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Abstract4

The Dobzhansky–Muller model posits that incompatibilities between alleles at different loci5

cause speciation. However, it is known that if the alleles involved in a Dobzhansky–Muller6

incompatibility (DMI) between two loci are neutral, the resulting reproductive isolation cannot7

be maintained in the presence of either mutation or gene flow. Here we propose that speciation8

can emerge through the collective effects of multiple neutral DMIs that cannot, individually,9

cause speciation—a mechanism we call emergent speciation. We investigate emergent speciation10

using a haploid neutral network model with recombination. We find that certain combinations11

of multiple neutral DMIs can lead to speciation. Complex DMIs and high recombination rate12

between the DMI loci facilitate emergent speciation. These conditions are likely to occur in13

nature. We conclude that the interaction between DMIs may be a root cause of the origin of14

species.15

Introduction16

Unravelling the ways in which reproductive barriers between populations arise and are maintained17

remains a central challenge of evolutionary biology. The Dobzhansky–Muller model posits that spe-18

ciation is driven by intrinsic postzygotic reproductive isolation caused by incompatibilities between19

alleles at different loci (Dobzhansky, 1937; Muller, 1942; Orr, 1995). The kinds of strong negative20

epistatic interactions envisioned by this model are common between amino acid substitutions within21

proteins (Kondrashov et al., 2002; Kulathinal et al., 2004). Furthermore, Dobzhansky–Muller in-22

compatibilities (hereafter DMIs) have been shown to cause inviability or sterility in hybrids between23

closely related species, although the extent to which any particular DMI has actually contributed24

to speciation remains an open question (Presgraves, 2010a,b; Maheshwari and Barbash, 2011; See-25

hausen et al., 2014).26

In Figure 1A, we illustrate a simple version of the evolutionary scenario originally proposed27

by Dobzhansky (1937) with an incompatibility between neutral alleles at two loci (A and B) in a28
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haploid. We refer to this interaction as a neutral DMI. An ancestral population is fixed for the29

ab genotype. This population splits into two geographically isolated (allopatric) populations. One30

population fixes the neutral allele A at the A locus, whereas the other fixes the neutral allele B at31

the B locus. The derived alleles are incompatible: individuals carrying one of the derived alleles are32

fit but individuals carrying both of them are not. Upon secondary contact between the populations,33

this neutral DMI creates postzygotic isolation between the two populations: if r is the recombination34

rate between the loci, then r/2 of haploid F1 hybrids between individuals from the two populations35

are unfit (inviable or sterile).36

The neutral DMI described in the previous paragraph is unlikely to be an effective mechanism of37

speciation because it assumes that the populations diverge in perfect allopatry, and that the derived38

alleles go to fixation before secondary contact takes place. However, either mutation or gene flow39

can disrupt this process (Barton and Bengtsson, 1986; Bank et al., 2012) (Figures 1B and 1C): they40

lead to the production of individuals with the ancestral genotype (ab) and these individuals have41

an advantage because they are completely compatible with individuals carrying derived alleles (Ab42

and aB).43

It is known that the reproductive barriers created by neutral DMIs can be strengthened in at least44

two ways. First, if selection favors the derived alleles—that is, if the DMI is not neutral (Gavrilets,45

1997; Agrawal et al., 2011; Bank et al., 2012). This could happen if the derived alleles are involved46

in adaptation to different environments, a scenario known as ecological speciation (Schluter, 2009;47

Agrawal et al., 2011). Second, if the two populations are prezygotically isolated. For example,48

the low fitness of hybrids can select against hybridization and cause the evolution of assortative49

mating between individuals carrying the same derived allele—a mechanism known as reinforcement50

(Dobzhansky, 1937; Felsenstein, 1981; Liou and Price, 1994; Servedio and Kirkpatrick, 1997).51

Here we consider a new mechanism we call emergent speciation—that speciation emerges through52

the collective effects of multiple neutral DMIs that cannot, individually, cause speciation. Low53

fitness in hybrids between closely related species is often caused by multiple DMIs (Presgraves,54

2003; Payseur and Hoekstra, 2005; Masly and Presgraves, 2007; Matute et al., 2010; Moyle and55

Nakazato, 2010; Schumer et al., 2014). However, it does not follow that any of these DMIs actually56

caused speciation: most of the DMIs may have accumulated after speciation had occurred by other57

means.58

The majority of theoretical work on DMIs has relied on either population genetic models59

(Nei, 1976; Bengtsson and Christiansen, 1983; Wagner et al., 1994; Gavrilets and Hastings, 1996;60

Gavrilets, 1997; Agrawal et al., 2011; Bank et al., 2012), or models of divergence between popula-61

tions (Werth and Windham, 1991; Orr, 1995; Lynch and Force, 2000b; Orr and Turelli, 2001; Welch,62

2004; Fräısse et al., 2014). Both classes of models include simplifying assumptions: the former con-63

sider only DMIs involving 2–3 loci, whereas the latter ignore polymorphism at the DMI loci. Both64

simplifications are problematic: reproductive isolation is often caused by multiple DMIs involving65

multiple loci (Presgraves, 2003; Payseur and Hoekstra, 2005; Masly and Presgraves, 2007; Matute66

et al., 2010; Moyle and Nakazato, 2010; Schumer et al., 2014), and many populations contain alleles67
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involved in DMIs segregating within them (Cutter, 2012; Corbett-Detig et al., 2013). The few studies68

that have attempted to overcome these simplifications have either excluded DMIs (Flaxman et al.,69

2014) or have not represented DMIs explicitly (Barton and Bengtsson, 1986; Gavrilets et al., 1998;70

Gavrilets, 1999; Barton and de Cara, 2009) and, therefore, could not capture emergent speciation.71

We investigate emergent speciation using a haploid neutral network model (Schuster et al., 1994;72

van Nimwegen et al., 1999) with recombination (Xia and Levitt, 2002; Szöllősi and Derényi, 2008),73

which allows us to represent DMIs involving multiple loci (Gavrilets and Gravner, 1997; Gavrilets,74

2004), and to take into account genetic variation at those loci (Cutter, 2012; Corbett-Detig et al.,75

2013).76

A neutral network (Schuster et al., 1994; van Nimwegen et al., 1999) is a network of fit genotypes77

connected by mutational accessibility. Two genotypes are mutationally accessible if one genotype78

can be obtained from the other through a single mutation. For example, Figure 1A shows a neutral79

network where aB is connected to ab but not to Ab. All genotypes in the network are fit and have80

equal fitness. All genotypes outside the network are unfit but some may be mutationally accessible81

from genotypes in the network. For example, in the neutral network shown in Figure 1A, AB is82

unfit, and it is accessible from both aB and Ab, but not ab.83

Neutral networks define “holey” adaptive landscapes with “ridges” of fit genotypes connecting84

distant genotypes (Gavrilets and Gravner, 1997; Gavrilets, 2004). They extend the neutral DMI85

model to multiple loci (Gavrilets and Gravner, 1997; Gavrilets, 2004); a neutral network of K86

genotypes with L loci, each with α alleles can be constructed by taking the entire space of αL87

genotypes and “removing” the αL −K genotypes that carry incompatible combinations of alleles88

(e.g., the A and B alleles in the neutral network in Figure 1A). A single DMI of order ω (i.e.,89

one involving alleles at ω loci) implies the removal of αL−ω genotypes (2 ≤ ω ≤ L). Additional90

DMIs imply the removal of other genotypes, although the corresponding sets of genotypes to remove91

may overlap with each other. DMIs of order ω = 2 are designated simple, whereas those of order92

ω > 2 are designated complex (Cabot et al., 1994; Orr, 1995; Fräısse et al., 2014). DMIs of93

order up to ω = 5 have been discovered in introgression studies (Fräısse et al., 2014). The alleles of94

genotypes in the neutral network can be, for example, nucleotides, amino acids, insertions/deletions,95

or presence/absence of functional genes. Therefore, a neutral network can also be used to represent96

DMI-like scenarios such as the degeneration of duplicate genes (Werth and Windham, 1991; Lynch97

and Force, 2000b; Nei and Nozawa, 2011).98

We show that neutral networks defined by multiple simple and/or complex neutral DMIs can99

lead to the establishment of stable reproductive barriers between populations. Although the neutral100

network model includes its own simplifying assumptions, it captures the essence of the phenomenon101

of emergent speciation in the absence of other possible mechanisms of speciation. Thus, it allows102

us to identify and characterize some of the causes of emergent speciation, including the pattern of103

interactions between DMI loci and recombination. Furthermore, emergent speciation is a robust104

mechanism that we argue should operate under a broad range of conditions.105
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Results106

A neutral DMI between two loci is not sufficient to cause speciation107

Consider the neutral DMI illustrated in Figure 1A. Initially, two allopatric populations are fixed for108

the aB and Ab genotypes, respectively. The populations are maximally genetically differentiated109

at the two loci (GST = 1). The degree of reproductive isolation between the two populations is110

I = r/2, the mean fitness of haploid F1 hybrids between individuals from the two populations (see111

Materials and methods for definitions of both GST and I).112

How stable is the reproductive barrier between the two populations? To address this question113

we begin by investigating the effect of mutation within populations. If the alleles at each locus114

can mutate into each other (A↔a and B↔b) at a rate u per locus per generation, then the degree115

of reproductive isolation will decline exponentially according to the expression: It ≈ I0 · e−2ut,116

where t is time in generations, and I0 = r/2 is the initial reproductive isolation. For example, if117

u = 10−3 and r = 0.2, then genetic differentiation and reproductive isolation will be eliminated118

within ∼4,000 generations (Figures 1B and 1C, m = 0). Any amount of gene flow between the119

two populations will further accelerate the erosion of the reproductive barrier (Figures 1B and 1C,120

m > 0). For example, if just 1 individual in 2,000 migrates from one population to the other every121

generation (m = 0.0005) then genetic differentiation and reproductive isolation will be eliminated122

within ∼2,000 generations.123

The evolution of a stable reproductive barrier between two populations—that is, speciation—124

requires the existence of more than one stable equilibrium (Barton, 1996; Gavrilets and Hastings,125

1996). A single neutral DMI between two diallelic loci is not sufficient to cause speciation because,126

in the presence of mutation (0 < u < 0.5), it only contains one stable equilibrium for any level127

of recombination (Gavrilets, 2004), and populations will gradually evolve toward this equilibrium128

(Figure 1—figure supplement 1). Changes to the adaptive landscape can cause the appearance of129

two stable equilibria (Bank et al., 2012). For example, if the derived alleles confer an advantage130

(fitness: waB = wAb = 1 and wab = 1 − s), and if both r and s � u, the genotype network will131

have two stable equilibria, with p̂Ab ≈ 1 and p̂aB ≈ 1, respectively (Figure 2). Two populations in132

different equilibria will show a degree of reproductive isolation of: I ≈ r(1 + s)/2 (Figure 2E).133

Neutral networks based on multiple DMIs can show multiple stable equilibria134

We began by investigating whether neutral networks contain multiple stable equilibria. To do this135

we generated ensembles of 500 random neutral networks of K genotypes with L loci and α alleles136

per locus for a range of values of K, L and α. None of the neutral networks considered could137

have been specified by a single DMI of any order (2 ≤ ω ≤ L). To construct a random neutral138

network, we generated K random genotypes with L loci and one of α alleles per locus, and kept the139

resulting network if it was connected. We ignored disconnected networks because, although they140

often contain multiple stable equilibria, a population is unlikely to shift from one equilibrium to141

another because it requires rare multiple mutations (Gavrilets, 2004).142
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For each neutral network, we constructed populations with different initial genotype frequencies143

and allowed each population to evolve independently until it reached equilibrium. We then evaluated144

the stability of the resulting equilibria (see Materials and methods). No neutral networks defined145

on L = 3 loci with α = 2 alleles per locus contain multiple stable equilibria. However, some146

neutral networks with L = 4 and α = 2, and with L = 3 and α = 3 contain multiple stable147

equilibria (Figure 3A; Figure 3—figure supplement 1A). Populations evolving independently to148

different stable equilibria become genetically differentiated and partially reproductively isolated149

from each other (Figure 3B–C; Figure 3—figure supplement 1B–C). Thus, speciation can emerge150

through the collective effects of multiple neutral DMIs that cannot, individually, cause speciation.151

Larger, sparser neutral networks are more likely to contain multiple stable equi-152

libria153

The probability, PM , that a random neutral network from an ensemble shows multiple stable equi-154

libria is correlated with properties of the network. PM increases with the size of the network, K155

(Figure 3A; Figure 3—figure supplement 1A). We have never found any random connected neutral156

network with K = 5 genotypes with multiple equilibria (PM ≈ 0), regardless of the values of L and157

α. In contrast, networks with K = 9 genotypes defined by L = 6 diallelic loci, show PM ≈ 50%.158

For random neutral networks of a given size, the topology of the network also influences PM .159

This is the reason why the relationship between PM and K is non-monotonic for L = 4 diallelic loci160

(Figure 3A): the genotype space consists of only 24 = 16 genotypes, which constrains the range of161

topologies that a random neutral network can take. Increasing either L or α increases the size of the162

genotype space and, therefore, alleviates the constraint (Figure 3A; Figure 3—figure supplement163

1A).164

Table 1 shows that PM is correlated with multiple network properties, including the average165

degree of a genotype, that is, the mean number of mutational neighbors it has in the neutral166

network. One complication is that different properties of neutral networks are not independent167

of each other (Table 1; Figure 3—figure supplement 3). Figure 3—figure supplement 2 shows168

two network correlates of PM that are, in turn, uncorrelated with each other (Figure 3—figure169

supplement 3; Table 1): the spectral radius and the degree assortativity. The spectral radius is170

the leading eigenvalue of the adjacency matrix and measures the mean degree of a population at171

equilibrium when r = 0 (van Nimwegen et al., 1999). The degree assortativity measures the extent172

to which nodes with a certain degree are connected with nodes with similar degree. Neutral networks173

with low spectral radius and negative degree assortativity—and more sparsely connected, spread174

out, modular networks—are more likely to show multiple stable equilibria (Table 1). However, the175

topology of a network is not sufficient to determine PM : the precise pattern of linkage between176

loci also influences whether a particular neutral network shows multiple stable equilibria (Figure177

3—figure supplement 4).178
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Neutral networks based on complex DMIs are more likely to show multiple stable179

equilibria180

A neutral network of a certain size (K) can be specified by either a few low-order DMIs or many181

high-order DMIs. To investigate the extent to which DMIs of different order (ω) can lead to multiple182

stable equilibria, we have exhaustively enumerated all possible combinations of simple DMIs (ω = 2)183

on L = 4 diallelic loci specifying connected neutral networks with K ≥ 6 genotypes. Of the 2,918184

resulting neutral networks, none were found to contain multiple stable equilibria (PM ≈ 0).185

This result is surprising because random neutral networks with K = 6 to 12 genotypes with186

L = 4 diallelic loci showed PM ≈ 12% (Figure 3A). One possibility is that simple DMIs are not187

sufficient to generate neutral networks with multiple stable equilibria, and that complex DMIs188

(ω > 2) are required.189

To test this hypothesis, we generated additional ensembles of random neutral networks of K = 9190

genotypes using random combinations of DMIs of order ω = 2 to 4 between L = 6 diallelic loci. We191

found that, although simple DMIs are capable of generating neutral networks with multiple stable192

equilibria, ∼ 97% of neutral networks generated by combinations of 5–14 simple DMIs have only193

one stable equilibrium. As expected, PM increases with the complexity (ω) of the DMIs (Figure 4).194

The existence of multiple stable equilibria depends on the recombination rate195

In the absence of recombination between the loci defining a neutral network, there is only one stable196

equilibrium (van Nimwegen et al., 1999). The genotype frequencies at equilibrium are given by the197

leading eigenvector of the mutation matrix M, where entry Mij is the mutation rate from genotype198

i to genotype j per generation (van Nimwegen et al., 1999). With recombination, however, multiple199

stable equilibria can occur (Figure 3A).200

To quantitatively investigate the relationship between the existence of multiple stable equilibria201

and the recombination rate between fitness loci (r) in a concrete example we considered the neutral202

network shown in Figure 5A. This was one of the random neutral networks in the K = 6, L = 3203

and α = 3 ensemble summarized in Figure 3—figure supplement 1. The neutral network is defined204

by 10 simple DMIs: A1–B3 (i.e., A1 and B3 are incompatible), A2–B2, A2–B3, A3–B2, A3–B3, B1–205

C1, B1–C3, B3–C1, B3–C2, and B3–C2. We examined how the number of stable equilibria in this206

neutral network changes with r while keeping the mutation rate constant (u = 10−3). When the207

recombination rate is low (0 ≤ r < 0.0019) the neutral network contains only one stable equilibrium208

regardless of initial conditions (Figure 5B). The equilibrium is symmetric in that the frequency209

of the A1B2 haplotype (red) is the same as that of the B1C2 haplotype (blue). Above a critical210

recombination rate (0.0019 ≤ r ≤ 0.5) there are two stable equilibria and one unstable equilibrium.211

Populations evolve to the different equilibria depending on initial conditions (Figure 5C). The stable212

equilibria are asymmetric with an excess of genotypes containing either the A1B2 (red) or B1C2213

(blue) haplotype, respectively (note, however, that these equilibria are symmetric with each other).214

The unstable equilibrium is symmetric, with equal frequencies of the A1B2 and B1C2 haplotypes.215

The critical point at which the equilibria bifurcate is approximately invariant with the r/u ratio216
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(Figure 5—figure supplement 1).217

The reproductive barriers generated by multiple neutral DMIs can persist in the218

presence of gene flow219

If two allopatric populations evolve independently to the different stable equilibria of the neutral220

network in Figure 5A, they will become genetically differentiated and reproductively isolated to an221

extent that also depends on r (Figure 5D–E).222

The reproductive barrier created by the neutral network in Figure 5A can persist in the presence223

of gene flow (Figures 5D–E, red). Introducing gene flow weakens the degree of genetic differentiation224

and of reproductive isolation at equilibrium, and increases the critical value of r required for the225

persistence of a reproductive barrier (Figures 5D–E, red). However, the maximum migration rate226

between two populations that allows the reproductive barrier to persist is lower than the mutation227

rate (m ≈ 0.00047, for r = 0.5; Figure 5—figure supplement 2, blue). Stable differentiation can228

occur in a stepping-stone model (Kimura, 1952) with higher local migration rates (Figure 6D), but229

the resulting reproductive barrier does not slow down the spread of a neutral allele at an unlinked230

locus appreciably (Barton and Bengtsson, 1986) (Table 2).231

Larger neutral networks, involving complex incompatibilities between greater numbers of loci,232

can generate stronger reproductive barriers, capable of withstanding substantial gene flow. The233

neutral network shown in Figure 7A contains three stable equilibria. This was one of the random234

neutral networks in the K = 11 and L = 5 ensemble summarized in Figure 3. The neutral network235

is defined by 9 DMIs, 7 of which are complex: A–e (i.e., A and e are incompatible), B–e, A–b–D,236

a–B–d, A–C–D, B–c–d, b–C–D, C–D–e, and a–c–d–E. Populations at the equilibria at opposite ends237

of the network can show high levels of genetic differentiation and reproductive isolation (Figures 7D238

and 7E). If the fitness loci are unlinked (r = 0.5), then 50% of F1 hybrids between two populations239

at equilibrium are unfit. The maximum migration rate between two populations that allows the240

reproductive barrier to persist is almost two orders of magnitude higher than the mutation rate241

(m ≈ 0.0943, for r = 0.5; Figure 5—figure supplement 2, red). In a stepping-stone model, this242

neutral network can slow down the spread of a neutral allele at an unlinked locus to a greater243

extent than a single DMI with selection for the derived alleles (Figures 6C and 6E; Table 2). Thus,244

emergent speciation could, in principle, be an effective mechanism of either allopatric or parapatric245

speciation.246

The probability of a stochastic shift from one stable equilibrium to the other247

decreases with the recombination rate248

In the neutral network model speciation requires that a population undergo a stochastic shift from249

one stable equilibrium to another. One mechanism by which this could happen is the “founder effect”250

(Templeton, 1980; Carson and Templeton, 1984). In this scenario, a new allopatric population is251

founded by a few individuals from a larger source population. The new population then expands252

rapidly. The stochastic shift occurs during the short period of time while the population is small.253
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We investigated the probability of a stochastic shift in the neutral network shown in Figure 5A (see254

Materials and methods). We found that the probability that a founder event causes a stochastic255

shift (PS) can be high when r is low, and declines as r increases (Figure 5F). A similar relationship256

between PS and r was observed for the neutral network in Figure 7A and for a single DMI with257

selection for the derived alleles (Figure 7F and 2F). In general, PS declined as the reproductive258

barrier became stronger (Table 2).259

Discussion260

Our main result is that, when it comes to multiple neutral DMIs, the whole can be greater than261

the sum of its parts. Although a single neutral DMI cannot lead to the evolution of stable repro-262

ductive isolation, the collective effects of certain combinations of multiple neutral DMIs can lead to263

the evolution of strong barriers to gene flow between populations—a mechanism we call emergent264

speciation.265

Emergent speciation depends on two factors: the pattern of interactions between DMI loci and266

recombination. DMIs of higher order (ω), and involving greater numbers of loci (L), tend to promote267

emergent speciation (Figures 3 and 4). This relationship is mediated by several properties of the268

neutral networks specified by the DMIs: larger (K), more sparsely connected, spread out, modular269

neutral networks tend to facilitate emergent speciation (Figure 3; Figure 3—figure supplement 2;270

Table 1). Note that our results are conservative because we considered only connected networks.271

Real neutral networks might, in fact, be disconnected (Jiménez et al., 2013) which would be expected272

to further facilitate emergent speciation.273

Increasing the recombination rate between DMI loci promotes emergent speciation in at least274

three ways. First, it causes the appearance of multiple equilibria (Figures 5B–C and 7B–C). Re-275

combination had been shown to generate multistability in other evolutionary models (Bürger, 1989;276

Bergman and Feldman, 1992; Boerlijst et al., 1996; Higgs, 1998; Wright et al., 2003; Jacobi and277

Nordahl, 2006; Park and Krug, 2011), although earlier studies of the evolutionary consequences of278

recombination in neutral networks did not detect multiple equilibria (Xia and Levitt, 2002; Szöllősi279

and Derényi, 2008). Second, it increases genetic differentiation between populations at the different280

equilibria (Figures 5D and 7D). This pattern is consistent with the observation that increasing r281

reduces variation within a population at equilibrium in a neutral network (Xia and Levitt, 2002;282

Szöllősi and Derényi, 2008; Paixão and Azevedo, 2010). Third, it increases the degree of repro-283

ductive isolation between populations at different equilibria (Figures 5E and 7E). This is because,284

in our model, recombination is required to produce hybrids and consequently is the predominant285

source of selection. High r between fitness loci has been shown to promote speciation in other286

models (Felsenstein, 1981; Bank et al., 2012).287

The precise pattern of recombination—that is, linkage—between loci can also determine the288

existence of multiple equilibria (Figure 3—figure supplement 4). This result indicates that certain289

chromosomal rearrangements may facilitate emergent speciation. Note that this mechanism of chro-290
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mosomal speciation does not assume that different chromosomal rearrangements are polymorphic291

within populations and therefore is not based on suppression of recombination (Faria and Navarro,292

2010).293

How likely is emergent speciation to occur in nature? One recent study (Corbett-Detig et al.,294

2013) found evidence that multiple simple DMIs involving loci with high r are currently segregating295

within natural populations of Drosophila melanogaster. Corbett-Detig and colleagues surveyed296

a large panel of recombinant inbred lines (RILs) (Corbett-Detig et al., 2013). They found 22297

incompatible pairs of alleles at unlinked loci in the RILs; of the 44 alleles, 27 were shared by two298

or more RILs, indicating that multiple DMIs are polymorphic within natural populations (Corbett-299

Detig et al., 2013). They also found evidence for multiple DMIs in RIL panels in Arabidopsis and300

maize (Corbett-Detig et al., 2013). Corbett-Detig and colleagues did not attempt to identify DMIs301

among linked loci or complex DMIs and therefore are likely to have underestimated the actual302

number and complexity of DMIs in the RILs. These observations suggest that the conditions for303

emergent speciation by multiple DMIs may indeed occur in nature, although the resulting neutral304

networks remain to be discovered.305

There is strong evidence that DMIs contribute to reproductive isolation between closely related306

species, but it is difficult to determine the extent to which these DMIs actually caused speciation307

or are simply a by-product of divergence after speciation had occurred by other means (Presgraves,308

2010a,b; Maheshwari and Barbash, 2011; Seehausen et al., 2014). One prediction of the emergent309

speciation hypothesis is that, if multiple DMIs contribute to speciation then DMIs fixed between310

species should have higher order (ω), on average, than DMIs segregating within species. Recent311

surveys have concluded that complex DMIs, as well as other forms of high-order epistasis, are312

widespread (Presgraves, 2010a; Weinreich et al., 2013; Fräısse et al., 2014), but a systematic com-313

parison between the complexity of DMIs in divergence and polymorphism remains to be carried314

out.315

The neutral network model includes two central assumptions: neutrality within the network and316

complete unfitness outside it. Both assumptions are plausible in the case of speciation by reciprocal317

degeneration or loss of duplicate genes. Gene duplication followed by reciprocal degeneration or318

loss of duplicate copies in different lineages can act just like a DMI (Werth and Windham, 1991;319

Lynch and Force, 2000b), despite not involving an epistatic interaction (Nei and Nozawa, 2011).320

If the duplicates are essential genes, then genotypes carrying insufficient functional copies will be321

completely unfit. Gene duplications, degenerations and losses are common (Force et al., 1999;322

Lynch and Conery, 2000; Nei and Nozawa, 2011) and a substantial fraction of gene degenerations323

and losses are likely to be effectively neutral (Force et al., 1999; Lynch and Force, 2000a; Lynch and324

Conery, 2000). Following whole genome duplications, multiple gene degenerations or losses occur325

(Force et al., 1999; Lynch and Force, 2000a; Scannell et al., 2006; Nei and Nozawa, 2011), and the326

duplicates tend to be unlinked. Thus, we predict that emergent speciation will play a major role in327

speciation by reciprocal degeneration or loss of duplicate genes. This form of speciation appears to328

have contributed to the diversification of yeasts (Scannell et al., 2006).329
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The assumption of “in-network” neutrality is challenged by evidence that many DMI loci have330

experienced positive selection during their evolutionary history (Presgraves, 2010a,b; Maheshwari331

and Barbash, 2011). However, the neutral network model could still apply to some of those cases for332

two reasons. First, emergent speciation is robust to some variation in fitness among the genotypes333

in a neutral network (Figure 5—figure supplement 3). Second, neutral networks may approximate334

more complex scenarios where selection is weak or variable over time and/or space, or population335

sizes are small (Gavrilets, 2004).336

The assumption that “out-of-network” genotypes are completely unfit is contradicted by the337

observation that many DMIs cause only partial loss of fitness (Presgraves, 2003; Corbett-Detig338

et al., 2013; Schumer et al., 2014). However, our results also apply to partial DMIs. As long339

as the the disadvantage of “falling off” the neutral network is substantial, partial DMIs are still340

expected to lead to the evolution of stable—albeit weaker—reproductive barriers (Figure 5—figure341

supplement 4). We conclude that emergent speciation is a robust mechanism that should operate342

under a broader range of conditions violating the two central assumptions of the neutral network343

model.344

The best studied examples of DMIs are in diploids (Presgraves, 2010b; Maheshwari and Barbash,345

2011). Our model assumes haploidy, which means that it is mathematically equivalent to a diploid346

model where the incompatible haplotypes cause dominant incompatibilities, but where the same347

diploid genotypes involving cis and trans allele combinations (e.g., Ab/aB and ab/AB) may have348

different fitnesses. The latter is rare, and the former is unrealistic: DMIs in diploids tend to349

be recessive (Presgraves, 2003; Masly and Presgraves, 2007). Nevertheless, diploidy is likely to350

facilitate emergent speciation for three reasons. First, segregation in diploids has many of the same351

consequences as high recombination in haploids, regardless of the rate of recombination among352

linked loci (Otto, 2003). Second, diploids can show much stronger reproductive isolation than353

haploids. Strong reproductive isolation in haploids requires that a large proportion of recombinants354

carry incompatible combinations of alleles. This can only be achieved with large numbers of DMI355

loci and high recombination rate between them. In contrast, single DMIs can cause dramatic loss356

of fitness in F1 hybrids in diploids (Presgraves, 2010b; Maheshwari and Barbash, 2011). Third,357

diploidy may allow patterns of DMI interaction that increase the probability of stochastic shifts358

between stable equilibria (Wagner et al., 1994; Gavrilets, 2004).359

Recombination does oppose emergent speciation in neutral networks in one crucial way: it360

reduces the probability of a stochastic shift (PS) between stable equilibria (Figures 5F and 7F). PS361

also appears to increase with the strength of the reproductive barrier at equilibrium (Figures 5F and362

7F). Similar observations have been made in other models (Figure 2F) (Wagner et al., 1994; Barton,363

1996; Gavrilets, 2004), leading many to conclude that genetic drift alone cannot cause speciation364

(Barton, 1996; Seehausen et al., 2014). It does not follow, however, that emergent speciation is365

unlikely. Shifts between stable equilibria might be facilitated by transient changes in selection366

(Barton, 1996). Alternatively, populations could diverge in allopatry as envisaged in traditional367

DMI models (Dobzhansky, 1937; Muller, 1942; Orr, 1995).368
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Our results have broader implications for evolutionary theory. The neutral network model was369

originally developed in the context of RNA and protein sequence evolution (Lipman and Wilbur,370

1991; Schuster et al., 1994; Huynen et al., 1996), and has played an important role in the study of371

the evolution of robustness and evolvability (Huynen et al., 1996; van Nimwegen et al., 1999; Ancel372

and Fontana, 2000; Wagner, 2008; Draghi et al., 2010). One limitation of much of this work is that373

it has been conducted using the asexual version of the neutral network model. Our finding that374

recombination promotes the appearance of multiple stable equilibria in neutral networks has clear375

implications for the evolution of robustness and evolvability that deserve further investigation. For376

example, Wagner (2011) has argued that recombination helps explore genotype space because it377

causes greater genotypic change than mutation. However, our results suggest that, depending on378

the structure of the neutral network, large sexual populations can get trapped in stable equilibria,379

therefore restricting their ability to explore genotype space.380

We have found that multiple neutral DMIs can cause emergent speciation and that the conditions381

that promote emergent speciation are likely to occur in natural populations. We conclude that382

the interaction between DMIs may be a root cause of the origin of species. Continued efforts to383

detect DMIs (Payseur and Hoekstra, 2005; Masly and Presgraves, 2007; Schumer et al., 2014) and to384

reconstruct real neutral networks (Lee et al., 1997; Jiménez et al., 2013) will be crucial to evaluating385

the reality and importance of emergent speciation.386

Materials and methods387

Neutral network model388

Organisms are haploid and carry L loci with effects on fitness. Each locus can have one of α alleles.389

Out of the possible αL genotypes, K are fit, with equal fitness, and the remaining genotypes are390

completely unfit. The K genotypes define a neutral network, where genotypes are connected if one391

genotype can be obtained from the other through a single mutation (i.e., they differ at a single392

locus).393

Random neutral networks394

Ensembles of random neutral networks were analyzed. Random neutral networks were generated by395

sampling K genotypes at random from the αL possible genotypes available (without replacement)396

and retaining the resulting network if it was connected.397

Neutral networks specified by DMIs398

To investigate the effect of the order (ω) of a DMI, ensembles of neutral networks were generated399

by sampling combinations of d random DMIs with pre-specified values of ω between alleles at L400

diallelic loci (see Figure 4 for more details). Following Orr (Orr, 1995), one allele at each locus was401

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2014. ; https://doi.org/10.1101/008268doi: bioRxiv preprint 

https://doi.org/10.1101/008268
http://creativecommons.org/licenses/by/4.0/


considered to be ancestral and compatible with other ancestral alleles, and no DMIs were allowed402

where all the ω incompatible alleles were ancestral.403

Network statistics404

Algebraic connectivity Second smallest eigenvalue of the Laplacian matrix of the network (New-405

man, 2010). Abbreviated as AC in Figure 3—figure supplement 3. Calculated using NetworkX406

(Hagberg et al., 2008).407

Average degree and variance in degree Mean and variance of the degree distribution, re-408

spectively (Newman, 2010). The degree of a genotype is the number of its fit mutational neighbors.409

Calculated using NetworkX (Hagberg et al., 2008).410

Average Hamming distance Average number of loci at which pairs of genotypes carry different411

alleles. Genotypes connected in the neutral network are at a Hamming distance of 1.412

Average shortest path length Average number of steps along the shortest path between pairs413

of genotypes (Newman, 2010). Abbreviated as PL in Figure 3—figure supplement 3. Calculated414

using NetworkX (Hagberg et al., 2008).415

Degree assortativity A measure of the correlation of the degree of linked genotypes (Newman,416

2010). Abbreviated as DA in Figure 3—figure supplement 3 and Table 1. Calculated using Net-417

workX (Hagberg et al., 2008).418

Estrada index A centrality measure (Estrada and Rodŕıguez-Velázquez, 2005). Calculated using419

NetworkX (Hagberg et al., 2008).420

Modularity A measure of the extent to which the network displays community structure (New-421

man, 2006). A community is a group of densely interconnected nodes showing relatively few con-422

nections to nodes outside the community. Abbreviated as Q in Figure 3—figure supplement 3.423

Calculated using igraph (Csárdi and Nepusz, 2006) based on an exhaustive search over all possible424

partitions of the network.425

Spectral radius Leading eigenvalue of adjacency matrix (Newman, 2010). Measures the mean de-426

gree of a population at equilibrium in the absence of recombination (van Nimwegen et al., 1999). Ab-427

breviated as SR in Figure 3—figure supplement 3 and Table 1. Calculated using NumPy (Oliphant,428

2007).429
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Evolution430

Evolution on a neutral network was modeled by considering an infinite-sized population of haploid431

organisms reproducing sexually in discrete generations. The state of the population is given by432

a vector of frequencies −→p = (p0, p1, . . . , pK), where pi is the frequency of genotype i. Genotypes433

outside the network are ignored because they are completely inviable (van Nimwegen et al., 1999).434

Individuals mate at random with respect to genotype to form a transient diploid that undergoes435

meiosis to produce haploid descendants. Selection takes place during the haploid phase. Mating,436

recombination, mutation and selection cause the population to evolve according to the equation:437

−→p t+1 =

(−→p t · −→R · −→p Tt ) ·M∑K
i=1

[(−→p t · −→R · −→p Tt ) ·M]
i

, (1)

where −→p t is the state of the population at generation t, M is the mutation matrix such that entry438

Mij is the mutation rate from genotype i to genotype j per generation, and
−→
R = (R0,R1, . . .RK)439

is a vector of recombination matrices such that entry Rgi,j of matrix Rg is the probability that440

a mating between individuals of genotypes i and j generates an individual offspring of genotype441

g. The diagonal elements of M (Mii) represent the probability that genotype i does not mutate442

(including to unfit genotypes outside the neutral network). Values of Mij are set by assuming that443

each locus mutates with probability u and that a genotype can only mutate simultaneously at up444

to a certain number of loci. Up to L − 1 crossover events can occur between two genotypes with445

probability 0 ≤ r ≤ 0.5 per interval. The recombination rate r is the same for all pairs of adjacent446

loci. If r = 0.5, then there is free recombination between all loci.447

Equilibria448

Given a neutral network, population genetic parameters u and r, and a set of initial genotype449

frequencies −→p 0, the population was allowed to evolve until the root-mean-square deviation of the450

genotype frequencies in consecutive generations was RMSD(−→p t,−→p t−1) < 10−9. The final genotype451

frequencies were identified as an equilibrium p̂. Multiple initial conditions were used: (i) fixed for452

each of the K genotypes in turn, and (ii) 4 independent sets of random frequencies. Two equilibria453

(p̂i and p̂j) were judged identical if RMSD(p̂i, p̂j) < 3 × 10−4. Only one of a set of identical454

equilibria was counted. This procedure does not guarantee the discovery of all equilibria; indeed, it455

likely underestimates the number of unstable equilibria.456

Stability analysis457

For each equilibrium p̂, the eigenvalues of the Jacobian matrix of −→p t+1 (λ1, λ2, . . . , λK) were calcu-458

lated at p̂. If |λi| < 1 for every i (to within a tolerance of 10−8), the equilibrium was judged to be459

stable.460
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Gene flow461

Gene flow was modeled as symmetric migration between two populations. Migration occurs at462

the beginning of each generation, such that a proportion m of each population is composed of463

immigrants from the other population. Then random mating, recombination and mutation take464

place within each population, as described above.465

Stepping-stone model466

A stepping-stone model (Kimura, 1952) was used to measure the rate of spread of a neutral allele467

across a reproductive barrier (Barton and Bengtsson, 1986). A number n of populations are arranged468

in a line. Every generation a proportion 2m of a population emigrates to its two neighboring469

populations (except populations 1 and n, which have only one neighbor, so only m of each of470

them emigrate) (see Figure 6A). Note that, unlike the stepping stone model studied by Gavrilets471

(Gavrilets, 1997), our implementation allows the genotype frequencies of terminal populations (1472

and n) to vary. When n = 2 this model reduces to the gene flow model described in the previous473

section.474

Genetic differentiation475

GST = 1 − HS/HT was used to measure the genetic differentiation between two populations at a476

locus, where HS is the average gene diversity of the two populations, and HT is the gene diversity477

of a population constructed by pooling the two populations (Nei, 1976). The gene diversity of a478

population at a locus is defined as H = 1−
∑α

i=1 q
2
i , where qi is the frequency of allele i. Values of479

GST can vary between 0 (two populations with the same allele frequencies) and 1 (two populations480

fixed for different alleles). The overall genetic differentiation between two populations was quantified481

as the average GST over all loci. If all genotypes in the neutral network contain the same allele at482

a locus, that locus is excluded from the calculation of average GST .483

Reproductive isolation484

The degree of reproductive isolation is defined as (Barton, 1996; Palmer and Feldman, 2009): I = 1−485

wH/wS , where wH is the mean fitness of haploid F1 hybrid offspring from crosses between individuals486

from the two populations, and wS is the average of the mean fitnesses of the individual populations.487

The calculation of wH and wS only takes into account the contribution of recombination, and ignores488

mutation. Values of I can vary between 0 (the populations are undifferentiated or r = 0) and 1 (all489

F1 hybrids are unfit).490

Founder effect speciation491

To simulate a founder event (Templeton, 1980; Carson and Templeton, 1984), a new population is492

founded from a sample of N0 individuals from an infinite-sized population at one stable equilibrium.493

The population is then allowed to grow according to the equation Nt = λtN0, where t is the494
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generation number and λ is the finite rate of increase. At generation t, the expected vector of495

genotype frequencies −→p t is calculated using equation (1) and a random sample of size Nt is drawn496

from a multinomial distribution with probabilities −→p t. Once the population reaches Nt > 104497

individuals, it is allowed to evolve deterministically to equilibrium. If the population evolves to a498

different equilibrium from that of the source population, it is counted as a shift.499

For the adaptive landscape in Figure 2A, every simulation run was evolved to equilibrium.500

For the neutral network in Figure 5A, only simulation runs where at least one of the N0 founder501

individuals carried the A1B2 haplotype were evolved to equilibrium. Similarly, for the neutral502

network Figure 7A, only simulation runs where at least one of the N0 founder individuals carried503

either the D allele or the abde haplotype were evolved to equilibrium. Thus, the estimates of the504

probability that a founder event causes a stochastic shift (PS) for the neutral networks in Figures505

5A and 7A slightly underestimate the true value because mutations occurring early during the506

population expansion phase could cause a shift.507

To estimate the probability that a founder event causes a stochastic shift (PS) as many tries (ν)

as required to get σ successful shifts were run. The following unbiased estimator was used:

PS =
σ − 1

σ + ν − 1
.

95% confidence intervals were calculated by parametric bootstrapping: for each estimate of PS , 106508

random samples of σ values from the negative binomial distribution with probability of success PS509

were generated and PS was recalculated; the confidence intervals were estimated as the 2.5% and510

97.5% quantiles of the distribution of simulated PS values.511
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Figure 1. A neutral DMI between two loci is not sufficient to cause speciation. (A) Three
haploid genotypes (closed circles) are fit and have equal fitness, and one genotype is unfit (open
circle). The K = 3 fit genotypes form a neutral network. (B–C) The reproductive isolation
generated by a neutral DMI between two diallelic loci does not persist in the face of either mutation
or gene flow because there is only one stable equilibrium (Figure 1—figure supplement 1). Two
populations start fixed for the Ab and aB genotypes, respectively, and are allowed to evolve with a
mutation rate of u = 10−3 per locus per generation, a recombination rate of r = 0.2 between loci,
and in the presence of different levels of gene flow (m, proportion of a the population consisting
of migrants from the other population, each generation). Genotypes are only allowed to mutate
at one locus per generation. (B) Genetic differentiation (GST ) and (C) degree of reproductive
isolation (I) between the two populations (see Materials and methods). Initially, GST = 1 and
I0 = r/2 = 0.1. The dashed line in (C) shows It = I0 · e−2ut. For raw data, see data/fig 1/; for
code, see ipython/fig 1.ipynb (Dryad: Paixão et al., 2014).
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Figure 2. Selection for derived alleles in a single DMI increases the number of stable equilibria.
(A) Fitness landscape generated by a single DMI between L = 2 diallelic loci with selection for
derived alleles. s measures the strength of selection against the ab genotype. This is an example
of a “mutation-order” model (Schluter, 2009) because it assumes that the different populations
experience the same environment. Note that if s = 1, the ab genotype is lethal and the model
reduces to a disconnected neutral network with two genotypes: aB and Ab. (B–C) If both r and
s � u, then there are two stable equilibria, one with p̂Ab ≈ 1 and the other with p̂aB ≈ 1. (B)
Weak recombination and selection (r = 0.002 , s = 0.05). (C) Strong recombination and selection
(r = 0.5 , s = 0.2). Both the genetic differentiation (D) and the reproductive isolation (E) among
populations at the two stable equilibria increases with both s and r. The degree of reproductive
isolation is well approximated by I ≈ r(1 + s)/2. (F) The probability that a founder event causes
a stochastic shift (PS) from one stable equilibrium to the other decreases with both s and r. A new
population was founded by taking a sample of N0 = 2 individuals from a population at the blue
equilibrium, and was allowed to double in size every generation (λ = 2, see Materials and methods).
PS was calculated based on 100 successful shifts to the red equilibrium. The shaded area shows
the 95% confidence interval of each data point. The dashed line shows 0.002/r. Population genetic
parameters: u = 10−3 per locus; genotypes are allowed to mutate at both loci per generation. For
raw data, see data/fig 2/; for code, see ipython/fig 2.ipynb (Dryad: Paixão et al., 2014).
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Figure 3. Larger neutral networks are more likely to contain multiple stable equilibria. (A) Prob-
ability that random neutral networks containing K genotypes of L diallelic loci contain multiple
stable equilibria (PM ). Values are estimates based on ensembles of 500 random connected neutral
networks for each combination of K and L. None of the neutral networks could have been specified
by a single DMI of any order (2 ≤ ω ≤ L). Genetic differentiation (B) and degree of reproductive
isolation (C) between populations at different equilibria. In (B–C) values are means for neutral
networks containing two or more stable equilibria (if a neutral network contained more than two
stable equilibria, the maximum pairwise GST and I were used). All error bars are 95% confidence
intervals. Population genetic parameters: r = 1

2(L−1) between adjacent loci; up to L− 1 crossovers

are allowed between two genotypes per generation; u = r/20 per locus per generation; genotypes
are only allowed to mutate at L− 2 loci per generation. PM is affected by the number of alleles per
locus (α) (Figure 3—figure supplement 1), by network properties of the neutral networks (Table
1; Figure 3—figure supplement 2; Figure 3—figure supplement 3) and by the pattern of recombi-
nation between sites (Figure 3—figure supplement 4). For raw data, see data/fig 3/; for code, see
ipython/fig 3.ipynb (Dryad: Paixão et al., 2014).
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Figure 4. Higher-order incompatibilities increase the probability that the resulting neutral network
shows multiple stable equilibria. Values are probabilities that neutral networks show multiple stable
equilibria (PM ). Each estimate is based on an ensemble of 500 random connected neutral networks
of K = 9 genotypes generated from random combinations of DMIs of a given order (ω) between
alleles at L = 6 diallelic loci. Integer values of ω indicate that the neutral networks are specified
entirely by d DMIs of order ω. Values of ω of the form φ+1/2 indicate that that the neutral networks
are specified by d/2 DMIs of order φ and d/2 DMIs of order φ+ 1 (d even). The value of d in each
neutral network in an ensemble was drawn at random from a broad uniform distribution. Then d
DMIs with certain ω were sampled without replacement. A neutral network was then generated
from these DMIs and retained for further analysis if it had K = 9. Error bars are 95% confidence
intervals. Population genetic parameters: r = 1

2(L−1) between adjacent loci; up to L− 1 crossovers

are allowed between two genotypes per generation; u = r/20 per locus per generation; genotypes
are only allowed to mutate at two loci per generation. For raw data, see data/fig 4/; for code, see
ipython/fig 4.ipynb (Dryad: Paixão et al., 2014).
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Figure 5. Increasing the recombination rate between DMI loci promotes emergent speciation. (A)
Neutral network of K = 6 genotypes including all genotypes containing either the A1B2 haplotype
(red) or the B1C2 haplotype (blue). Genotypes are represented by closed circles. Solid lines connect
genotypes differing at a single locus. The colors relate to the equilibria as explained below. (B–C)
The presence of multiple stable equilibria in the neutral network shown in (A) depends on the
recombination rate (r). Populations initially fixed for a genotype shown in a given color, evolve to
a stable equilibrium shown in the same color. (B) When the recombination rate is low (r = 10−3),
populations initially fixed for any of the genotypes in the neutral network evolve to the same stable
equilibrium. (C) With higher recombination rate (r = 10−2), populations initially fixed for any
of 3 genotypes shown in red evolve to the stable equilibrium in red, whereas populations initially
fixed one of the 3 genotypes shown in blue evolve to the stable equilibrium in blue. Populations
showing perfectly even genotype frequencies evolve to the unstable equilibrium in green. The
critical value of r at which the equilibria bifurcate depends on u (Figure 5—figure supplement 1).
Both the genetic differentiation (D) and the reproductive isolation (E) among populations at the
two stable equilibria increase with r, and can persist in the presence of weak gene flow (see also,
Figure 5—figure supplement 2), changes in the fitness of genotypes in the neutral network (Figure
5—figure supplement 3), and increases in the fitness of genotypes outside the neutral network
(Figure 5—figure supplement 4). The blue points are well approximated by I = r/2, the maximum
reproductive isolation attainable with one neutral DMI (Figure 1). (F) Probability that a founder
event causes a stochastic shift (PS) from one stable equilibrium to the other decreases with r. A
new population was founded by taking a sample of N0 = 2 individuals from a population at the
blue equilibrium, and was allowed to double in size every generation (λ = 2, see Materials and
methods). PS was calculated based on 100 successful shifts to a red equilibrium. The shaded area
shows the 95% confidence interval of each data point. The dashed line shows 0.002/r. Population
genetic parameters: u = 10−3 per locus; genotypes are allowed to mutate at all loci per generation;
up to two crossovers were allowed between two genotypes. For raw data, see data/fig 5/; for code,
see ipython/fig 5.ipynb (Dryad: Paixão et al., 2014).
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Figure 6. Neutral DMIs can generate strong reproductive barriers. (A) Stepping-stone model. A
number n of populations are arranged in a line. Every generation a proportion 2m of a population
emigrates to its two neighboring populations (except populations 1 and n, which have only one
neighbor, so only m of each of them emigrate) (see Materials and methods for more details). (B)
Spread of a neutral allele over n = 20 populations. Locus A has two neutral alleles, A and a.
Initially, populations 1–10 are fixed for the a allele and populations 11–20 are fixed for the A allele
(blue). We allow the populations to evolve with m = 0.025, without mutation at the A locus.
The green points show the frequencies of the A allele after t = 500 generations. After t = 1515
generations, the frequency of A has increased from 0 to 25% in population 1 (TN in Table 2).
Eventually, the population will reach equilibrium with each neutral allele at a frequency of 50% in
every population (dashed line). (C–E) Equilibrium allele or genotype frequencies in a hybrid zone
formed after the contact of two populations initially at different stable equilibria on opposite ends
of the line. See Table 2 for analysis of flow of unlinked neutral alleles through these hybrid zones.
(C) DMI with selection (Figure 2). Initially, populations 1–10 are fixed for the Ab genotype and
populations 11–20 are fixed for the aB genotype. The points show the equilibrium frequencies of
aB for r = 0.5 and m = 0.025 and different values of s. (D) Neutral network shown in Figure
5. Initially, populations 1–10 are fixed for the B1C2 haplotype and populations 11–20 are fixed
for the A1B2 haplotype. The points show the equilibrium frequencies of the A1B2 haplotype for
r = 0.5 and m = 0.025. (E) Neutral network shown in Figure 7. Initially, populations 1–10 are
fixed for the d allele and populations 11–20 are fixed for the D allele (a rough marker for the red
equilibrium in Figure 7). The points show the equilibrium frequencies of the D allele for r = 0.5
and m = 0.025. Population genetic parameters in (C–E): u = 10−3 per locus; genotypes are only
allowed to mutate at one locus per generation; up to L − 1 crossovers are allowed between two
genotypes per generation. For raw data, see data/fig 2/, data/fig 5/ and data/fig 7/; for code, see
ipython/fig 6.ipynb (Dryad: Paixão et al., 2014).
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Figure 7. Multiple neutral DM incompatibities can generate substantial reproductive barriers.
(A) Neutral network of K = 11 genotypes generated by 9 DMIs between L = 5 diallelic loci.
Genotypes are represented by closed circles. Solid lines connect genotypes differing at a single
locus. The colors relate to the equilibria as explained below. (B–C) The presence of multiple
stable equilibria in the neutral network shown in (A) depends on the recombination rate. When
the recombination rate is low (0 ≤ r ≤ 3.6 × 10−4), populations initially fixed for any of the 11
genotypes in the neutral network evolve to the same stable equilibrium; when the recombination rate
is higher (3.6×10−4 ≤ r ≤ 5.3×10−3), there are two stable equilibria; when the recombination rate is
higher still (5.3×10−3 ≤ r ≤ 0.5) there are three stable equilibria. (B) When r = 10−3, populations
initially fixed for any of 7 genotypes shown in red evolve to the stable equilibrium in red, whereas
populations initially fixed one of the 5 genotypes shown in green evolve to the stable equilibrium
in green. (C) When r = 10−2, populations initially fixed for genotypes shown in red, green or blue
(same colors in (A)), evolve to the equilibrium of the same color. Both the genetic differentiation
(D) and the reproductive isolation (E) among populations at the red and green equilibria increases
with the recombination rate, and can persist in the presence of substantial amounts of gene flow.
The dashed line in (E) shows I = r/2, the maximum value of reproductive isolation attainable
with one neutral DMI (Figure 1). The reproductive barrier among populations can persist in the
presence of weak gene flow (see also, Figure 5—figure supplement 2), and changes in the fitness of
genotypes in the neutral network (Figure 5—figure supplement 3). (F) Probability that a founder
event causes a stochastic shift (PS) from one stable equilibrium to the other decreases with r. A new
population was founded by taking a sample of N0 = 2 individuals from a population at the green
equilibrium, and was allowed to double in size every generation (λ = 2, see Materials and methods).
PS was calculated based on 30 successful shifts to a red equilibrium. The shaded area shows the
95% confidence interval of each data point. The dashed line shows 0.0003/r. Population genetic
parameters: u = 10−3 per locus; genotypes are allowed to mutate at up to two loci per generation;
up to four crossovers were allowed between two genotypes. For raw data, see data/fig 7/; for code,
see ipython/fig 7.ipynb (Dryad: Paixão et al., 2014).
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Table 1. The network properties of neutral networks influence the probability that they contain
multiple stable equilibria.

Network property ρ(SR) ρ(DA) z

Algebraic connectivity 0.926 0.074 –6.79
Average degree 0.851 0.118 –8.23
Average Hamming distance –0.731 0.064 5.84
Average shortest path length –0.947 0.035 6.76
Degree assortativity (DA) 0.021 1.000 –7.80
Estrada index 0.993 –0.022 –8.29
Modularity –0.857 –0.105 8.87
Spectral radius (SR) 1.000 0.021 –8.98
Variance in degree 0.777 –0.408 –3.74

The data are for the ensemble of 500 random networks with K = 9 genotypes of L = 6 diallelic
loci (see Figure 3A, for more details). All the network statistics listed are associated with the
probability that a random neutral network contains multiple stable equilibria, PM (P < 0.001;
Figure 3—figure supplement 2). We conducted a separate logistic regression of PM against each
network statistic. The z statistic is the regression coefficient divided by its standard error. Most
network statistics are strongly correlated with each other (see also Figure 3—figure supplement
3). ρ(SR) and ρ(DA) list the Spearman’s rank correlation coefficient between the network statistic
and the spectral radius (SR) and degree assortativity (DA), respectively. All correlations with
|ρ| > 0.4 are highly statistically significant (P < 10−10). For raw data, see data/tab 1/; for code,
see ipython/tab 1.ipynb (Dryad: Paixão et al., 2014).
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Table 2. Multiple neutral DMIs can generate strong barriers to gene flow.

Scenario T25 b

DMI with selection (Figure 2)
s = 0.05 1,556 1.0271
s = 0.1 1,583 1.0449
s = 0.25 1,632 1.0772
s = 0.5 1,690 1.1155
s = 0.75 1,742 1.1498
s = 1 1,790 1.1815

Neutral network
K = 6 , L = 3 , α = 3 (Figure 5) 1,516 1.0007
K = 11 , L = 5 , α = 2 (Figure 7) 1,797 1.1861

For each evolutionary scenario, we simulated a stepping-stone model with n = 20 populations and
m = 0.025 between adjacent populations (see Materials and methods and Figure 6A). The rate
of spread of a neutral allele at an unlinked locus across a reproductive barrier created by a set of
DMIs was used to evaluate the strength of the barrier. Populations 1–10 and 11–20 are initialized at
different stable equilibria. The populations are then allowed to evolve with gene flow until they reach
a new equilibrium (Figure 6C–E). Then populations 1–10 and 11–20 are fixed for different neutral
alleles at a locus unlinked to any of the fitness loci, and allowed to continue evolving. The genotype
frequencies for the fitness loci remain at equilibrium, but the frequencies of the neutral alleles begin
to evolve towards 0.5 (Figure 6B). T25 measures the time required for the frequency of one of the
neutral alleles to increase from 0 to 25% in population 1. b = T25/TN measures the strength of the
barrier to gene flow where TN = 1515 is the T25 for a neutral allele at a single locus (Figure 6B). If
b > 1, the reproductive barrier impedes the flow of a neutral allele. Population genetic parameters:
u = 10−3 per fitness locus and u = 0 for the neutral marker locus; genotypes are only allowed to
mutate at one fitness locus per generation; there is free recombination (r = 0.5) between all loci.
For raw data, see data/fig 2/, data/fig 5/ and data/fig 7/; for code, see ipython/fig 7.ipynb (Dryad:
Paixão et al., 2014).
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Figure 1—figure supplement 1. A neutral DMI between two diallelic loci (Figure 1A) only
contains one stable equilibrium. (A) The frequencies of the three genotypes (ab, Ab and aB) in
a population are represented as a single point in a ternary plot. (B) Evolutionary trajectories
without recombination (r = 0) of populations starting at initial frequencies such that at least one of
the genotypes is absent (i.e., the edges of the triangle). All trajectories converge to a single stable

equilibrium (solid circle) with frequencies p̂Ab = p̂aB = 1 −
√
2
2 and p̂ab =

√
2 − 1. Arrowheads

mark the genotype frequencies after 100 generations of evolution. (C–D) Evolutionary trajectories
with recombination rates of r = 0.01 and 0.1, respectively. As the recombination rate increases, the
frequency of ab at equilibrium (p̂ab) increases, and populations approach equilibrium more quickly.
Population genetic parameters: u = 10−3 per locus per generation; genotypes are only allowed to
mutate at one locus per generation. For code, see ipython/fig 1 s1.ipynb (Dryad: Paixão et al.,
2014).
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Figure 3—figure supplement 1. Larger neutral networks are more likely to contain multiple
stable equilibria. (A) Probability that random neutral networks containing K genotypes of L loci
with α alleles contain multiple stable equilibria (PM ). Expected genetic differentiation (B) and
degree of reproductive isolation (C) between populations at different equilibria. The data for α = 2
alleles are the same as shown in Figure 3. See legend of Figure 3 for more details. For raw data,
see data/fig 3 s1; for code, see ipython/fig 3 s1.ipynb (Dryad: Paixão et al., 2014).
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Figure 3—figure supplement 2. Network properties of neutral networks influence the probabil-
ity that they contain multiple stable equilibria. To illustrate this, we show the relationship between
two network properties and the probability that random neutral networks contain multiple stable
equilibria (PM ) (see Materials and methods for more details). (A) PM is negatively related to the
spectral radius of the adjacency matrix. The spectral radius is strongly correlated to several other
network properties, including the algebraic connectivity, average degree, and modularity (Figure
3—figure supplement 3; Table 1). (B) PM is negatively related to the degree assortativity. The
degree assortativity is moderately correlated with the variance in degree of the neutral network
(Table 1). The data are for the ensemble of 500 random networks with K = 9 genotypes of L = 6
diallelic loci that, overall, show PM = 50% (Figure 3A). Similar trends are observed for other val-
ues of K, L, and α. Values are probabilities and 95% confidence intervals for data grouped into
approximately equal sized bins based on the network statistic. Solid lines show logistic regression
fits to the raw data (see Table 1 for more details). For raw data, see data/tab 1; for code, see
ipython/fig 3 s2.ipynb (Dryad: Paixão et al., 2014).
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Figure 3—figure supplement 3. Network properties of neutral networks are correlated with
each other. Network statistics (see Materials and methods): PL, average shortest path length; SR,
spectral radius; DA, degree assortativity; AC, algebraic connectivity; Q, modularity. The data are
the same as analysed in Table 1 and Figure 3—figure supplement 2. The diagonal shows kernel
density and rug plots for each statistic. Red lines show locally weighted polynomial regression fits.
All network statistics are strongly associated with PM . For raw data, see data/tab 1; for code, see
ipython/fig 3 s3.ipynb (Dryad: Paixão et al., 2014).

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2014. ; https://doi.org/10.1101/008268doi: bioRxiv preprint 

https://doi.org/10.1101/008268
http://creativecommons.org/licenses/by/4.0/


abcde

abcdE

abcDE

abCDE

aBCDE

ABCDE

A

abcde abcdE abcDE abCDE aBCDE ABCDE
Genotype

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y
aedbc aEdbc aEDbc aEDbC aEDBC AEDBC

Genotype

0.0

0.2

0.4

0.6

0.8

A B C D E A B CDE

B C

Figure 3—figure supplement 4. Whether or not a neutral network shows multiple stable
equilibria depends on the precise pattern of recombination between sites and cannot be strictly
predicted from the topology of the network. (A) Neutral network of K = 6 genotypes generated
by incompatibilities between L = 5 loci. The shortest path length between two genotypes in the
network is the same as the Hamming distance between them. (B) The neutral network shown in
(A) shows a single stable equilibrium when the recombination rate is high relative to the mutation
rate: r = 1

2(L−1) = 0.125 and u = r/20 = 0.00625. (C) The genotype network derived from that

shown in (A) by inverting the D and E loci and inserting them between the A and B loci has the
same topology and Hamming distances between genotypes as that in (A), but shows two stable
equilibria for the same values of r and u as in (B). For raw data, see data/fig 3 s4; for code, see
ipython/fig 3 s4.ipynb (Dryad: Paixão et al., 2014).
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Figure 5—figure supplement 1. The critical point at which the equilibria bifurcate is approx-
imately invariant with the ratio between the recombination rate (r) and the mutation rate (u).
We calculated the critical recombination rate (rcrit) for different values of u (spanning 3 orders of
magnitude) for the neutral network shown in Figure 5A. We did this by finding the point where the
symmetric equilibrium (in green in Figures 5B and 5C) changes from stable to unstable. Population
genetic parameters: genotypes are allowed to mutate at all loci per generation; up to two crossovers
were allowed between two genotypes. For code, see ipython/fig 5 s1.ipynb (Dryad: Paixão et al.,
2014).
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Figure 5—figure supplement 2. The reproductive barriers created by multiple neutral DMIs
are robust to gene flow. Maximum migration rate between two populations that allows significant
genetic differentiation between them to persist for different recombination rates. The analysis was
carried out for the neutral networks shown in Figure 5A (blue) and Figure 7A (red). Population
genetic parameters: u = 10−3 per locus; genotypes are allowed to mutate at up to two loci per
generation; up to L−1 crossovers were allowed between two genotypes. For raw data, see data/fig 5/
and data/fig 7/; for code, see ipython/fig 5 s2.ipynb (Dryad: Paixão et al., 2014).
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Figure 5—figure supplement 3. The reproductive barriers created by multiple neutral DMIs
are robust to changes in the fitness of genotypes in the neutral network. The neutral network
model assumes that “in-network” genotypes have a fitness of w = 1. Values show the maximum
selection coefficient si by which the fitness of a genotype i in the neutral network can be increased
(wi = 1 + si) while maintaining the existence of at least two stable equilibria. The analysis was
carried out for the neutral networks shown in Figure 5A (A) and Figure 7A (B). The dashed lines
show s = r. Population genetic parameters: u = 10−3 per locus; genotypes are allowed to mutate at
up to two loci per generation; up to L− 1 crossovers were allowed between two genotypes. For raw
data, see data/fig 5/ and data/fig 7/; for code, see ipython/fig 5 s3.ipynb (Dryad: Paixão et al.,
2014).
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Figure 5—figure supplement 4. Partial DMIs can also cause emergent speciation. The neutral
network model assumes that “out-of-network” genotypes have a fitness of wout = 0. Here we
measure the effect of changing wout on the strength of the reproductive barriers evolving on the
neutral network in Figure 5A. (A) The amount of genetic differentiation among populations at
the two stable equilibria remains stable for wout . 0.7. (B) The degree of reproductive isolation
among populations at the two stable equilibria changes as I0(1−wout) where I0 is the reproductive
isolation when wout = 0 (i.e., the default model). This is because higher values of wout imply higher
hybrid fitness. Population genetic parameters: u = 10−3 per locus; genotypes are allowed to mutate
at all loci per generation; up to two crossovers were allowed between two genotypes. For code, see
ipython/fig 5 s4.ipynb (Dryad: Paixão et al., 2014).
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