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Abstract

Motivation: Molecular measurements from cancer patients such as
gene expression and DNA methylation are usually very noisy. Further-
more, cancer types can be very heterogeneous. Therefore, one of the main
assumptions for machine learning, that the underlying unknown distribu-
tion is the same for all samples, might not be completely fullfilled. We
introduce a method, that can estimate this bias on a per-feature level and
incorporate calculated feature confidences into a weighted combination of
classifiers with disjoint feature sets.
Results: The new method achieves state-of-the-art performance on many
different cancer data sets with measured DNA methylation or gene ex-
pression. Moreover, we show how to visualize the learned classifiers to
find interesting associations with the target label. Applied to a leukemia
data set we find several ribosomal proteins associated with leukemia’s risk
group that might be interesting targets for follow-up studies and support
the hypothesis that the ribosomes are a new frontier in gene regulation.
Availability: The method is available under GPLv3+ License at https:
//github.com/adrinjalali/Network-Classifier.

1 Introduction

Over the past decades, biology has transformed into a high throughput re-
search field both in terms of the number of different measurement techniques as
well as the amount of variables measured by each technique (e.g., from Sanger
sequencing to deep sequencing) and is more and more targeted to individual
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cells ([23]). This has led to an unprecedented growth of biological information.
Consequently, techniques that can help researchers find the important insights
of the data are becoming more and more important. Predicting survival of
cancer patients based on measurements from microarray experiments was first
proposed more than a decade ago, but there is often very little overlap between
the important genes or biomarkers identified by different studies ([8]). Several
reasons have been suggested that could explain these findings (e.g., heterogene-
ity of cancer samples or insufficient sample size). Attempts have been made to
incorporate additional information from other sources such as protein-protein
interaction (PPI) networks to make the predictions more robust ([5]). One of
the latest approaches integrated network and expression data by introducing
a network-induced classification kernel (NICK) ([17]). Although this method
was shown to have state-of-the-art performance, it is not straightforward to de-
termine which are the important variables that led to the good performance.
Furthermore, a central assumption underlying many of the methods is that all
data are drawn from the same unknown underlying distribution. Especially for
heterogeneous cancer samples this might not be the case, in particular not for
all measured genes.

In this work, we introduce a method that is aware of this potential bias
and utilizes an estimate of the differences during the generation of the final
prediction method. For this, we introduce a set of sparse classifiers based on L1-
SVMs ([3]), where each set of features used by one classifier is disjoint from the
selected feature set of any other classifier. Furthermore, for each feature chosen
by one of the classifiers, we introduce a regression model based on Gaussian
process regression that uses additional features. These regression models are
then used to estimate how predictable features of each classifier are, for each test
sample. This information can then be used to find a confidence weighting of the
classifiers for the test sample (up-weighting classifiers with high confidence and
down-weighting classifiers with lower confidence). Schapire and Singer showed
that incorporating confidences of classifiers can improve the performance of
an ensemble method ([22]). However, in their setting confidences of classifiers
are estimated using the training data and are thus fixed for all test samples,
whereas in our setting we estimate confidences of individual classifiers per given
test sample. We show that this method has state-of-the-art performance on
several gene expression data sets as well as for methylation data sets both for
different cancer types. Since the weighting of the classifiers is customized for
each test sample the estimated confidences can offer insights into the specific
characteristics of the cancer of each individual. Therefore, we show how to
visualize the important genes found through such an analysis and then also
show how to find the important genes of the training set using our learning
method.
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2 Methods

2.1 Materials

2.1.1 Data Sources:

In this article, our method is applied to two different data types: gene expression
data and DNA methylation data.

• Van ’t Veer ([27]): This data set contains 97 breast cancer samples. For
each sample gene expression measurements as well as prognosis labels
are available, indicating if the patient had any distant metastases after
diagnosis.

• The Cancer Genome Atlas ([24]): The Cancer Genome Atlas (TCGA) is
a joint effort of the National Cancer Institute and the National Human
Genome Research Institute to advance the understanding of the molecular
basis of cancer. They provide access to the different measurements from
cancer samples that have been analyzed to external researchers. Sam-
ples are categorized according to diagnosed cancer from which we use the
following groups:

– Acute Myeloid Leukemia (LAML) ([26]): At the time of writing, the
data set includes 200 samples. 194 samples contain methylation data
and we use the part of the data measured by JHU-USC Human-
Methylation450 arrays. 173 samples contain mRNA data measured
by HG-U133 arrays. In this article the methylation data is referred to
as TCGA-LAML. Among available characteristics of samples, “risk
group” and “vital status” are chosen as target classes. These labels
show the aggressiveness of the disease. In our analysis, regarding risk
group, {favorable} and {intermediate/normal, poor} samples form
our two group, and in the analysis of vital status, {alive} and {dead}
samples form our two groups of samples.

– Breast invasive carcinoma (BRCA) ([25]): This data set includes 993
samples with clinical data, and we use the methylation data compo-
nent measured by JHU-USC HumanMethylation450 arrays. Only
very few samples in this data set are indicated as having metasta-
sized (8 samples). Therefore, it is not possible to analyze the data
set according to metastasis as is done with van ’t Veer data. Hence
the data are analyzed according to “tumor size”, “affected nearby
lymph nodes”, “stage”, and “estrogen receptor”. Estrogen receptor
was shown to be an important factor in prognosis ([16]), and along
with other factors directly affects the decision for therapy ([12, 19]).
For tumor size {T1, T2} samples are one category and {T3, T4}
the other category; in order to analyze affected nearby lymph nodes,
{N0} is compared to {N1, N2, N3}; stage is analyzed as having {stage
I, stage II} vs. {stage III} samples. Estrogen receptor status of sam-
ples is either positive or negative, and they form our two classes.
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2.1.2 Data Preprocessing:

To prepare gene expression data for analysis, microarray probes are mapped
to their respective gene. If there are multiple probes for a gene, the median
reported gene expression value of those probes is adopted as the gene expression
for that gene.

Preparing the methylation data, we use the nearby gene for each methylation
site available for each sample and each methylation site. The median beta value
of methylation sites mapped to each gene is taken as the methylation value of
the corresponding gene. In this process only methylation sites located on the
promoter region of a gene are considered and others are discarded.

2.2 Boosting

For a given prediction problem the idea of boosting is to find an optimal combi-
nation of classifiers, also called “weak learners” ([6]). There are many methods of
finding the optimal combination of such weak learners, two of which are stochas-
tic gradient boosting ([10]) and AdaBoost ([9]). Stochastic gradient boosting
tries to estimate the gradients of the loss function and train each individual
weak learner in a way that best improves the loss function. AdaBoost tries to
identify samples among given data samples that are harder to classify, and gives
them more weight in the process of training individual weak learners. One way
of improving AdaBoost is to take into account the confidences of predictions
given by weak learners if possible and use estimated confidences in the voting
process ([22]).

2.3 Learning a Mixture of Disjoint Classifiers

When dealing with cancer, we need to consider the fact that tumors of the same
type of cancer can be very different in nature and they are usually classified as
different cancer subtypes. In fact, even one single tumor can be very heteroge-
neous ([13]). This means that the malignancies causing the cancer to happen
are genetically different between subtypes, or even within subtypes, and it is
possible to have multiple underlying cellular processes causing a particular can-
cer. Also it is important to note that the nature of our given data is such that
the input features are properties measured from genes, e.g. gene expression or
methylation values, and these variables are correlated and statistically depen-
dent on each other. Our method tries to exploit these properties of the problem
to infer an interpretable model with state-of-the-art performance.
Our method can be characterized by the following key parts:

Training phase:

• Fit several individual classifiers to the data, in such a way that the features
of the data they use are disjoint sets.

Prediction phase:
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• Calculate the prediction confidence of each individual classifier by:

– Estimating the reliability of input features of the classifier;

– Estimating the confidence of the output based on the decision values.

• Calculate a weighted prediction label based on the individual classifier
confidences.

2.3.1 Properties of the Individual Classifiers:

A wide variety of classifiers is possible within our framework. One requirement
is that the classifier is regularized (i.e., the stronger the regularization, the
less complex the model gets and consequently the less features are used). The
classifier is also required to report the probability of its calculated output, or
to give a decision value according to which it chooses the predicted class. We
use an L1 regularized SVM for this purpose with a linear kernel ([3]). The
L1 regularization makes the SVM sparse, i.e. using only a few input features,
and the linear kernel allows us to infer which features are used in the decision
function of the SVM after it is fit to the data.

2.3.2 Training the Individual Classifiers:

The model starts with no individual classifiers and an empty set of excluded
features. In each step, the excluded set of features is removed from the data,
then a classifier is fit to the data. Next the features used by the most recent
trained classifier are added to the excluded set. In the case of a linear kernel
SVM, this is achieved by finding features with a non-zero coefficient in the
model. This way the features being used by classifiers are disjoint and might
represent different underlying causes of groups into which samples are to be
classified.

2.3.3 Combining Classifiers by Estimating Confidences of Individual
Predictors:

Given a set of classifiers, the question is how to combine them to come up with
a joint prediction value for each test sample for which we want to predict the
output label. The intuition behind combining the classifiers is to put more
weight on classifiers that use features whose behavior is similar to the training
data. This is motivated by the fact that some parts of the test data might be-
have very differently to the training data, meaning that a classifier using these
features should have lower performance than a classifier using features that are
distributed similarly to the training data. Therefore we need to evaluate the
reliability of the input features of each individual classifier. In scenarios like
gene expression or methylation analysis, we usually have many input features.
Furthermore, many features are correlated and statistically dependent. The
idea of our new method is to build separate prediction models for each feature
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of each classifier. These prediction models can then be used to obtain a con-
fidence for the feature in a given test sample. These confidences can then be
combined for each classifier to give a weighting of the classifiers for the given
test sample. To evaluate an observed feature f , we try to choose a few statisti-
cally dependent features, and fit a model to predict f . To find these features,
first the estimated mutual information of all other features with feature f is
calculated ([21]). Then, features having mutual information value within the
top 5%, or at least 5 features, are selected as predictors of f . Given a test
sample, the closer the predicted value of f is to the observed value, the more
reliable it is. To quantify this, we need to not only know the predicted value
of the feature, but also a confidence interval for that prediction. This can be
achieved using Gaussian processes, which give the mean and variance of the pos-
terior probability under the condition of observed values for selected features.
A weighted average of these values gives us the overall reliability of the features
of an individual classifier.

In addition to the confidence in the classifier estimated by looking at the
confidences of its individual features, we also account for the confidence that
the classifier has in the prediction label of the test sample. If the method
supplies such a confidence value (e.g., Gaussian processes), we can directly use
it. Otherwise, we estimate it using the decision value. In our setting, the linear
SVM gives a decision value whose sign defines the predicted class. Using these
values we estimate a confidence for each individual classifier. Several approaches
exist for deriving a confidence from the decision values ([18]). Whether these
or other additional methods could lead to further improvements of our method,
will be topic of further study.

More formally speaking, define X to be the set of input samples, Xs to be
the input vector of sample s, ys and ŷs to be respectively the original label and
predicted output of sample s, ∆ to be the set of individual classifiers, li to be an
individual classifier, Φli the set of input features of classifier li, li(Xs) to be the
label predicted by classifier li for sample Xs, and f to be a feature, Xs,f to be
the observed value of feature f in sample Xs, |wli(f)| to be the absolute value of
the weight of feature f in the decision function of classifier li, and gf to be the
Gaussian process predicting feature f using feature set Φf . Also µgf (Xs) and
σgf (Xs) are the mean and standard deviation of the posterior probability given
by Gaussian process gf under the condition of observing values of features in Φf ,
and µli and σli are respectively the expected mean and standard deviation of
the decision value of classifier li. Here F is the cumulative distribution function
of a standard normal distribution.

The training phase of the model is shown in Fig. 1, in which, N is the number
of individual learners to be included in the model, Φl is the union over all Φli

and X−Φl
is the input X after discarding all features of the set Φl. TOP is the

function which selects the maximum of the top 5 and top 5% features f ′ of all
features ordered by mutual information with feature f .
Now given a test sample Xs, the estimated confidence of a feature f is:
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Φl ← {}

i ← 0

i < N

li ← L1-SVM(X−Φl
, y)

Φl ← Φl ∪ Φli

i ← i + 1

f ∈ Φli

Φf ← TOP {(f ′,MI (f, f ′))}

gf ← GP(XΦf
, f)

for

for

while

do

do

ΦlX y

X Φli

Figure 1: UML activity diagram of the training process
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cf (Xs) := 2 · F
(
−
∣∣∣∣Xs,f − µgf (Xs)

σgf (Xs)

∣∣∣∣) (1)

Then the overall feature reliability or confidence of a classifier li is estimated as:

c1li(Xs) :=

∑
f∈Φli

cf (Xs) · |wli(f)|∑
f∈Φli

|wli(f)|
(2)

Also the estimated output confidence of the classifier li is:

c2li(Xs) := 1− 2 · F
(
−
∣∣∣∣ li(Xs)− µli

σli

∣∣∣∣) (3)

and the final confidence of the classifier li is then:

cli(Xs) := c1li(Xs) · c2li(Xs) (4)

Finally, the predicted class ŷs is calculated as the sign of a weighted vote among
individual classifiers:

ŷs := sign

(∑
li∈∆ cli(Xs) · li(Xs)∑

li∈∆ cli(Xs)

)
(5)

2.4 Visualization of Model Predictions

The interpretation of the model can be understood on two different ways. First
we assume for a given training data set, the model is trained and a new test
sample is given. For the given test sample it is possible to visualize the reliabil-
ity of each used feature in individual classifiers, as well as the overall confidence
of each individual classifier. Used features can be superimposed onto a PPI net-
work as well as their reliability and the confidence of their respective individual
classifier.
Gene expression and methylation level measurements from cancer samples are
usually very noisy. Furthermore, cancers are usually very heterogeneous. Ad-
ditionally, there might be different subgroups for each interesting group (e.g.,
cancer stage), for which the importance of the features also differs. To get a
global picture of the important features, we therefore evaluate how often certain
features are selected by the classifiers using 100 random train test partitionings
with 80% of the data for training and 20% of the data for testing. To visualize
high confidence relationships between features, we create a graph which has a
node for every chosen feature in any of the 100 train partitions in any of the
individual classifiers. The weight of an edge (s, t) is defined as the number of
times the respective features have occurred together in an individual classifier.
Then, all edges with low weights are discarded. In order to find a threshold to
prune edges according to their weights, a Gaussian kernel density estimate is fit
to the weights of the edges, and the threshold is chosen at the 90th percentile.
Nodes that have an appearance frequency higher than the threshold are labeled
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by their gene names and edges having a higher weight than the threshold are
kept in the graph.

For illustration purposes, choosing the regularization parameter is done in
a way to maximize the number of genes selected with high confidence, as well
as minimizing the number of genes pruned out in the process. It is important
to remember that considering the results of the method under different regular-
ization parameters is essential to make sure the selected genes possess a high
confidence and are also stable regardless of sampling of the training data set.

2.5 Implementation Details

To compare the performance of our method with other methods, the implemen-
tations present in Python scikit-learn(0.14) package are taken. In the case of
stochastic gradient boosting, the representing class is GradientBoostingClassi-
fier, the number of classifiers is set to 100, and to make it sparse and prevent
over-fitting, the maximum number of features for splits in trees is set to 5, and
the maximum number of layers is set to 2. For AdaBoost, AdaBoostClassifier
is used, which is an implementation of AdaBoost-SAMME ([30]), with weak
learner set to DecisionTreeClassifier with maximum depth set to 2, and the
number of weak classifiers set to 100. Parameters of the two boosting algo-
rithms are chosen by a grid search on their parameter space over all the data
sets and selecting the parameter sets which give a robust and stable result over
all experiments. Detailed report of the performance measures with different
parameters is given in Supplementary 2. As an SVM, ν-SVM with ν = 0.25
is used, once with a linear kernel, and once with an RBF kernel; γ parameter
of the RBF kernel is set to (num of features)

−1
. The ν parameter is set to

the maximum value for which the optimization function is solvable with libsvm
for all analyzed data sets ([4]). Smaller values cause the SVM to overfit to
the data and not generalize well. The Gaussian process’s correlation function
is a squared-exponential, and mutual information is estimated using minepy
package ([2]).

The PPI network used in our analysis is from the Human Protein Reference
Database (HPRD) ([20]). Almost all edges and relationships between proteins
that are added to this database are manually extracted from literature by bi-
ologists, hence it has a lower rate of edges included in the database for which
there is no evidence in the literature.

3 Results and Discussion

3.1 Performance comparison

The performance of the method was compared with that of two ensemble meth-
ods, AdaBoost and stochastic gradient boosting, as well as an SVM with linear
kernel, and an SVM with an RBF kernel. We also included our implementation
of the NICK method ([17]). We randomly partitioned the data into training
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Figure 2: Performance Summary (AUC) Each box shows a 25–75% interval,
as well as the median, which is shown as a horizontal line in each box.

and test sets with 80% of the data for training and 20% of the data for testing.
To compare the performance of the different methods, Area Under the receiver
operating characteristic Curve (AUC) ([7]) was calculated on the test set over
the decision values returned by the methods on the individual samples. The
process was repeated 100 times to reduce random effects. As seen in Fig. 2,
overall performances of all methods are comparable. In some cases a single
SVM works better, in some other cases ensemble algorithms give a better per-
formance. However, in most cases an improvement in performance is observed
by adding individual learners to the model, with the greatest gains due to the
first few individual learners added to the model.

3.2 Interpretability of Predictions

Here we present the results of running the method on the TCGA-LAML gene
expression data set.
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Figure 3: Visualization of one model A sample model for TCGA-LAML
gene expression data (a) individual classifiers and their selected features; higher
confidence of a node is shown by a darker color, (b) selected genes plotted over
the PPI network; green and yellow show low and high confidence respectively,
and the thickness of the border of the node shows the respective confidence of
the individual classifier to which it belongs.

3.2.1 Visualization of Features Important for a Particular Test Sam-
ple:

Having a model trained on the data, and given a test sample, it is possible to
infer and visualize which individual classifier(s) is (are) influencing the predic-
tion most. To this end, individual learners as well as the features they use are
visualized as in Fig. 3(a). In this figure, nodes with labels starting with “L ”
represent individual classifiers, and other nodes are labeled with their respec-
tive gene name. The color of the node shows its confidence compared to other
nodes; the darker the node, the higher the confidence. In the case of a gene, it is
the confidence or reliability of the feature (cf ), and in the case of an individual
classifier, it is the overall estimated confidence (cli). Edges show which classifier
is using which genes in its decision function. The shape of a node represents
the individual classifier they belong to.

To get a better overview of the individual features that were chosen by the
classifiers for the particular test sample, we visualized the corresponding genes
on a graph containing information about the PPI network in Fig. 3(b). We
extracted the PPI information from HPRD as explained before. This way, it
is possible to find over- or under-regulated pathways that might be responsible
for the label (e.g., cancer stage) of the test sample. Since PPI networks can
be quite dense, we removed parts of the induced network. For this purpose we
computed each shortest path between all pairs of selected features. Then, the
minimum spanning tree of that section was plotted, after removing branches
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with no selected feature.
Most of the features chosen by any of the classifiers (colored nodes) are not

connected to any other chosen feature. It is known that there is in many cases a
correlation between expression value of the genes whose corresponding proteins
interact ([14]). Therefore, a regularized model will only choose a subset of the
correlated features. This explains the observation that features selected by a
single model can be distant from each other on a PPI network; but if multiple
disjoint sparse models are fit to the data, their selected features might happen to
be close to each other on the PPI network (e.g., node TPT1 and node EEF1A1
in Fig. 3(b)).

3.2.2 Visualization of Important Global Features:

As explained in Section 2.4, a graph is created from model structures of all 100
random training partitions, and then it is pruned to keep only high confidence
nodes and edges. The density estimation of the graph edge weights and the
pruned graph are plotted in Fig. 4 and the nodes with labels are the ones that
are not pruned. The nodes in this figure that do not have any label, are the ones
with frequency lower than the corresponding threshold. Among the features
considered to be important were features that had previously been linked to
leukemia such as SH3KBP1 ([1]).

0 10 20 30 40 50 60 70 80
0 .000

0 .005

0 .010

0 .015

0 .020

0 .025

0 .030

0 .035

(a)

DCAF6

RPL23A

RPL37A

RPS20

RPS3ASH3KBP1

TPT1

(b)

Figure 4: (a) Determine pruning threshold Threshold is determined by
finding the point after which, 90% of the area under the curve is observed from
left to right. The horizontal axis shows the observed frequency or weight of the
edges. (b) Important Global Features High confidence nodes and edges of
the graph generated from the model on TCGA-LAML gene expression data.
Darker color represents higher rate of being selected by a classifier.

What was more intriguing to see was that four out of the seven important
features of the TCGA-LAML gene expression data set contained ribosomal pro-
teins (when using the risk group label). For a long time ribosomes were just
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considered machines that perform an unbiased translation of genes from mRNA
to amino acid sequences, but this view has recently been challenged ([29]). One
new hypothesis is that the ribosome introduces an additional regulatory layer.
Therefore, it could very well be that mutations in ribosomal proteins can lead
to a misregulation of expression levels of important genes and ultimately to the
development of cancer (in this case leukemia). One of the ribosomal proteins
we found was RPL23A. It has been shown that loss of RPL23A can impede
growth and lead to morphological abnormalities in Arabidopsis Thaliana ([29]).
Therefore, a mutation in RPL23A might also have severe effects in humans. A
missense mutation in RPL23A was recently found in patients having Diamond-
Blackfan anemia, which is an inherited form of pure red cell aplasia (related to
leukemia) ([11]). Note that the model for LAML has low performance for the
regularization value chosen. Nevertheless, the features shown here are also the
ones with the highest confidence for models learnt with less regularization (with
several other additional features). The models with less regularization show
similar performance to the other methods shown in Fig. 2 (See Supplementary
1 for details).

4 Conclusion

Machine learning has become more and more popular in many real world sce-
narios for making sense of large collections of facts. Differences between the
data used for training the method and new data for which the label should be
predicted can limit the performance of prediction methods on those data. In this
work we introduced a method that estimates these potential partial biases and
incorporates them into the prediction function. We applied it to gene expres-
sion and DNA methylation measurements from cancer patients. Our method
has state-of-the-art performance on many different prediction tasks. Further-
more, we show how to make sense of the predictions. Visualizing the important
genes can lead to new biological insights, as shown for the TCGA-LAML data
set with the risk group label. Instead of mapping the genes to PPI networks,
one could also think of mapping them to signaling pathways ([15]). Recently,
a study showed that most published signatures are not significantly more asso-
ciated with cancer outcome than random signatures ([28]). One of the reasons
for this finding is that the data comes from slightly different underlying hidden
data distributions. Since our new method estimates this bias and corrects for
it by up-weighting the classifiers that have higher confidence, we expect that it
should be less susceptible to such differences in the data, but this will be sub-
ject to future work. With the current implementation, most of the calculation
time is spent for calculating the mutual information of features with selected
features. A way to speed this up is by pre-processing and clustering the features
so that only a subset of features are subject to mutual information computation
for any given feature. The performance of this approach will be evaluated in
future work.
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