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Abstract Patterns of genetic covariance between characters
(represented by the covariance matrix G) play an important
role in morphological evolution, since they interact with
the evolutionary forces acting over populations. They are
also expected to influence the patterns expressed in their
phenotypic counterparts (P), because of limits imposed
by multiple developmental and functional restrictions on
the genotype/phenotype map. We have investigated genetic
covariances in the skull and mandible of the vesper mouse
(Calomys expulsus) in order to estimate the degree of
similarity between genetic and phenotypic covariances and
its potential roots on developmental and functional factors
shaping those integration patterns. We use a classic ad
hoc analysis of morphological integration based on current
state of art of developmental/functional factors during
mammalian ontogeny and also applied a novel methodology
that makes use of simulated evolutionary responses. We
have obtained P and G that are strongly similar, for both
skull and mandible; their similarity is achieved through
the spatial and temporal organization of developmental and
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functional interactions, which are consistently recognized as
hypothesis of trait associations in both matrices.
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Introduction

Morphological integration refers to the interconnection
among morphological elements due to genetic, functional
and developmental relationships between such elements, as
expressed during the course of development (Olson and
Miller 1958; Cheverud 1996). From a classical quantita-
tive genetics perspective (Falconer and Mackay 1996), these
interconnections among morphological elements are repre-
sented as phenotypic and genetic covariance or correlation
matrices (P and G, respectively). The structure represented
by G is the product of additive effects of multiple loci, af-
fecting multiple traits through pleiotropy and linkage dise-
quilibrium. Phenotypic covariance or correlation structure is
then defined as the result of the interactions between these
genetic effects and environmental perturbations. However,
genes act upon phenotypes through development, which can
be thought as a function that maps genotypes into pheno-
types (Wagner 1984; Polly 2008). In this context, integra-
tion refers to the structure of gene-trait mapping. Theoreti-
cal considerations made by Wagner (1996) suggest that this
genotype/phenotype map would display a modular organi-
zation; i.e., that traits are grouped in subsets, and each trait
subset is affected by a subset of genes with pleiotropic ef-
fects mostly confined to each group.

While G is associated with the additive portion of
genetic variation, which can be understood as the linear
approximation of this developmental function centered at
the mean phenotype (Wagner 1984), its structural aspects
are also dependent upon non-linear developmental factors,
traditionally viewed in quantitative genetics as dominance
and epistasis (Wolf et al 2001). Developmental dynamics
involves not only the interaction among many genes, but
the interactions among the developing cells and tissues,
both in terms of differential expression and signaling, and
mechanical interactions; these complex interactions often
lead to non-linear effects within the genotype/phenotype
map (Turing 1952; Polly 2008; Krupinski et al 2011;
Tiedemann et al 2012; Watson et al 2013). In the mammalian
skull, for instance, there is a series of overlapping steps
that define the adult phenotype, such as neural crest
cell migration, the formation of cell condensations of
osteoblasts and the subsequent differentiation of these cells
into osteocytes, brain growth and muscle-bone interactions
(Hallgrimsson and Lieberman 2008; Franz-Odendaal 2011);
therefore, while development has a tendency to produce
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covariance among morphological elements, the pattern
described by phenotypic or genetic covariance matrices is
often difficult to categorize, due to the superposition of these
effects in shaping covariance patterns (Hallgrimsson et al
2009; Roseman et al 2009). Furthermore, developmental
dynamics may limit the full expression of genetic variation
(Hallgrimsson et al 2009), since mutational effects may
destabilize the system as a whole; hence, developmental
dynamics may act as internal stabilizing selection (Cheverud
1984) and, in equilibrium, the genetic covariance structure
will match those pattern arising both from stabilizing
selection, drift, and mutational effects (Lande 1980).

Empirical evidence on the association between morpho-
logical traits and their underlying genetic architecture fo-
cused on the identification of pleiotropic quantitative trait
loci supports the hypothesis of modular organization in
gene-trait associations. For instance, the partitioning of the
skull into Face and Neurocranium (Leamy et al 1999) and
partitioning of the mandible into Alveolar Process and As-
cending Ramus (Cheverud et al 1997; Mezey et al 2000;
Cheverud 2006); however, Klingenberg et al (2004) has
found evidence contrary to these mandibular partitions, al-
though the disagreement between these results might arise
due to methodological differences between traditional and
geometric morphometrics. Without a strict adherence to
the view of a modular genotype/phenotype map, Roseman
et al (2009) found a positive association between correlation
among pairs of traits and their amount of shared pleiotropic
effects.

The structural aspects expressed in G are central to all
discussions regarding the evolution of complex phenotypes
since G mediates the response to directional selection
(Lande 1979), imposing several properties of such response
in a microevolutionary scale (Hansen and Houle 2008),
with possible consequences on a macroevolutionary scale
(Marroig and Cheverud 2005). For example, the cosine of
the angle between a given selection gradient (B; the vector
of fitness slopes over phenotypes; Lande 1979; Falconer and
Mackay 1996) and the response it produces (AZ), called
flexibility (f) by Marroig et al (2009), is affected both by
the imposed selection direction and the covariance structure
of the trait system considered. For example, in a system
composed of three traits (Figure 1), if directional selection is
aligned with the genetic covariance structure in a population
(which describes morphological integration), response to
such selection will be direct (Figure la-b), yielding a high
flexibility value for this selection gradient. However, if the
selection gradient is unaligned to population covariance
structure, response to selection will be deflected from the
optimal direction (Figure lc-d), lowering the associated
flexibility value.

The relationship between selection gradients and re-
sponse to selection may also be affected by the line of ge-
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Fig. 1 Theoretical expectations regarding the relationship between
selection gradients and response to selection with respect to covariance
structure. In this system composed of three traits, the covariance
between x; and x; is positive, while both these traits are independent
from y;. In (a) and (b), the B applied over the covariance matrix
between xj, x» and y; matches the covariance matrix structure;
therefore, AZ follows B closely, yielding a high f value. In (c) and
(d), B does not match the structure embedded in the covariance matrix;
hence, AZ is deflected due to the covariance between x; and x, (c); in
this case, the associated f value is lower.

netics least resistance (LLR; Schluter 1996), the first eigen-
vector of G, which represent the major axis of multivariate
genetic variation on a population for a given trait system. If
genetic variation is concentrated in this direction in a given
population (Figure 2a), response to selection will be biased
towards it; only selection vectors nearly orthogonal to the
LLR would escape such bias. Hence, the population would
exhibit overall lower flexibility values, compared to another
population with less variation concentrated along the LLR
(Figure 2b). With respect to mammalian morphological sys-
tems, the LLR is, in most cases, associated with size varia-
tion (Marroig et al 2004; Porto et al 2009, 2013), and can be
thought as a global integrating factor, since it impacts mor-
phological variation as a whole. Therefore, the effect of this
source of variation over morphological integration has to be
taken into account when dealing with such systems (Mar-
roig et al 2004; Mitteroecker and Bookstein 2007; Porto et al
2013).

Due to the importance of the genetic covariance
structure in multivariate trait systems, there has been a
consistent effort in estimating G (Steppan et al 2002).
Howeyver, such matrices are often difficult to estimate, since
this estimation depends on the availability of genealogical
relationship information within a population (Falconer and
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Fig. 2 Expectations regarding the relationship between flexibility
values and variation along the LLR. In (a) and (b), the B applied
over the covariance matrix between x| and x; only selects for average
increase in x;. In both situations, response to selection is deflected due
to the covariance between the two traits. However, the response is more
strongly biased in (a) than in (b), leading to a lower associated f value
for the first situation.

Mackay 1996; Lynch and Walsh 1998). Furthermore, even
if such information exists, the estimation of G is severely
prone to error (Hill and Thompson 1978; Meyer and
Kirkpatrick 2008; Marroig et al 2012), since their estimation
is usually based on sample units (families) that are an order
of magnitude lower than sample sizes for P (Roff 1997).

A solution to this limitation was proposed by Cheverud
(1988), who compared a wide range of Ps and Gs estimated
mostly from morphological traits, finding similarities in co-
variance patterns, especially for morphological traits. There-
fore, the so called ’Cheverud’s Conjecture’ (Roff 1995)
states that the patterns expressed by G will be mirrored by
their phenotypic counterparts, given that the covariance be-
tween environmental effects (E) are either low, uncorrelated
or similar to G in their structure. While it may seem odd
that environmental and genetic covariance patterns would
have similar structures, both sources of variation exert their
effects over phenotypic covariance structure through com-
mon developmental pathways (Klingenberg 2008). Several
authors (e.g.: Roff 1995, 1997; Reusch and Blanckenhorn
1998; Roff and Fairbairn 2011; Dochtermann 2011) have
formally tested this conjecture for different traits systems
across a wide range of taxa, finding supporting evidence on
its favor.

In the present article, we estimated phenotypic and
genetic covariance and correlation matrices for both cranial
and mandibular traits for a population of the vesper
mouse Calomys expulsus, a sigmodontine rodent, comparing
these matrices with respect to the correspondence of
patterns predicted by Cheverud’s Conjecture (Cheverud
1988; Roff 1995). We also investigated the association
between covariance/correlation structure and hypotheses of
trait associations based upon functional and developmental
relationships, using the traditional methods established by
several authors (Cheverud 1995; Marroig and Cheverud
2001; Marroig et al 2004; Porto et al 2009) and a

novel methodology, based on the expectations regarding
the relationship between selection gradients that represent
hypotheses of trait association and response to selection to
such gradients, as suggested by Hansen and Houle (2008).

Materials and Methods
Sample

The genus Calomys (Muroidea, Cricetidae) consists of six
species of small sigmodontine rodents that occurs in open
and forested areas across Central South America (Her-
shkovitz 1962; Bonvicino and Almeida 2000; Bonvicino
et al 2003). Molecular phylogenetic analysis indicates that
Calomys is a basal clade of the Phylottini tribe (Steppan et al
2004). The vesper mouse, Calomys expulsus, occurs over the
dry biomes of Central Brazil in sympatry with the delicate
vesper mouse (C. fener) at the southern limit of its distribu-
tion. Recently, both morphological, karyotypic and molecu-
lar data confirm the validity of the species (Bonvicino and
Almeida 2000; Almeida et al 2007).

In order to estimate covariance matrices for cranial
and mandibular traits in C. expulsus, we used a series
of specimens deposited at the mammal collection of the
Museu Nacional do Rio de Janeiro (MNRJ). This series
constitute a captive-bred colony originated from 37 sexually
immature individuals captured in a single locality in the
State of Minas Gerais, Brazil (Fazenda Canoas, 16°50'S,
43°35'W, 800m). Twenty-one males and 16 females were
placed under controlled conditions and randomly paired,
producing over 400 sibs in a one-year period; each litter
was maintained with its dam until weaning. During this
period, couples were rearranged at random; therefore, the
colony design is unbalanced, containing both paternal
and maternal half-sibs. Our sample is constituted of 365
skulls and 228 mandibles of individuals from this colony
whose genealogical information is available, comprising
individuals of both sexes and of different age classes.

Landmarks and measurements

We registered three-dimensional coordinates for 20 cranial
landmarks (Figure 3) using a Microscribe MX digitizer
(Microscribe, IL). We registered bilaterally symmetrical
landmarks in both sides, when available, for a total of 32
landmarks. Details of the digitizing procedure and landmark
definition can be found in Cheverud (1995). We calculated
a set of 35 inter-landmark distances (Figure 3); trait
names follow the landmarks of which they are composed.
We measured each individual twice, in order to access
measurement error through the estimation of repeatability
(Lessels and Boag 1987). After this estimation, we averaged
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Fig. 3 The 20 registered landmarks represented over an adult skull of
C. expulsus in dorsal (a), lateral (b) and ventral (c) views. Landmark
names are highlighted in the particular view at which they are best
defined. The set of 35 inter-landmark distances are also represented;
different line types represent distinct modularity hypotheses to which
traits are associated. Some distances (ISPNS, NSLZI, PTTSP) are
associated with more than one hypothesis, indicated by double lines.

repeated measures, thus reducing our measurement error
(Falconer and Mackay 1996); we also averaged distances
that are present on both sides of the skull. Therefore, our
set of 35 cranial traits is comprised of these averaged
inter-landmark distances. Our inter-landmarks distances
are designed to measure individual bones, thus capturing
localized aspects of the skull development and avoiding the
shortcomings of dealing with full length measures capturing
several bones at same time (skull length for example) or
principal components of shape.

We registered bi-dimensional coordinates for 10
mandibular landmarks (Figure 4) over pictures we took of
both hemimandibles (when available) using tpsDig2 (Rohlf
2006), and calculated a set of 20 inter-landmark distances
(Figure 4). We averaged measures from both hemimandibles
to compose our set of 20 mandibular traits; as with the skull,
trait names follow the landmarks of which they are com-
posed. Since the mandible is a single bone, both landmark
placements and inter-landmark distances suffer from a in-
trinsic uncertainty, because most landmarks are defined

as the limits of mandibular processes (Bookstein 1991);
therefore, our mandibular traits may not be as biologically
meaningful as our cranial traits, since they only describe
mandibular morphology, not being associated with particu-
lar developmental processes.

We took a second set of pictures of a subset of 30
individuals; we used this subset to estimate repeatability
taking into account both measurement error and the error
associated with picture registration. To this purpose, we
collected four sets of data for these individuals, two from
each set of pictures. Repeatability in this case is the
percentage of variance explained by the individual factor
alone, excluding variation from both measurement and
photo acquisition errors.

Estimation of covariance matrices

Since sexual dimorphism and ontogenetic variation are
of little interest within the present context, we explored
such sources of variation with respect to our sets of 35
cranial traits and 20 mandibular traits through analysis of
multivariate covariance (MANCOVA), and evaluated the
significance of these factors (and their interaction term)
using Wilks’ A test. In order to remove the impact these
effects may have on covariance structure, we used the
residual covariance matrices of the two separate linear
models (one for cranial traits and a second one for
mandibular traits) as estimates of phenotypic covariance
matrices for the C. expulsus population. We also estimated
Ps for different ages (20, 30, 50, 100, 200, 300 and 400 days)
and for males and females. These matrices were compared

Fig. 4 The 10 registered landmarks represented over an adult left
hemimandible of C. expulsus. Lines between landmarks represent
the set of 20 Euclidean distances calculated between landmarks;
the dashed line represents the two distinct morphological integration
hypotheses tested over these traits, the (anterior) Alveolar Processes
and the (posterior) Ascending Ramus. Landmark definitions follow:
DA: dorsal incisor alveolus; MA: anterior limit of m1; MP: posterior
limit of m1; COR: coronoid process dorsal limit; MCA: anterior
limit of mandibular condyle; MCP: posterior limit of mandibular
condyle; ANG: angular process posterior limit; IDM: maximum dorsal
inflection between angular and alveolar processes; VC: ventral limit of
chin; VA: ventral incisor alveolus.
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in order to test whether these matrices are similar and can be
grouped into a single P for the entire sample.

G-matrix estimation

For the estimation of genetic covariance matrices of these
two sets of traits, we use the approach proposed by Runcie
and Mukherjee (2013) that uses a Bayesian mixed-effects
model in order to produce G estimates. This model builds
upon the simple animal model (Lynch and Walsh 1998) by
defining both G and P as depending on a set of latent traits,
i.e., linear combination of the original set of traits. The prior
distributions that define these factors impose two important
constraints on their structure: first, that there is a declining
influence of subsequent factors in terms of amount of
explained phenotypic and genetic variance; second, the prior
distributions impose sparsity over each factor; therefore,
each latent trait is associated to a limited number of traits
in the original set. Therefore, based on this factorization, G
can be represented as

G=AZ A +¥, )

where A is the matrix of trait loadings on each factor, X»
is the diagonal matrix of factor heritabilities, and ¥, is the
diagonal matrix of trait-specific genetic variances. Due to
its characteristic decomposition of G-matrices, this model
was named Bayesian Sparse Factor analysis of Genetic
covariances (BSFG) by Runcie and Mukherjee (2013).

In order to obtain posterior distribution samples for A,
X,», and ¥, in both cranial and mandibular trait sets, we
used a MCMC algorithm, obtaining 1000 samples from
10000 iterations, with a burnin period of 1000 iterations.
We initialized the MCMC run with 17 latent traits for
both cranial and mandibular trait sets. We did a handful
of MCMC runs with different initial prior distribution
parameters, but posterior distributions were not affected by
these differences. For each sample taken from the posterior
distribution for those parameters described above, we
constructed a different G, obtaining a posterior distribution
for this matrix; we also estimate a posterior mean matrix,
which is our best estimate for G.

Using the posterior distribution of heritabilities associ-
ated with each factor (X #2)» we test whether any given fac-
tor has a genetic variance different from zero, by computing
the highest posterior density (HPD) intervals for all diagonal
elements of X,,. Using the posterior sample of G-matrices,
we also estimated posterior intervals for trait heritabilities.

We also estimated G using a classical REML algorithm
(Shaw 1987), treating genetic variances for each trait and
pairwise genetic covariances as independent estimates; we
grouped these estimates in matrix form to compose a G
estimate. We did such proceeding using both a REML
algorithm we wrote using R ({R Core Team} 2013) and also

in WOMBAT (Meyer 2007), estimating additive variances
and covariances using the simple animal model (Lynch
and Walsh 1998). We compared these estimates with those
obtained from the Bayesian sparse factor analysis outlined
above; however, we chose to use the Bayesian model for
four reasons. First, it produces estimates for the entire G
structure simultaneously; when using REML algorithms,
this structure has to be divided into its components
(genetic variances and covariances) to be computationally
tractable. Second, since G estimates from the BSFG
model are samples from the posterior distribution, they
are constrained to have only positive eigenvalues, even if
only a reduced number of latent traits is included in the
model. Furthermore, the latent traits (A) obtained from
the BSFG model might be informative in terms of the
underlying processes influencing the genotype/phenotype
map (sensu Wagner and Altenberg 1996). Finally, the
posterior distribution for G we obtained from the model
can be used to obtain posterior intervals for all matrix
parameters we estimated (see the following subsections for
details).

Although we prefer the BSFG model estimates for G,
the conventional REML estimates can be used to estimate
the effective sample size (Nrr) of each h? estimate; this
represents the approximate number of independent additive
values used to estimate that particular 4> value (Cheverud
1995). The relationship

2n*

can be used to estimate effective sample sizes, where K is
the squared 4> estimate, and V (h?) is the estimated variance
of the estimate, considering a normal approximation to the
likelihood profile for that estimate. The geometric mean of
individual N,r estimates for each trait can then be used as
a proxy for the experiment-wise effective sample size for G
as a whole (Cheverud 1995).

Size Variation In order to investigate the influence of size
variation over morphological integration, we also obtained
matrices whose variation associated with the first principal
component has been removed, as this component is usually
associated with size in mammalian morphological systems
(Wagner 1984; Marroig et al 2004; Porto et al 2013). As
suggested by Bookstein et al (1985), a residual matrix whose
size variation has been removed can be obtained using the
following relationship:

R=C—-w 3)

where C represents the raw (size retained) matrix and v
denotes the unstandardized first eigenvector of C; its norm
is equivalent to the square root of the associated eigenvalue.
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Matrix Comparisons

We compared our estimated P with the mean G estimated
from the BSFG model, by using the Random Skewers
method (Cheverud and Marroig 2007) for covariance
matrices and matrix correlation followed by Mantel’s test for
significance (Cheverud et al 1989) for correlation matrices.
We also compared P with all Gs from the posterior
distribution of the BSFG model in order to estimate
uncertainty in matrix similarity, obtaining a distribution of
average Random Skewers and matrix correlation values.
These comparisons directly tests Cheverud’s Conjecture
(Cheverud 1988; Roff 1995) of similarity between genetic
and phenotypic covariance/correlation patterns.

We also compared covariance matrices using the
Selection Response Decomposition method (Marroig et al
2011), which pinpoints differences between matrices with
respect to trait covariance structure. Using this method, we
are able to observe the correspondences between phenotypic
and genetic covariance patterns for both mandibular and
cranial traits. We compared both matrices with size variation
retained and removed using the SRD method.

Morphological Integration Analysis

In order to investigate whether patterns described by P
and G in our sets of cranial and mandibular traits conform
to hypothesis of trait association due to functional and
developmental interactions, we measured both magnitude
and pattern of integration in phenotypic and genetic
covariance/correlation matrices. We represented magnitude
of morphological integration using the ICV (Shirai and
Marroig 2010), which is the coefficient of variation of
eigenvalues in a given covariance matrix.

We took two different approaches to investigate patterns
of integration. In the classical approach (Olson and Miller
1958; Cheverud 1995), we constructed theoretical matrices
to represent hypotheses of association between traits due
to functional and/or developmental relationships expected
a priori (Cheverud 1995). The hypotheses for cranial traits
followed those proposed by Porto et al (2009) for the Order
Rodentia (Figure 3). We constructed a total of nine theoret-
ical matrices for cranial traits: five associated with localized
hypotheses (Oral, Nasal, Zygomatic, Vault and Base), two
associated with more global hypotheses that contrast early
and late developmental patterns in mammals (Neurocranium
and Face, respectively), and two composite hypotheses asso-
ciated with these two groups (Total and Neuroface, respec-
tively). Notice that Total integration correspond to the sum
of all five individual hypothesis into one composite hypothe-
sis and the Neuroface corresponds to the conjoint test of late
and early developmental influence (or the sum of both indi-
vidual hypothesis, Face and Neurocranium). With respect to

mandibular traits, we considered the distinction between the
Alveolar Processes and the Ascending Ramus, according to
Figure 4, as proposed by several authors (e.g.: Cheverud et al
1997; Klingenberg et al 2004; Willmore et al 2009). We also
tested a third, composite hypothesis (Total), corresponding
to the sum of Alveolar and Ascending hypotheses. We cal-
culated matrix correlations using Pearson-product moment
correlation between each constructed theoretical matrix and
the correlation matrices estimated from data in order to es-
timate the association between them (Cheverud et al 1989;
Cheverud 1995). We estimated significance for each corre-
lation calculated this way by Mantel’s test. Notice that, in
the context of testing for hypotheses of association between
traits, this classical approach is equivalent to a simple test of
differences between the averages of two groups, integrated
vs. non-integrated traits, as a Student’s t-test, albeit with the
significance test modified (using Mantel) to account for the
non-independence of the observations (in this case, correla-
tions among traits).

We investigated pattern and magnitude of morphological
integration in matrices with size variation retained and
removed; in order to compare estimates between these two
types of matrices, we used the modularity index proposed
by Porto et al (2013), calculated as the difference between
the mean correlation taken from the set of correlations
bounded by a given hypothesis and the mean correlation
taken from the complementary set of correlations, divided
by the ICV calculated for the corresponding covariance
matrix. This index is, therefore, comparable across matrices
with different magnitudes of integration, which is the case
when comparing matrices with and without size variation.

By using the G posterior distribution obtained from the
BSFG model, we estimated posterior intervals for both ICV
and modularity indexes for each hypothesis. By estimating
these intervals, we intend to represent the error associated
with these parameters estimated over our mean G. It also
allows us to compare the estimated parameter values for
both P and G, under the null hypothesis that differences
between these parameters for the two types of matrices are
only due to error in estimating the mean G. This comparison
addresses the possibility of local differences between P and
G, in a manner similar to the SRD method.

Simulated Evolutionary Responses

The second and novel approach used to test hypotheses
of trait associations is based on simulated evolutionary
responses to selection, as suggested en passant by Hansen
and Houle (2008). We used all covariance matrices
available, including those whose size variation has been
removed (P and G for both skull and mandible). For
each matrix, we obtained an empirical distribution of
flexibility (Marroig et al 2009) without any a priori
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assumptions. Using 10,000 random normalized vectors
drawn from a multivariate normal distribution without
correlation structure, we estimated mean value (f) and the
95% confidence interval for f.

Using this f distribution, we explored our hypotheses
of trait associations (as suggested by Hansen and Houle
2008) by constructing theoretical selection gradients that
represent our hypothetical modules. Each B associated with
a given hypothesis has a value of one for traits within the
hypothetical module and zero otherwise; afterwards, each
vector is also normalized. For each B constructed in this
fashion (Oral, Nasal, Zygomatic, Vault, Base, Face and
Neurocranium for the skull; Alveolar and Ascending for
the mandible), we estimated the associated f values; the
Neuroface (for the skull) and Total (for both skull and
mandible) hypotheses cannot be properly represented as
selection gradients, and are therefore excluded from this
analysis. In order to test whether each of these vectors
corresponds to a set of integrated traits in a given covariance
matrix, we compare these f values with the critical 95%
interval around f for that matrix, obtained from selection
gradients that are random with respect to that matrix
covariance structure. If that particular f is higher than the
critical value from the distribution, we considered this as
evidence that the associated B represents trait associations
embedded in that covariance matrix. In this case, the
corresponding Az follows B more closely than expected
by chance alone; therefore, covariance structure interferes
to a lesser extent in the response to selection in this case,
demonstrating that the population has, to some degree,
independent variation in the direction of that particular .

In a manner similar to the ICV and modularity index,
the G posterior distribution allows us to estimate posterior
distributions for both f and f-values associated with
hypotheses of morphological integration. These distribution
intend to represent the error associated with estimation of
flexibilities in G-matrices; hence, they allow us to compare
f-values between P and G, under the null hypotheses that
differences in these values are only due to error in estimating

G.

BSFG Factors and Morphological Integration

In order to investigate the relationship between the factors
estimated by the BSFG model and our hypotheses of
morphological integration, we calculated vector correlations
between these factors and the vectors constructed to
represent our hypotheses, as outlined in the previous section.
We estimated significance for these correlations by using a
distribution of correlations obtained from random vectors,
in a manner similar to the estimation of significance in the
Random Skewers method (Cheverud and Marroig 2007). If
vector correlations between any given combination of latent

traits and hypothesis vectors is higher than the critical value
estimated from random vector correlations, we consider that
correlation as evidence of non-random association between
latent traits and hypothesis.

Results
Measurement Error Assessment

Repeatabilities for cranial traits (Table S1) ranged from
0.654 to 0.998 with an average value of 0.956 and standard
deviation 0.068. For mandibular traits (Table S2), values
ranged from 0.869 to 0.992, with mean 0.961 and s.d.
0.037. Traits with low repeatabilities were those with low
variances, such as MTPNS. For cranial traits, these results
for repeatability should not impact other results, since
repeatabilities for averaged traits that have been measured
twice (as we have done here) are higher than traits with
single measurements (Falconer and Mackay 1996). For
mandibular traits, the lowest repeatability value is above
0.85; therefore, we expect that further analysis should not
be impacted by the error arising from both photo acquisition
and measurement procedure.

Matrix Estimation

Regarding estimation of phenotypic matrices, both linear
models adjusted for removal of age and sex fixed effects
(and their interaction) were significant for all factors used,
for both sets of traits; separate estimates for P at different
ages and in both males and females are also similar (all
comparisons above 0.68; results not shown). Therefore, we
used the residual covariance matrices from these models as
estimates of P.

Heritabilities for latent traits recovered from the BSFG
model (Table S3) indicate that, for both cranial and
mandibular trait sets, four of the 17 latent traits have
posterior distributions of /4> that do not include the null
value. For both cranial and mandibular trait sets, the first
latent trait recovered is a direction associated with size
variation, as indicated by the negative sign associated
with almost all traits in A, for cranial traits (Table 1,
with the exception of BRPT and BAOPI) and the positive
sign associated with A; for mandibular traits (Table 2).
Considering the posterior distribution of factor loadings in
A for both skull and mandible, almost all traits have factor
loadings different from zero, except for the cranial trait
BRPT and mandibular traits VCVA and MCAMCP.

The second cranial latent trait (A, in Table 1) has
positive loadings associated with most facial traits, and
negative loadings related to neurocranial traits. Therefore,
this factor can be understood as a contrast between these two
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Table 1 Unstandardized first principal components obtained from covariance matrices and factors retrieved from the BSFG model for cranial
traits. Bold values indicate those factor loadings that differ from zero, according to the 95% posterior interval of factor loadings.

Trait Hypothesis Region D1 g1 A As A3 Ay
ISPM Oral Face -0.868  -0.268  -0.347 0.013  -0.003 0.003
PMZS Oral Face -1.196 -0.37  -0.464 0.132 0.012  -0.009
PMZI Oral Face -1.47  -0469 -0.582 0.167 0.031 -0.001
PMMT Oral Face -0.764 -0.23  -0.302 0.001 -0.008 -0.053
MTPNS Oral Face -0.085 -0.023  -0.031 0.002 0.011  -0.003
ISPNS Oral/Nasal Face -1.804 -0.551 -0.708 0.095 0.005 -0.14
NSLZI Oral/Nasal Face -2.607 -0.815 -1.029 0.19 0.01 0.009
ISNSL Nasal Face -0.563  -0.181 -0.235 0.017  -0.005 0
NSLNA Nasal Face -1.822 -0.55  -0.699 0.09 -0.044 -0.021
NSLZS Nasal Face -2.22 -0.68  -0.858 0.194 -0.001 0.006
NAPNS Nasal Face -0.879  -0.269 -0.356 -0.012 -0.006 -0.095
PTZYGO Zygomatic Face -0.951  -0.296 -04  -0.202 0 0.016
7571 Zygomatic Face -0.454  -0.154 -0.2 -0.027 0.008 0.002
ZIMT Zygomatic Face -0.854  -0.274  -0.349 0.102 -0.011 0.023
Z1ZYGO Zygomatic Face -0474  -0.137 -0.2 0.005 0.003  -0.009
ZITSP Zygomatic Face -0.851  -0.262  -0.342 0.03 -0.022 -0.001
EAMZYGO Zygomatic Face -0.504  -0.144 -0.191 0.001 -0.021 0.005
ZYGOTSP Zygomatic/Vault ~ Face/Neuro -0.68 -0.221 -0.287  0.019  0.004  0.007
PTTSP Vault Neurocranium -0.382 -0.116 -0.155 -0.036 0.003 -0.011
NABR Vault Neurocranium  -0.797 -0.25  -0.321 0.146  -0.058 0.017
BRPT Vault Neurocranium  0.001 0.016 0.014 -0.06 -0.017 0.002
BRAPET Vault Neurocranium  -0.556 -0.16 -0.219 -0.109 0.047 -0.032
PTAPET Vault Neurocranium  -0.906 -0.272 -0.371 -0.177 -0.002 0.009
PTBA Vault Neurocranium  -1.414 -0.43  -0.572 -0.16 0.016 0.042
PTEAM Vault Neurocranium -1.13  -0.344 -0.468 -0.243 0.002 0.025
LDAS Vault Neurocranium  -0.148 -0.04  -0.052 -0.001 0.081 0.002
BRLD Vault Neurocranium -0.437 -0.122 -0.152 -0.017 0.369 -0.001
OPILD Vault Neurocranium -0.69 -0.212 -0.284 -0.094 -0.065 -0.014
PTAS Vault Neurocranium  -0.741 -0.22  -0.291 -0.173 0.085 0.016
JPAS Vault Neurocranium  -0.627 -0.192 -0.262 -0.107 -0.006 0.004
PNSAPET Base Neurocranium -1.015 -0.319 -0.415 0.069 0 0.169
APETBA Base Neurocranium  -0.688 -0.211  -0.271 0.048 0.002 0.013
APETTS Base Neurocranium -0.168 -0.052 -0.069 -0.006 -0.001 -0.019
BAEAM Base Neurocranium  -0.496  -0.155 -0.2 0.039 0.016 0.008
BAOPI Base Neurocranium 0.139 0.048 0.06 -0.011 0.003 -0.012

regions. The third factor, A3, is only associated with Vault
characters, while the fourth, A4, recovers a pattern similar
to A7, involving contrasts between facial and neurocranial
traits located in the ventral side of the skull.

The three remaining mandibular latent traits (A, A3,
A4 in Table 2) have only a handful of traits whose factor
loadings are different than zero, and such sparse factor
loadings have localized effects with respect to mandibular
partitioning. The second factor affect only traits belonging
to the Ascending Ramus, while the other two factors are
associated with Alveolar traits.

Following Equation 1, we constructed our estimated
mean G and the posterior distribution for G using all factors
we estimate. Comparing the mean G estimated by the
BSFG model with Gs estimated using REML (both our own
R-based-algorithm and Wombat) using Random Skewers
(for covariance matrices) and matrix correlation followed
by Mantel’s test (for correlation matrices) indicate that
matrices estimated from the three methods are fairly similar.

Random Skewers correlations ranged from 0.84 to 0.91, and
matrix correlations ranged from 0.72 to 0.84; all correlations
are indicative of a lack of structural dissimilarities under
their respective tests of significance (for P(a) < 107%).
Estimated trait heritabilities are also similar among these
three different types of estimation methods (Figures S1 and
S2). Therefore, the BSFG estimates of G we use here, for
both cranial and mandibular trait sets are very similar to the
traditional REML estimates.

Using the REML estimates for h?, we were able to
estimate the effective sample sizes for both cranial (Table
S1) and mandibular (Table S2) traits. For cranial traits, we
obtained an average N,y of 20 individuals; for mandibular
traits, the estimated average N, is 32 individuals.

For both cranial and mandibular matrices, the first
eigenvector of both P and G are indeed size vectors
(represented as p; and g; in Tables 1 and 2). Hence, by
removing the first eigenvector of these matrices following
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Table 2 Unstandardized first principal components obtained from covariance matrices and factors retrieved from the BSFG model for mandibular
traits. Bold values indicate those factor loadings that differ from zero, according to the 95% posterior interval of factor loadings.

Trait Hypothesis D1 g1 Al As A3 A,
DAMA Alveolar -0.127 -0.078 0.170 0.006 0.015 0.053
DAMP Alveolar -0.162  -0.096 0.196 0.007 0.016 -0.047
MAMP Alveolar -0.036  -0.018 0.024 0 0 -0.105
DAVC Alveolar -0.142  -0.067 0.115 0.003 0.128 -0.058
MAVC Alveolar -0.174  -0.085 0.156 0.003 0.034 0.040
MPVC Alveolar -0.194 -0.103 0.186 -0.007 -0.031 -0.034
DAVA Alveolar -0.076  -0.043  0.080 0.003 0.141 -0.026
MAVA Alveolar -0.141  -0.080 0.162 0.006 -0.001 0.072
MPVA Alveolar -0.168 -0.094 0.178 0 -0.04 -0.044
VCVA Alveolar -0.063 -0.021  0.029 0.001 -0.009 -0.036
CORMCA  Ascending -0.160 -0.090 0.070 -0.263 -0.002 -0.019
CORMCP Ascending -0.212  -0.108  0.093 -0.284 0.001 0.004
MCAMCP  Ascending -0.050 -0.013 0.019 -0.001 0.004 0.028
CORANG  Ascending -0.387 -0.180 0.238 -0.167 -0.011 -0.026
MCAANG  Ascending -0.234  -0.109 0.168 -0.013 -0.003 -0.021
MCPANG Ascending -0.183  -0.083  0.120 0.004 -0.009 -0.027
CORIDM Ascending -0.364 -0.152 0.257 0.033 0.011 -0.021
MCAIDM  Ascending -0.360 -0.169 0.258 -0.068 0.013  -0.036
MCPIDM Ascending -0.390 -0.169 0.250 -0.058 0.013 -0.017
ANGIDM Ascending -0413 -0.182 0.278 -0.062 0.010 -0.020

Equation 3, we obtain matrices without size variation,
removing both variation from scaling and allometry.

Matrix Comparisons

All comparisons between P and the mean G, using both
Random Skewers correlations for covariance matrices and
matrix correlation followed by Mantel’s test, reject the
null hypothesis of structural dissimilarity between these
matrices (Table 3), with very high correlation values
(all above 0.9). Comparing P with any G derived from
the posterior distribution of the BSFG model results in
matrix correlations which reject this null hypothesis for all
comparisons. Correlation values for covariance matrices are
systematically higher than those derived from correlation
matrices, considering both the comparison between P
with the mean G and the posterior distribution of matrix
correlations (Table 3).

The comparison between P and G using the SRD
method (Figure 5) indicates that, in matrices whose
size variation has been retained, few traits have marked
differences in covariance structure. In the cranial set (Figure
5a; with an average SRD score of 0.99), only trait BRPT
shows a substantial difference in trait covariance structure
between P and G; in the mandibular set (Figure 5c; with an
average SRD score of 0.98), trait MCAMCP has the lowest
SRD score. Comparing matrices whose size variation has
been removed (Figures 5b and 5d) yields lower SRD scores
(although still quite high: 0.92 for the skull, and 0.89 for the
mandible); differences between the two matrices are more
distributed through each set.

Table 3 Comparison among P and G for both cranial and mandibular
traits. “Value” represents the average Random Skewers correlation or
matrix correlation I"-values between P and the mean G for covariance
and correlation matrices, respectively. Other statistics (Mean, Median,
95% Posterior Interval) refer to the distribution of the same matrix
correlation statistics between P and the posterior distribution for G.
All comparisons reject the null hypothesis of no structural similarity
between compared matrices at P(a) = 0.001.

Value Mean Median PI— PI+
Skull Cov 0988 0955 0.963 0.902 0.987
Cor 0975 0927 0.936 0.856  0.969
Mandible Cov  0.960 0.919 0.923 0.869 0.963
Cor 0942 0832 0.839 0.731 0920

Morphological Integration

When considering matrices whose size variation has been
retained, ICV’s estimated for both cranial and mandibular
trait sets do not differ between P and G, as both phenotypic
ICV’s are within the 95% posterior interval constructed
using sampled Gs (Table 4). For size-free matrices, for
cranial traits, ICV values between P and G also do not differ;
however, the phenotypic value for the mandibular P ICV
(1.332) is below the lower bound of the posterior interval
(1.576). It is also noteworthy that, when size is removed,
there is a substantial reduction in ICV values in both trait
sets.

Regarding pattern of morphological integration in
cranial traits (Table 4), both Nasal and Facial trait subsets
are identified by Mantel’s test; the composite Neuroface
hypothesis is also identified. When size variation is
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Fig. 5 Selection Response Decomposition plots for the comparison between phenotypic and genetic matrices for both cranial (a-b) and mandibular
(c-d) traits; size variation has either been retained (a, c) and removed (b, d) for each matrix in these comparisons. In all comparisons, dashed lines
represent average SRD scores. Cranial or mandibular traits indicated with triangles are those which differ significantly between each P/G set, with

P(at) = 0.025.

removed, the Oral, Vault and Neurocranial regions are
identified; the Neuroface region is identified again. There
is agreement in highlighted regions between P and G;
modularity indexes estimated for phenotypic matrices are
within the range of their respective 95% posterior intervals,
indicating that patterns of morphological integration are
not different between P and G, when considering the
uncertainty associated with estimating G.

Considering the mandible, only the Total composite
hypothesis is identified by Mantel’s test in matrices with size
variation (Table 4). When removing size variation, all three
hypotheses (Alveolar, Ascending and Total) are identified.
As with the cranial trait set, there is agreement between
the hypothesis identified for both phenotypic and genetic
matrices. The posterior distribution of modularity indexes
indicate, for those matrices with size variation retained,
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Table 4 Magnitude and Pattern of phenotypic and genetic integration, as measured by ICV and Modularity Index, respectively. Both cranial and
mandibular matrices are represented, with size variation either retained or removed. Posterior Intervals (PI,—¢.95) are associated with the posterior
distribution for G, representing parameter uncertainty in G parameters. Bold values are associated with morphological integration hypotheses that
are recognized in a given matrix by Mantel’s test (P(ct) = 0.05); italic values are marginally significant (P(a) = 0.1).

Size Retained Removed
P G PI— PI+ P G PI— PI+
Skull Icv 4.091 3.794 2.615 4.791 1.502 1.448 1.299  2.042
Oral 0.049 0.056 0.031 0.087 0.018 0.025 0.008 0.037
Nasal 0.083 0.092 0.065 0.127 0.016 0.024 0.007 0.037
Zygomatic  -0.005 -0.005 -0.031 0.025 -0.013 -0.015 -0.026 0.004
Vault -0.011  -0.009 -0.024 0.017 0.035 0.045 0.015  0.067
Base -0.058 -0.056 -0.073 -0.039 -0.005 0.001 -0.016 0.018
Total 0.007 0.011 0.002 0.029 0.021 0.029 0.010 0.046
Face 0.039 0.045 0.032 0.059 0.002 0.004 -0.001 0.009
Neuro -0.031 -0.032 -0.043 -0.02 0.017 0.019 0.006  0.031
Neuroface 0.010 0.014 0.007 0.025 0.014 0.017 0.005 0.027
Mandible ICV 2.737 2.656 2.283 3.120 1.332 1.822 1.576  2.355
Alveolar 0.003 0.011  -0.019 0.049 0.055 0.027 0.002  0.054
Ascending 0.050 0.033 -0.010 0.078 0.056 0.040 0.009  0.060
Total 0.039 0.031 0.006 0.060 0.080 0.048 0.011  0.079

that patterns of morphological integration are not different
between matrices compared; however, when considering
the comparison between matrices without size variation,
modularity indexes estimated for P for both Alveolar
(0.055) and Total (0.08) hypotheses are slightly above the
upper limits of their respective posterior intervals (0.054 and
0.079).

Flexibility

Regarding our analysis of morphological integration based
on simulated evolutionary responses (Table 5), for both
cranial matrices, the Bs associated with Facial, Oral, and
Nasal traits had flexibility values significantly higher than
expected by chance alone; when size variation is removed,
the Bs associated with the Vault and Base were also
higher than average f values. For mandibular traits, the 8
associated with the Ascending Ramus had f values higher
than f for both P and G; when size variation is removed, the
Alveolar Process B was also associated with a high f value
in P, but not in G.

Considering the differences in flexibility values between
P and G, only the f-value estimated for the Alveolar region
in P with size removed (0.838) is above the upper bound of
the posterior distribution of f-values derived from sampled
Gs (0.806); the f value calculated for P (0.626) is also
above the limit drawn by the posterior distribution (0.561).
Remaining f-values, in all other phenotypic matrices, are
within the range of their respective posterior intervals.

Factors and Morphological Integration

Correlations between factors recovered from the BSFG
model and our hypotheses (Table 6) indicate that the first
factor for cranial traits has high correlation values with
the Oral, Nasal and Facial Bs, while the second factor is
mildly correlated with the Vault B. Regarding mandibular
latent traits, A1 has high correlations with both Alveolar and
Ascending Bs, while A, has a high correlation with only the
B associated with the Ascending Ramus.

Discussion

The results we obtained here point out that phenotypic and
genetic covariance structure are very similar in the ves-
per mouse, for both skull and mandible; while differences
in trait-specific covariances exist, as shown by the SRD
method (Figure 5), these differences are local and do not
affect the overall covariance structure, as shown by matrix
correlation between P and G (Table 3), and also by aver-
age SRD scores, even when the effects of size variation is
controlled (Figure 5). Hence, these comparisons corroborate
Cheverud’s Conjecture (Cheverud 1988; Roff 1995) of simi-
larity between patterns of correlation/covariance structure in
both P and G. We will now focus on exploring the potential
underlying causes of this similarity.

The observed differences in trait-specific covariances,
pinpointed by the SRD method (Figure 5) do not affect our
hypotheses of trait associations attributed to developmental
and functional interactions. Overall, the same subsets
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Table 5 Flexibilities of phenotypic and genetic matrices, Both cranial and mandibular matrices are represented, with size variation either retained
and removed. Posterior Intervals (Ply—g.95) are associated with the posterior distribution for G, representing parameter uncertainty in G parameters.
Bold values are associated with morphological integration hypotheses that are recognized in a given matrix by comparison with the null distribution
of flexibilities for any given matrix (P(a) = 0.05); italic values are marginally significant (P(a) = 0.1). ’Critical’ refers to the 95% upper bound
value for these comparisons.

Size Retained Removed
P G PI— PI+ P G PI— PI+
Skull f 0.299 0.322 0244 0427 0.583 0.322 0488 0.628
Critical 0.536  0.556 - - 0.690 0.713 - -
Oral 0.567 0.576 0.555 0.612 0.449 0423 0.330 0.499
Nasal 0.684 0.690 0.668 0.722 0.464 0490 0.385 0.547
Zygomatic  0.348 0.352 0.321 0414 0.606 0.640 0437 0.710
Vault 0.464 0486 0.407 0.624 0.734 0.717 0.634 0.757
Base 0.199 0.226 0.186 0300 0.739 0.720 0.549 0.767
Face 0.746 0.749 0.739 0.760 0428 0392 0.292 0.454
Neuro 0.467 0479 0429 0574 0.654 0.642 0.553 0.709
Mandible f 0418 0410 0346 0447 0.626 0410 0444 0.561
Critical 0.630 0.594 - - 0778 0.719 - -
Alveolar 0.554 0568 0514 0.638 0.838 0.628 0.438 0.806
Ascending  0.860 0.843 0.785 0.887 0437 0384 0.245 0.4%

Table 6 Correlation between factors recovered from the BSFG
model and morphological integration hypotheses. Values highlighted
represent vector correlation values higher than those expected by
chance, with P(¢) = 0.05 for italic values and P(¢t) = 0.01 for bold
values.

A A As Ay

While these differences might occur due to differences
in type II error rates for both tests (which can be subject
to future investigations), our simulation-based approach
has the advantage of being directly related to the use of
covariance matrices in evolutionary quantitative genetics
theory. The classical test of morphological integration

Skull Ay 0204 (Cheverud et al 1989) has its roots on the comparison
As 0060 0.100 of distance matrices (Mantel 1967), while our simulation
As 0040 0.065 0.009 . . .
approach is based on the analysis of evolutionary response
Norai gzgg g;gg 882? 8?2‘5 to selection as suggested by Hansen and Houle (2008).
asa N . . . . . . .
Zysomatic 0313 0061 0032 0043 Tl}erefore, this approach is m9re appropriate for deal.lng
Vault  0.377 0468 0323 0.067 with systems (and representations of such systems, i.e.,
Base 0.167 0.097 0.022 0275 covariance matrices) that could be subjected to evolutionary
Face  0.740 0281  0.019  0.242 change. On the other hand, the classical approach has
Neuro 0.408 0.341 0.284 0.205 .
the advantage of being able to handle more complex
Mandible A, 0.369 hierarchical structures that cannot be properly represented
;3 8%2‘2‘ 8?5 0.180 as a vector. For example, the contrast between early and
M i i late developmental factors, represented by a composite
Alveolar 0533 0.016 0394 0308 hypothesis that compares correlations within facial and
Ascending  0.721  0.636  0.044  0.258

of traits are integrated in both phenotypic and genetic
correlation (Table 4) and covariance (Table 5) patterns.
Although these results agree between each P/G set, there are
minor differences between the traditional method employed
on correlation matrices and the method we propose here,
used on covariance matrices. For instance, while the
Neurocranium is identified as a valid partition in correlation
matrices without size variation, the same partition is not
identified by our evolutionary simulations approach.

neurocranial traits with correlations between these two
groups, i.e. the Neuroface hypothesis, cannot be tested in
the selection gradient framework, since this test considers
the correlation structure of all traits simultaneously and
cannot be represented as a binary vector. Therefore, both
approaches complement each other, being under different
premises and expectations.

The distribution of posterior G statistics that represent
pattern and magnitude of morphological integration (ICV,
modularity index, flexibility values) indicate that almost
all differences in these values between P and G may be
attributed only to error in estimating G, with the exception
of features associated with the mandibular matrices when
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size is removed. Considering together results in Tables 4
and 5 indicate that the mandibular P is less integrated and
more modular than its genetic counterpart, as indicated by
the lower ICV value and higher f-values and modularity
indexes associated with Alveolar traits. However, these
differences are found only when size variation is removed;
such source of variance represents a substantial portion
of overall magnitude of integration. Therefore, these
differences between P and G in the mandible are minor
compared to the overall similarity in matrix structure.

Size Variation and Integration Patterns

Removing size from both phenotypic and genetic matrices
produces substantial changes in covariance structure. First
and foremost, differences between trait-specific covariances
increase (Figure 5). Magnitude of integration, as measured
by ICV, drops considerably, in all matrices whose size vari-
ation has been removed. Patterns of integration also change;
different hypotheses of trait association are recognized as
valid.

The variation in size within populations has a pervasive
effect throughout development, from zygote to adult.
However, growth will have an heterogeneous effect over
traits, producing allometric variation. Overall, regarding
the mammalian skull, facial traits are more influenced
by growth than neural traits during the pre-weaning
period and afterwards (Zelditch and Carmichael 1989;
Hallgrimsson et al 2009), due to overall growth and muscle-
bone interactions associated with both breastfeeding and
mastication. Thus, the influence of size variation is more
pervasive in the integration of facial traits in the skull (Tables
4 and 5).

Size variation also has an influence on integration pat-
terns of the mandible; the Ascending Ramus is recognized
as a valid hypothesis of trait association by our evolutionary
simulation approach when we consider matrices whose size
variation has been retained (Table 5). The masseter muscle,
which affects the growth of the associated Ascending Ramus
through its function, has a marked influence on pre-weaning
development (Zelditch and Carmichael 1989). The interac-
tions between the masseter and the mandible also produce
an extensive reworking of the condylar cartilage (Herring
2011), which might explain the difference in MCAMCP
(condyle length) covariance structure between P and G (Fig-
ure 5). Therefore, both functional and developmental inter-
actions shape the observed integration patterning through
growth in both skull and mandible.

When size variation is removed, different features of
the developmental system are observed. In the skull, we
observe integration in neurocranial traits, in both analysis
(Tables 4 and 5). For the mandible, the traditional analysis
(Table 4) recognizes both Alveolar and Ascending Ramus

hypothesis as valid. These other aspects of integration reflect
aspects of prenatal development. In the skull, they are
associated with prenatal brain growth (Hallgrimsson and
Lieberman 2008; Hallgrimsson et al 2009); in the mandible,
the contrast between the two regions may reflect the distinct
cell condensation from which each structure arises (Atchley
and Hall 1991; Ramaesh and Bard 2003). While trait-
specific covariance structure diverges between P and G
when size is removed (Figures 5b and 5d), these differences
do not impact the relationships between these traits, as
the same hypotheses of trait associations are recognized in
both matrices (Tables 4 and 5). Therefore, these differences
in trait-specific covariance structure depicted by the SRD
method may reflect differences in covariance structure
outside of those regions that are recognized as integrated
when size is removed.

Integration patterns produced by size variation and
developmental patterning are temporally organized, since
their main influence occur at postnatal and prenatal
development, respectively. Hence, these developmental
factors affect covariance patterns in the skull and mandible
with different strengths, with size integration partially
masking the effect of other patterns produced by prenatal
growth (Hallgrimsson and Lieberman 2008; Hallgrimsson
et al 2009). The relative contribution from both these effects
to response to selection will reflect this hierarchy, with size
variation contributing to a major extent relative to prenatal
patterning, acting as a line of least genetic resistance, with
evolutionary consequences (Schluter 1996; Marroig and
Cheverud 2005).

Our treatment of size variation contrasts with the ap-
proach advocated by landmark-based geometric morpho-
metrics (Bookstein 1991; Zelditch et al 2004), in which size
is treated as a separate variable, centroid size. Certainly,
this approach has advantages; for instance, it allows for a
clear representation of allometric relationships, by regress-
ing shape variables on centroid size. With our approach, we
are not able to differentiate between isometric and allomet-
ric variation; our size factors are associated with both vari-
ation components. However, quantitative genetics analyses
using landmark-based geometric morphometrics (e.g. Klin-
genberg and Leamy 2001; Klingenberg et al 2004; Martinez-
Abadias et al 2011) have not fully appreciated this advan-
tage, since size variation is treated as a nuisance with re-
spect to shape and its effects are removed or simply ignored.
Therefore, the effects of size variation over shape genetic
covariance structure remain unexplored under the purview
of geometric morphometrics.

However, the main issue regarding the use of landmark-
based data to investigate covariance structure lies at the as-
sumption of isotropic variation around each landmark neces-
sary to perform the Generalized Procrustes Superimposition
(GPS; Dryden and Mardia 1998; Linde and Houle 2009).
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Under a morphological integration perspective, we expect
that local function and/or developmental factors will pro-
duce differences in both magnitude and direction of land-
mark variation; therefore, the assumption of isotropic varia-
tion is incompatible with analyses of covariance structure. If
a particular dataset breaks this assumption and GPS is per-
formed nonetheless, the result is that landmark variation will
be forced to conform to the assumption by distributing total
variation across all landmarks (Linde and Houle 2009) and
consequently erasing most of the actual integration patterns.

This issue might explain the contrast between the results
from Cheverud et al (1997) and Klingenberg et al (2004)
regarding the organization of mandibular pleiotropic QTL
effects in the same Mus population using traditional and
geometric morphometrics, respectively. While Cheverud
et al (1997) found that most of these effect are confined
within both Alveolar Process and Ascending Ramus (see
also Mezey et al 2000; Cheverud 2006), Klingenberg et al
(2004) found evidence that most pleiotropic effects are
shared by the two regions. Some authors have proposed
solutions that circumvent this problem (e.g. Theobald and
Wauttke 2006; Linde and Houle 2009; Marquez et al 2012),
but these works have not yet been appreciated outside the
literature of morphometric theory.

Latent Traits and Developmental Factors

The latent traits recovered from the BSFG model (Tables 1
and 2) may be understood as a local linear approximation of
the developmental function, centered at the mean phenotype,
as they are derived from a particular hyper-parametrization
of G we use here (Runcie and Mukherjee 2013). When
considering a set of linear approximations to developmental
factors, other sets obtained through rotations of the original
set may also be considered as a valid approximation
(Wagner 1984; Wolf et al 2001; Mitteroecker 2009; Runcie
and Mukherjee 2013). However, the set of latent traits we
recovered here are constrained by sparsity, and thus are not
arbitrary with respect to rotation.

The first factor recovered for both cranial and mandibu-
lar traits is associated with size variation (Tables 1 and 2),
and reflect the influence of this source of variation over mor-
phological integration. Interestingly, the size factor recov-
ered for both skull and mandible breaks the a priori assump-
tion of sparsity made by the BSFG model, which is indica-
tive of strong evidence favoring the existence of such factor.
Remaining latent traits reflect our hypotheses of morpholog-
ical integration (Table 6); in the skull, the second trait recov-
ered is associated with facial and neurocranial traits simulta-
neously, albeit with opposing signs (Table 1). This factor is
usually recovered from mammalian skull variation from our
previous studies (e.g.: Marroig et al 2004); in the mandible,

each latent trait recovered aside from the first has localized
effects over either Alveolar or Ascending traits (Table 2).

The structure of latent traits we recovered here are an
abstraction over more complex developmental dynamics;
individually, their may or may not reflect actual aspects
of the organization of pleiotropic effects. The first factor
in both skull and mandible recovers a biologically realistic
factor, that is, size variation; in fact, any gene involved in
controlling the amount of cell metabolic output or cellular
growth and division will contribute to size variation. The
second factor in the skull essentially contrasts the face
with the neurocranium. While this factor certainly captures
one essential aspect of mammalian skull development
(one that contrasts early- and late-developmental growth
as recognized here in our integration hypotheses) on the
other hand it does not correspond to the genetic basis of
skull covariation. In fact, most QTLs found in previous
studies (Cheverud et al 1997; Leamy et al 1999) affect
either the Face (31%) or Neurocranium (31%) separately
and only 38% affected the whole skull. More importantly,
of those 38% with general effects on the skull only 20%
(7.6% out of the total QTLs) had effects with opposite
signals on the Face and Neurocranium which would indicate
antagonist pleiotropy. For the mandible essentially the same
pattern was found with 26% of the 41 QTLs found did
affect the whole mandible and the remaining 74% have
only localized effects with no evidence of antagonistic
pleiotropy. Therefore, latent traits for the skull and mandible
display different structures, although there are only minor
differences in their underlying genetic architectures with
respect to pleiotropic effects, as demonstrated by QTL
studies. These latent traits should then be interpreted as a
set, and are not to be taken individually as representations
of true developmental factors, in the same manner that
individual principal components also cannot be regarded as
biologically meaningful (Zelditch et al 2004; Adams et al
2011; Berner et al 2011; Berner 2012).

These results suggest that similarity between P and G is
the result of limits imposed by the developmental system
to the action of additive effects over morphological traits
(Cheverud 1984; Wolf et al 2001). These limits are the
result of both developmental and functional interactions,
and are reflected in our hypothesis of trait associations,
which are consistently recognized in both matrices and
in the latent traits identified by the BSFG model. While
these latent traits may be understood as developmental
modules (Runcie and Mukherjee 2013), or more likely, as
combinations or contrasts between interacting modules, they
are temporally organized throughout development (Zelditch
and Carmichael 1989; Hallgrimsson and Lieberman 2008),
and their effect over both P and G will reflect this
organization.
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It is paramount to understand modularity not as a static
feature of morphological systems, but as a feature embedded
within a dynamical process, that is, development, which will
produce an integrated phenotype (Cheverud 1996; Wagner
1996; Hallgrimsson et al 2009). While our hypothesis
of trait associations might be quite simple (as they are
essentially binary descriptors of subsets of traits), our results
are interpreted in the light of developmental dynamics.
Therefore, rather than address only to the identification
of modules, one should consider the dynamics of the
underlying development when trying to understand both the
structure and evolution of complex morphological elements
subject to morphological integration.

Conclusions

Integration and modularity are paramount features of
morphological systems, and the evolution of such systems
is strongly affected by them. The patterns embedded within
genetic and phenotypic covariance matrices capture both
these phenomena simultaneously; hence, by estimating
covariance patterns within populations, we are able to
quantify the relative influence of both magnitude and
pattern of integration, and the relationship between G and
P, established by the genotype/phenotype map. Here, we
investigate both these levels of organization in the skull and
mandible of a C. expulsus population, finding remarkable
similarities in their overall structure and in the patterns they
describe, as predicted by Cheverud’s Conjecture (Cheverud
1988; Roff 1995). This similarity between covariance
patterns is achieved through the constraints imposed
by the developmental system, through the association
of morphological elements due to developmental and
functional interactions, formulated as hypotheses of trait
associations that are recognizable in both genetic and
phenotypic covariance structure.
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