present in high copy numbers. In this case, the expected 1 +0.9%1+0.1%0 = 1.9 fold increase of molecule
number of per cycle is sufficient to describe the behaviour of PCR.

However, when sequences are present at very low copy numbers, stochastic amplification may have a
significant impact on sequence representation. Consider an example. First, consider a lucky amplicon
that undergoes replication on the first cycle, so that on cycle 2 there are 2 copies. Further suppose
that both copies are lucky and again undergo replication, so on cycle 3 there are 4 copies. Compare
this to an unlucky amplicon, which fails to get copied both cycles (for Pymplification = 0.9, this happens
(1—p)? =0.12 = 0.01 or 1% of the time). If their luck evens out and both amplicons get amplified equally
during subsequent cycles, the lucky barcode will appear at a copy number of about 4 times more than
the unlucky one. This suggests that the distribution of copy numbers for Py, piification = 0.9 will range
over more than a factor of 4. Stochasticity in PCR could therefore explain the shoulder observed in the
sequencing trace (Fig 4| A).

We can express this consequence of PCR stochasticity using the recursive expression

n(] + 1) = n(]) + B(n(])7 Pamplification) (4)

where B(n(j), Pampli fication) i @ binomially distributed random variable with n(j) trials and Pympii fication
is the probability of success |7]. This expression is equivalent to modeling PCR as a Galton-Watson
process, a stochastic branching process. In this formulation, every node represents one copy of a certain
sequence and can give rise to one or two new branches, where each branch corresponds to success or
failure of amplification on a given cycle.

Assuming this branching model and a realistic Py piification = 0.9, we generated the exact probability
distribution function (PDF) of the copy number n of a single sequence, starting with a single molecule at
cycle 0. After 15 cycles of PCR, the PDF has a clear global maximum (Fig[4| B): As we would expect,
most molecules are amplified most of the time. Interestingly, two further local maxima are discernible at
copy numbers of 0.5 and 0.25 of the global maximum, corresponding to sequences that missed out on
amplification during either one or two of the first two cycles of PCR.
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During the first few cycles of PCR molecule numbers are low and stochasticity has a large effect. We
therefore expected to find the origin of the observed local maxima in the early cycles of PCR. After one
cycle of PCR, the PDF is trivial. After two cycles, the PDF still shows only one maximum corresponding
to molecules amplified in both cycles. After three cycles, the PDF shows two peaks at n =4 and n = 8
(Fig C). To reach copy number 8, the molecules have successfully been amplified at every cycle as 2% = 8.
To reach n = 4, molecules must have failed to replicate during one cycle. The biggest contribution to the
probability of n = 4 comes from paths where molecules missed out on the first amplification cycle. This
fact is immediately obvious when one considers all of the trees giving rise to four branches after three
cycles and keeping in mind that a failure to amplify is less likely than success (Fig D). After 4 cycles,
the same structure as observed after 15 cycles becomes apparent (Fig[4 E). The PDF shows a global
maximum at copy number 16 and two local maxima at 0.5 (copy number 8) and 0.25 (copy number 4) of
that copy number. When we explicitly calculated the probabilities for these copy numbers, the dominating
terms are sequences that failed to amplify on either the first or first two cycles of PCR. A third local
maximum is apparent at n = 12, which is smoothed out in later cycles. This reasoning confirms that the
local maxima in the PDF after 15 cycles correspond primarily to molecules that did not amplify during
the first or first two cycles of the PCR reaction.

To test the hypothesis that stochasticity early in the PCR reaction generates the observed shoulder in
the sequence trace, we approximated the PDF of copy numbers after 25 cycles of PCR with a constant
PCR efficiency of Pympiification = 0.9. We sampled from this PDF to create a profile of read counts vs
sequence rank. With a simulated PCR input of 2900 different sequences, we were able to reproduce a
shoulder very similar to the one previously observed in experimental data (average correlation coefficient
of R? = 0.9689; Fig 4| C). However, the smooth transition of shoulder to tail present in experimental data
is missing.

In conclusion, PCR stochasticity has a large impact on sequence representation after PCR amplification
and could give rise to most of the experimentally observed shoulder but not the tail.

Template switching. We next investigated processes producing new sequences during library prepara-
tion. If a new species is generated during PCR amplification, it will often be amplified in subsequent PCR,
cycles like one of the original input sequences. It will, however, lag behind these original sequences by at
least one cycle and will thus be observed less frequently after amplification than most input sequences.
Generation of new sequences during PCR could therefore account for the shoulder and tail of the sequence
trace.

PCR template switching produces hybrid sequences of two already present sequences. DNA polymerase
can jump from one template to another in a region of complementarity without aborting the nascent
DNA strand during PCR [8]. This nascent strand therefore has a new hybrid sequence, where one piece is
complementary to the old template and the other piece is complementary to the new template (Fig[5[A).

To gain a quantitative understanding of template switching, we set up a mathematical model of the
process with the background of otherwise perfect PCR. We assume a bimolecular reaction. At any given
time, every molecule is amplified by a polymerase. When two molecules collide, template switching occurs
with probability sop. When sy < N%’ where N; = Ny 27 is the number of template molecules at cycle j,
the per molecule probability of template switching on cycle j is

Sj = Sp * Nj (5)
From this the total number of template switches in cycle j is
Sj=sj*Nj=s0%N; (6)

As template switched molecules get amplified in every cycle after their generation, the total number of
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template switched molecules after m cycles is

m m
Qm:ZSjQ’”_j:sO*Ng*Qm*Z?%so*Ng*QQmH (7)
j=1 Jj=1

The model predicts that the number of template switches per cycle grows with the square of the total
number of molecules in solution IN;. As N; increases exponentially with j, the probability of template
switching increases exponentially with 2 * j. We therefore expect template switches to become increasingly
common in late cycles of PCR. As such, they will not accumulate to levels comparable to the original
input sequences and should be detectable mostly in the tail of the sequence distribution.

To test this prediction experimentally, we searched for signatures of template switching in the sequencing
results. We designed two different classes of barcodes (Fig|5| B). Barcodes of type 1 (BC1) are different
from barcodes of type 2 (BC2) at six positions where the sequence is restrained to either a purine (R=A,G)
or a pyrimidine (Y=C,T) base. Based on these anchors, BC1 and BC2 can be faithfully distinguished
from each other. We started the PCR reaction with a pool of barcode pairs that were either BC1-BC1
pairs or BC2-BC2 pairs. In the absence of template switching, we would expect to observe only the initial
barcode pair types in the sequencing dataset. However, when we detect a BC1-BC2 or BC2-BC1 pair,
this barcode pair must have arisen from a template switch across the constant region between the two
barcodes.

We find that template switched reads are present only at low read counts in the tail of the experimental
sequence distribution (Fig[5| C). This is in agreement with the our prediction that template switched
sequences are created late in PCR.

As essentially all observed template switches occur at read counts less than 3, we were unable to
estimate sg from the data. However, our data suggest it is small. We estimate that each sequence must be
present at least 1000 times to be detected by sequencing and thus must arise at cycle 15 or earlier (plateau
is about 10* reads high, 25 cycles of PCR, so every unique input sequence is present about 107 times). For
j =15 and Ny = 3000 equation |§| reads S; = s * 9.7 x 10%°, suggesting that sg is on the order of 107! so
that we will detect some template switches at one or two copies. Assuming sy = 10715, a simulation of
perfect PCR with template switching cannot account for the experimentally observed shoulder (Fig[5/D).

These results indicate that PCR template switching is a rare event in dilute solutions, and only becomes
common late in PCR. By then, the newly generated sequences have lost out on many amplification cycles
and are present at much lower copy numbers than original sequences. They are therefore detected at low
copy numbers in sequencing. Template switched reads do not account for the observed shoulder, and only
a small fraction of the sequences in the tail.

PCR errors. A second source of new sequences during PCR are amplification errors. During synthesis of
a new DNA strand DNA polymerase makes errors including single nucleotide substitutions and, at a lower
rate, small insertions or deletions [9]. Polymerase error rates strongly depend on experimental conditions,
and estimates of error rates vary with the method used to determine polymerase errors. Wild type Taq
polymerase is the best studied polymerase used in PCR and is generally used as a relative standard for
polymerase fidelity. Estimates of Taq fidelity vary, but are on the order P(Error per nucleotide) = 10~
[10,[11). AccuPrime Pfx polymerase [12], as used in our experiments, is estimated by the manufacturer to
have a fidelity 26x higher than Taq polymerase. We therefore expect AccuPrime Pfx to introduce PCR
errors at a probability of roughly

P(Error per nucleotide) = 4 * 107° (8)
The probability of one or more errors in the 2x20 barcode nucleotides is therefore

P(At least one error per barcode pair) =1 — (1 — 4% 10_6)40 ~1.6%1074 (9)
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Every roughly 6250 molecules, a new molecule with at least one error will be produced. These new
sequences are subsequently amplified during the remaining cycles of PCR just like any other DNA molecule.
However, as they, by definition, lag by at least one cycle of PCR, they are less abundant than original
sequences. Moreover, the probability of producing new sequences due to PCR errors is linearly dependent
on the number of amplified molecules and thus increases exponentially during PCR. Taken together, these
considerations suggest that PCR errors are responsible for part of the shoulder but get increasingly more
abundant with low copy number. We therefore predict that the lower part of the shoulder and parts of
the tail are formed by PCR errors (Fig[6] A).

To test this prediction experimentally we used a Hamming distance metric to quantify sequences
that arose from PCR errors. The Hamming distance between two sequences is defined as the number
of substitutions necessary to go from one to the other. For example, a sequence with a single PCR
error will have a Hamming distance of one to its original parent sequence. Using this metric, we cannot
directly differentiate between PCR errors and Illumina sequencing errors. However, if a sequence appears
more than three times in our dataset, it is unlikely that it arose due to an Illumina sequencing error
and therefore is either real or result of a template switch or a polymerase error: At a lower bound
quality score of Qpnrea = 30, that is a base calling error rate of 1073 per nucleotide, the probability of
introducing the same sequencing error three times into different copies of the same 40nt barcode pair is
40 % 0.001% = 4+ 1078, At a coverage on the order of 10* for real sequences — that is, reads from the
plateau of the sequence trace — this implies that the probability of introducing the same sequencing error
three times into a real barcode pair is 4 * 1078 x* 10* = 4% 10~*. With only roughly 3000 real barcode pairs,
sequencing errors in sequences present three or more times are negligible. At fewer than three counts per
sequence, we cannot exclude the possibility that some of the observed mismatches arise from sequencing
errors, especially in the singlet region.

To further reduce the contribution of sequencing errors to our dataset, we sequenced using paired
end reads that each span the entire length of the barcode pair, so that every base was sequenced twice.
We then determined the consensus sequence of paired end reads using the PEAR tool [3], analysing only
those reads for which a consensus over the whole molecule could be found. Assuming independence of
paired end reads, this procedure eliminates the majority of sequencing errors. Taking both read quality
and paired end matching arguments into consideration, we consider the Hamming distance metric to be a
good proxy for PCR errors.

We defined the plateau sequences from rank 1 to 2900 as original parent sequences, and find that
we can account for about two thirds of all other sequences by a single nucleotide substitution in these
original sequences. In contrast, the minimum Hamming distances between all the parent sequences are
significantly different from each other, such that they could not be related to each other by PCR errors
(Fig[6] B).

To quantify PCR errors in a more unbiased fashion without defining a set of parent sequences, we
quantified PCR errors by scoring deviations from the expected sequence features of BC1 and BC2 sequences.
Each of the defined anchors in BC1 or BC2 is a pair of two purines or two pyrimidines. Any mixed
anchor sequence, e.g. AT or CG, therefore must be the result of a substitution. Using these mismatches
as measure of PCR errors, we find that PCR errors are depleted in the plateau region of the experimental
sequence trace, relative to randomly shuffled control positions. Outside the plateau region, the PCR
error rate varies but is close to or higher than the randomly shuffled control (Fig |§| C). Interestingly, we
found that the frequency of PCR errors as calculated from these mismatches is lower than expected from
the Hamming distance metric even after correction for errors to which the mismatch metric is blind (e.g.
purine to purine or pyrimidine to pyrimidine switches; Supplementary Fig 1 A). We found that error
frequency is not uniform across all barcode positions as judged using the Hamming distance metric. This
explains why we underestimated overall PCR error rate using the mismatches (Supplementary Fig 1 B).

Based on the relatively steady rate of PCR errors outside the plateau, we hypothesized that most
sequences found at the bottom of the plateau and in the tail of the sequence trace arose from PCR
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errors. To test this hypothesis, we simulated erroneous PCR with an overall amplification efficiency of
Pomplification = 0.9 in a deterministic model. Assuming that every individual error is rare, we simulated
25 cycles of PCR on an input of 2900 sequences using an estimated error rate of P(Error per nucleotide) =
1.5 % 107°. The resulting sequence rank plot shows a plateau followed by a steep drop off which then
softens into a long tail (Fig |§| D). This simulation does not account for the experimentally observed smooth
top of the shoulder, but does agree closely with the experimentally observed trace at the bottom of the
shoulder.

Taken together these data confirm our theoretical predictions. PCR, errors are relatively common
but in absolute numbers happen predominantly late in PCR. They are thus confined to the tail of the
sequence distribution where they make up a large fraction of sequences.

Stochasticity and PCR errors explain much of the observed dataset. From the above analysis,
we expected stochasticity of amplification and PCR, errors to explain most of the observed sequence
distribution. To test this hypothesis we simulated PCR by a Galton Watson process, and added PCR
errors at a rate of P(Error per nucleotide) = 1.5 x 107° (Fig . Again we assumed that each individual
error is rare. Simulation and experimental data show a very good fit, confirming that the observed
distribution can be explained by PCR stochasticity and PCR errors alone.

Discussion

We have systematically investigated potential sources of sequence misrepresentation in next-generation
sequencing libraries, focussing on bias, stochasticity, template switching and errors introduced by PCR. We
find that PCR stochasticity in the first two or three cycles of PCR greatly affects sequence representation
of low copy number sequences after amplification. Polymerase errors and to a lesser extent template
switches generate new sequences which occur predominantly at low read counts, producing the observed
tail in the read distribution.

Each of the processes examined here has been previously described. GC bias [1}[6l[13] and polymerase
errors are often voiced as a concern about PCR. PCR stochasticity has been noted in theoretical models
of PCR [7,[{1415], as well as in practical applications of PCR in forensics [16[17]. Template switches in
PCR reactions have been studied experimentally [8].

Sequence misrepresentation and biases are also commonly observed in PCR amplified sequencing
samples. However, it is largely unclear what effect each of the known PCR imperfections has on sequence
misrepresentation. In the absence of such knowledge, a number of strategies have been developed to
improve on the skew in sequence representation in sequencing data. Techniques like multiple displacement
amplification [18|, antisense RNA amplification [19] or multiple annealing and looping-based amplification
cycles [20] aim to minimize the use of PCR. With these approaches, amplification is linear or quasilinear
which means that errors, biases and failures to amplify accumulate less rapidly than in exponential PCR
amplification. In contrast, single molecule barcoding techniques [4] still rely on PCR, but compensate for
misrepresentations post hoc. Individual molecules are uniquely labeled before amplification, so that the
number of input molecules can be precisely quantified after sequencing. These approaches are doubtlessly
effective at reducing sequence misrepresentation, but do not provide insights into what processes exactly
they are avoiding or compensating for.

Our findings provide a comprehensive background in which to understand PCR induced misrepresen-
tations in sequencing data. Studying four processes in the same system allowed us to assess their relative
importance and revealed that stochasticity and polymerase errors were the dominating effects at high
and low read counts, respectively. GC bias is well known to introduce misrepresentations into sequencing
data |1], but its effects are minimized in our experimental system by the randomness of barcode design.
Additionally, we expect that the use of Accuprime polymerase and of a thermocycler with relatively slow
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ramp rates (2.5 deg/sec) further diminished the detrimental effects of GC bias. Template switches occur
at low read counts only.

We designed the experimental system used in this study to disentangle different sources of PCR induced
misrepresentation in sequencing datasets. Our results are especially relevant to the single cell sequencing
community. Single cell sequencing approaches operate in low copy number regimes. Stochasticity in PCR
amplification might therefore explain some of the uneven coverage observed in copy number analyses
of single cells [21] or variation of transcript abundance in single cell RNAseq [22,23]. Indeed, variation
of transcript abundance has been observed to increase with decreasing copy number |22]. However, our
system differs from many real world applications of high throughput sequencing, so further work will be
needed to assess how our findings generalize.
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Figure 1. PCR can grossly affect sequence representation in Illumina library generation. (A) Structure
of the amplicons used in this study. Each barcode is 20 random basepairs long. Sol I and Sol IT are
Ilumina primer binding sites. (B) Result of oligo sequencing experiment, where sequences sorted by their
abundance are plotted against their read counts. A wide shoulder is apparent.
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Figure 2. Errors and biases in PCR and their theoretical impact on sequence representation. (A)
Structure of the amplicons used in this study and a schematic of the experimental results. (C-F)
Schematic representation of perfect and different modes of skewed forms of PCR as well as their expected
impact on sequencing data.
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Figure 3. GC Bias. (A) Schematic of two cycles of GC biased PCR. (B) GC content distribution for
1500 sequences in plateau, shoulder and tail of the sequence trace. Compared to 100 simulations of a
binomial sampling model with P(GC') = 0.45 (light grey) and the average (dark grey). (C) Position of
sequences with a GC content > 65% in sequence rank space (blue) compared to a randomly shuffled
control (100 individual iterations grey, average dark grey). The expected distribution of sequences with
GC content > 65% based on a worst case simulation of perfect PCR with GC bias as reported in [1] that
was applied to 2900 input sequences is plotted in red. All values are given in 200 sequence wide bins. (D)
The same simulation (red) is plotted with the observed sequence profile (blue) and differs substantially.
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Figure 4. PCR stochasticity. (A) Schematic of two cycles of stochastic PCR amplification. (B) The
exact probability distribution of sequence copy number after 15 cycles of PCR with

P(amplification) = 0.9. Arrows indicate local maxima mentioned in text. (C) Probability distribution of
sequence copy number after 3 cycles. (D) Schematic of how to obtain a copy number of 4 in three cycles
of PCR. (E) Probability distribution of sequence copy number after 4 cycles. (F) A sample of 2900
sequences of the approximate probability distribution after 25 cycles of PCR (blue) correlates closely with
the 2900 most abundant sequence reads of the experimental data (red)
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Figure 5. Template switching. (A) Schematic of one cycle of PCR with template switching. (B) Purine
and Pyrimidine anchors used to detect template switches between BC1-BC1 and BC2-BC2 barcodes. (C)
Position of detected template switched sequences (blue) in sequence rank space compared to randomly
shuffled positions (100 individual iterations grey, average dark grey). All values are given in 200 sequence
wide bins. (D) Observed sequence profile and simulated sequence profile for perfect PCR with template
switches.
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Figure 6. PCR errors. (A) Schematic of two cycles of PCR with polymerase errors. (B) Histogram of
the minimum Hamming distance from sequences in the plateau to other plateau sequences (dark green)
and sequences from shoulder and tail (rank 2900 to 10000) to plateau sequences (light green). (C)
Position of errors detected using mismatches to anchor sequences in the barcodes (blue). These are

compared to randomly shuffled positions (individual iterations
given in 200 sequence wide bins. (D) Observed sequence profile
PCR with polymerase errors.
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Figure 7. PCR errors and stochasticity appear to explain a large fraction of observed data. (A) PCR is
simulated as a Galton Watson process with polymerase errors added on at 1.5 % 10~° substitutions per
nucleotide. Simulated and observed sequence profile match closely.

Tables
Table 1. DNA oligonucleotides used

Name Sequence

BC1-BC1 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT
CCG ATC TNR NNN NNY YNN NNR RNN NYY ACG CCC CCA ACT GAG AGA ACT CAA
GGG CAC GCC CTG GCA CCC GCA CRR NNN YYN NNN RRN NNN NYN

BC2-BC2 AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT
CTT CCG ATC TNY NNN NNR RNN NNY YNN NRR ACG CCC CCA ACT GAG
AGA ACT CAA GGG CAC GCC CTG GCA CCC GCA CYY NNN RRN NNN YYN
NNN NRN

adapter NNN NNN NNN NNN NNN AGA TCG GAA GAG CGG TTC AGC AGG AAT GCC
GAG ACC GAT CTC GTA TGC CGT CTT CTG CTT G

F primer AAT GAT ACG GCG ACC ACC GAG ATC T

R primer

CAA GCA GAA GAC GGC ATA CGA GAT C
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Figure S1. PCR errors are unevenly distributed in the barcodes. (A) Detection of PCR errors by using
mismatches to the anchor sequences as a proxy (blue) underestimates the rate of errors as measured by
Hamming distance of 1. If both Hamming distance and mismatches were preforming equally well, we
would expect to detect about 40 errors per 200 sequences using the mismatch metric (red). Instead we
detect about 20 (blue). (B) The position of PCR errors as detected by Hamming distance is non uniform
across the barcodes and across windows in the sequence profile, explaining the mismatch observed in (A).


https://doi.org/10.1101/008375
http://creativecommons.org/licenses/by-nc/4.0/

