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Abstract. Estimation of admixture fractions has become one of the

most commonly used computational tools in population genomics. How-

ever, there is remarkably little population genetic theory on their sta-

tistical properties. We develop theoretical results that can accurately

predict means and variances of admixture proportions within a pop-

ulation using models with recombination and genetic drift. Based on

established theory on measures of multilocus disequilibrium, we show

that there is a set of recurrence relations that can be used to derive

expectations for higher moments of the admixture fraction distribution.

We obtain closed form solutions for some special cases. Using these re-

sults, we develop a method for estimating admixture parameters from

estimated admixture proportion obtained from programs such as Struc-

ture or Admixture. We apply this method to HapMap data and find

that the population history of African Americans, as expected, is not

best explained by a single admixture event between people of European

and African ancestry. A model of constant gene flow for the past 11

generations until 2 generations ago gives a better fit.

Introduction3

It is common in population genetic analyses to consider individuals as4

belonging fractionally to two or more discrete source populations. The pro-5

portion of an individual’s genome that belongs to a population is called6

that individual’s ‘admixture fraction’ or ‘admixture proportion’. Programs7

such as Structure (Pritchard et al., 2000), Eigenstrat (Price et al., 2006),8

Frappe (Tang et al., 2005), or Admixture (Alexander et al., 2009) can jointly9

estimate these admixture fractions for multiple individuals in a sample, along10

with the corresponding allele frequencies in each of the source populations.11

These admixture fractions are often presented in a ‘structure plot,’ an ex-12

ample of which is shown in Figure 1. We will henceforth refer to these13

methods as ‘structure analyses’. This approach has proven highly useful for14

understanding genetic relationships in many different species, e.g. humans15
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(Rosenberg et al., 2002), cats (Menotti-Raymond et al., 2008), or pandas16

(Zhang et al., 2007). Other analyses reconstruct admixture tracts for each17

genome in the sample, by inferring the local ancestry of every position, or18

window, in each sampled genome (Tang et al., 2006; Maples et al., 2013). In19

this context, the admixture fraction for a genome is the fraction of its total20

length that is inherited from a particular source population.21

Although structure analyses are not tied to any particular mechanistic22

model of population history and demography, the admixture fractions and23

admixture tracts are commonly interpreted to be the result of past admix-24

ture events in which modern populations were formed by admixture (or25

introgression) between ancestral source populations. The distribution of26

admixture tract lengths has been related to specific mechanistic models of27

admixture (Falush et al., 2003; Tang et al., 2006; Pool and Nielsen, 2009),28

and has been used to estimate times of admixture (Gravel, 2012). However,29

the admixture proportions themselves also contain information regarding30

admixture times. Following an admixture event, the variance in admixture31

proportions within a population will be high, but will thereafter decrease,32

and will eventually converge to zero in the limit of large genomes. The33

variance in admixture fractions among individuals contains substantial in-34

formation about the time since admixture that can be used in addition to35

the tract length distribution. In some cases, this may be more robust than36

inferences based on tract lengths, because the length distribution of tracts37

is often difficult to infer, and is often not modeled accurately by the hid-38

den Markov model (HMM) methods used to infer tract lengths (Liang and39

Nielsen, 2014). Even in cases where tract lengths can be accurately inferred,40

studies aimed at estimating admixture times should benefit from using both41

variance in admixture proportions among individuals and overall admixture42

tract lengths distributions.43

Verdu and Rosenberg (2011) developed a method for computing moments44

of admixture proportions in a model in which admixed population is formed45

as a mixture between multiple source populations, allowing for arbitrary46

gene-flow from the source populations over a number of generations (g).47

They establish recursions for the moments of the admixture fractions and48

use these equations to determine how the mean and the variance changes49

through time in particular admixture scenarios. These moments are expec-50

tations for single individual’s admixture fraction and are averaged over the51

possibile genealogical histories of the population. As a result, they can be52
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UNDERSTANDING ADMIXTURE FRACTIONS 3

difficult to relate to data because replicates from multiple identical popula-53

tions rarely are available. In this paper, we consider a different problem, the54

problem of calculating sample moments for admixture proportions obtained55

from individuals in one population.56

We extend the model model in Verdu and Rosenberg (2011) to incorporate57

the effects of recombination and genetic drift by adding a a random union of58

zygotes component. Recombination is important because even if one half of59

a chromosome’s ancestors are from the first source population, it is unlikely60

that exactly one half of that chromosome’s genetic material is inherited61

from that population. Genetic drift is important because the individuals in62

a sample might share ancestors and, therefore, have more similar admixture63

fractions than expected by chance in a model without drift. The results64

developed in this paper should be directly applicable for quantifying the65

results of a structure analysis.66

The General Mechanistic Model67

We start by considering admixture fractions in haploid genomes. These68

haploid admixture fractions can later be paired up to create diploid admix-69

ture fractions. The admixture fraction of a (haploid) genome Hi, is the70

proportion of Hi that is inherited from a particular source population. For71

notational simplicity, we only consider gene-flow only from one population72

into another. We will later discuss how to extend this model to multiple ad-73

mixing source populations. We use the same mechanistic admixture model74

of Verdu and Rosenberg (2011), and will use its notation where possible.75

Finally, we use the random union of zygotes model, with a diploid popula-76

tion size of N (2N chromosomes), for genetic drift and recombination, and77

assume a sample size of n chromosomes from a single population.78

In this model, a hybrid population of N diploid individuals forms in gen-79

eration 1 from two previously isolated source populations. In this first80

generation, individuals in the hybrid population are from the first source81

population with probability s0 or from the second source population with82

probability 1− s0. In generation g + 1, each chromosome is, independently,83

from the first source population with introgression probability sg, or from84

the hybrid population with probability 1− sg. Chromosomes inherited from85

the hybrid population are the product of the recombination of the two chro-86

mosomes of one individual (zygote), chosen uniformly at random. Finally,87
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4 MASON LIANG AND RASMUS NIELSEN

these 2N chromosomes are paired up to form theN individuals in generation88

g + 1.89

Finally, we let the stochastic process A(ℓ) represent the local ancestry90

along a chromosome as a function of ℓ, the physical position:91

A(ℓ) =

{

0 : ℓ is descended from first source population

1 : ℓ is descended from second source population
.

The fraction of the chromosome descended from the second source popu-92

lation is given by93

H =
1

L

∫ L

0
A(ℓ)dℓ,

where L is the total length of the chromosome.94

Assume that g generations after the start of admixture we have randomly95

sampled n chromosomes from the hybrid population and determined their96

corresponding admixture fractions, H1(g),H2(g), . . . ,Hn(g). We are inter-97

ested in the joint distribution of these n random variables. When n = 198

and as L → ∞, this is the admixture fraction considered by Verdu and99

Rosenberg (2011).100

Because the n chromosomes have possibly overlapping geneologies, the101

admixture fractions are not independent. However, the joint distribution102

of the admixture fractions does not depend on their ordering, so they are103

exchangeable. As a result, they can be viewed as being identically and104

independently (iid) drawn from a random distribution G. This random105

distribution can be interpreted as a function of the random genealogy of106

the entire hybrid population up to g generations in the past. When g is107

small, the genealogies of the n samples will be unlikely to differ from n non-108

overlapping binary trees, so G will be approximately constant. If g is large109

however, these genealogies are likely to overlap, and this will no longer be110

true.111

Verdu and Rosenberg (2011) focus on moments of H1(g), in particular on112

the mean and variance. However, because the admixture fractions are not113

independent, even as n → ∞, the sample mean and sample variance will114

converge to the mean and variance of G, which are random quantities. For115

example,116
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UNDERSTANDING ADMIXTURE FRACTIONS 5

E(H1(g)) 6= E(H1(g)|M) = lim
n→∞

1

n

n∑

i=1

Hi(g)

var
(
H1(g)

)
6= var(H1(g)|M) = lim

n→∞

1

n− 1

n∑

i=1



Hi(g) −
1

n

n∑

j=0

Hj(g)





2

,

and similarly for higher-order moments. The moments of the admixture117

factions have two components: randomness from sampling the population118

genealogy, and randomness from the sampling of chromosomes. The ex-119

pressions to left account for both, while the expressions to the right only120

account for the latter. Variances among individuals within one popula-121

tion correspond to var(H1(g)|G), while variances over replicate populations122

correspond to var(H1(g)). This latter value will be larger than the expected123

sample variance calculated from multiple individuals sampled from the same124

population, and will rarely be useful for inference purposes.125

In the following sections, we will show how the constants on the left-hand126

side, as well as expectations of the random variables on the right-hand side,127

can be derived for mechanistic models of introgression. By comparing these128

expectations to the observed admixture parameters from a sample, we will129

be able to construct a method of moments estimator for the parameters of130

the model.131

Let k1 be the sample mean:132

k1 ≡
1

n

n∑

i=1

Hi(g).

We can express its expectation in terms of the 1-point correlation function133

of A:134

E(k1) = E(H1(g))

=
1

L

∫ L

0
P{A1(g)(ℓ) = 1}dℓ

= P{A1(g)(0) = 1}.

Similarly, let k2 be the unbiased estimator of the sample variance:135
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6 MASON LIANG AND RASMUS NIELSEN

k2 ≡
1

n− 1

n∑

i=1

(
Hi(g) − k1

)2
.

Its expectation is given by136

E(k2) =
1

n− 1

n∑

i=1

E(H2
i,g)−

1

n(n− 1)

n∑

i,j=1

E(Hi,gHj,g)

= E(H2
1,g)− E(H1,gH2,g).

These expectations can be written in terms of two-point correlation func-137

tions of A:138

E(H2
1(g)) =

1

L2
E

(∫ L

0
A1(g)(ℓ)dℓ

∫ L

0
A1(g)(ℓ)dℓ

)

=
1

L2

∫ L

0

∫ L

0
E
(
A1(g)(ℓ)A1(g)(ℓ

′)
)
dℓdℓ′

=
1

L2

∫ L

0

∫ L

0
P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}
dℓdℓ′.

Similarly,139

E(H1(g)H2(g)) =
1

L2

∫ L

0

∫ L

0
P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}
dℓdℓ′.

Writing these two correlation functions as140

v2(g) =

(

P
{
A1(g)(ℓ) = 1, A1(g)(ℓ

′) = 1
}

P
{
A1(g)(ℓ) = 1, A2(g)(ℓ

′) = 1
}

)

,

we find that141

E(k2) =
1

L2

∫ L

0

∫ L

0

(

1 −1
)

v2(g)dℓdℓ
′.(1)

In general, the ith k-statistic is an unbiased estimator of the ith cumulant142

of G, and its expectation can be written as an integral over [0, L]i of a linear143

combinations of i-point correlation functions. For example,144
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UNDERSTANDING ADMIXTURE FRACTIONS 7

E(k3) =
1

L3

∫ L

0

∫ L

0

∫ L

0

(

1 −1 −1 −1 2
)

v3(g)dℓdℓ
′dℓ′′

E(k4) =
1

L4

∫

[0,L]4

(

1 −1
︸︷︷︸

4 times

−1
︸︷︷︸

3 times

2
︸︷︷︸

6 times

6
)

v4(g)dℓdℓ
′dℓ′′dℓ′′′

. . .

Remarkably, the linear combinations required to compute the expecta-145

tions of the k-statistics correspond exactly to the higher-order disequilibria146

as defined by Bennett (1952). Furthermore, if instead the we choose to147

compute the expectations of the h-statistics, which estimate the central148

moments, the linear combinations would correspond to the higher-order dis-149

equilibria as defined by Slatkin (1972).150

We next find the recurrence relations these correlation functions satisfy151

and solve them in the some special cases. In particular we will consider the152

case of a single admixture event g generations ago and the case of constant153

gene-flow starting g generations ago.154

A Single Admixture Event. We start with a simple case, where intro-155

gression only occurs in the founding generation, i.e. sg = 0 for g > 0. Using156

the random union of zygotes model, we can compute v2(g) in terms of the157

probabilities from the previous generation:158

If two sites at ℓ and ℓ′ are on the same chromosome in generation g + 1,159

then they were inherited from one chromosome from generation g with prob-160

ability [ℓℓ′] and from two chromosomes from generation g with probability161

[ℓ|ℓ′]. If they are on different chromosomes, then the probability that they162

are descended from one chromosome in generation g is 1
2N [ℓℓ′] and the prob-163

ability that they are descended from two chromosomes is 1
2N [ℓ|ℓ′]+

(
1− 1

2N

)
164

In matrix notation,165

v2(g+1) = (L2U2)v2(g) = (L2U2)
g
v2(0), ,

where the the recombination and drift matrices are given by166
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8 MASON LIANG AND RASMUS NIELSEN

L2 =

(

1 0
1
2N 1− 1

2N

)

U2 =

(

[ℓℓ′] [ℓ|ℓ′]

0 1

)

.

This is the the same matrix equation (Wright 1933 and Hill and Robertson167

1966) derived for the decay of two-locus linkage disequilibrium. The ‘alleles’168

we consider are the local ancestry at ℓ and ℓ′. To the extent possible, our169

notation will follow (Hill 1974), whose results for measures of multi-locus170

linkage disequilibria we use. The matrices L2 and U2 share (1 − 1) as a171

left-eigenvector, with corresponding eigenvalues 1− 1
2N and [ℓℓ′]. As a result,172

E(k2) =
1

L2

∫ L

0

∫ L

0

(

1 −1
)

· (L2U2)
g
v2(0)dℓdℓ

′

=
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0
[ℓℓ′]gdℓdℓ′.(2)

For a model using the Haldane map function, [ℓ|ℓ′] = 1−exp(−2|ℓ−ℓ′|)
2 , this173

equation becomes174

E(k2) =
1

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0

∫ L

0

(
1 + exp(−2|ℓ− ℓ′|)

2

)g

dℓdℓ′

=
2

L2

(

1−
1

2N

)g
(
s0 − s20

)
∫ L

0
(L− ℓ)

(
1 + exp(−2ℓ)

2

)g

dℓdℓ′,

while for a model of complete crossover inteference on a chromosome of175

length 1 Morgan, we can get a closed form solution:176

E(k2) =

(

1−
1

2N

)g
(
s0 − s20

)
∫ 1

0

∫ 1

0

(
1− |ℓ− ℓ′|

)g
dℓdℓ′

=

(

1−
1

2N

)g
(
s0 − s20

) 2

2 + g
.

For predicting the expected sample variance, the difference between these177

two models is not large, as shown in figure 4. For the simulations and178

inference in this paper, we will ignore crossover interference, and use the179

Haldane map function. However, none of the mathematical results of this180

paper will require this assumption.181

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2014. ; https://doi.org/10.1101/008078doi: bioRxiv preprint 

https://doi.org/10.1101/008078
http://creativecommons.org/licenses/by-nc-nd/4.0/


UNDERSTANDING ADMIXTURE FRACTIONS 9

For computing higher-order correlation functions, we find a similar equa-182

tion183

vi(g) = (LiUi)
g
vi(0).(3)

Bennett’s coefficients for higher-order linkage are left-eigenvectors of the184

recombination matrix Ui. For i = 3, it is also a left-eigenvector of the drift185

matrix, so we immediately get that186

E(k3) =
s0(1− s0)(2 − s0)

L3

(

1−
1

2N

)T (

1−
2

2N

)T ∫

[0,L]3
[ℓℓ′ℓ′′]Gdℓdℓ′dℓ′′.

For i ≥ 4, this is no longer true, but the results of (Hill, 1974) can be187

used to compute vi(g) without having to exponentiate the entire drift and188

recombination matrices. For example, for k4, the drift and recombination189

matrices are 15 × 15, but using the technique in (Hill, 1974), we only need190

to exponentiate a 4× 4 matrix to compute E(k4).191

Varying Migration. If sg > 0 for s ≥ 1, we obtain a modified version of192

Equation 3:193

vi(g) = LiDi(g)Uivi(g−1),(4)

where the diagonal matrix Di(g) has entries giving the probabilities the194

set of chromosomes, p, in a correlation function are all from the hybrid195

population in the previous generation:196

dp,p(g) = (1− sg)
|p|.

Note that if s(g) is fixed, then equation (4) is linear, and can be solved197

using a Laplace transform.198

Inference of admixture times199

The equations in the previous section can be used to develop a method200

of moments-estimators for admixture parameters by numerically solving the201

admixture parameters in terms of the expectations for the k-statistics. Sub-202

stituting in the observed values for the k-statistics gives estimates for the203

admixture parameter(s).204
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10 MASON LIANG AND RASMUS NIELSEN

However, with real data, we only have estimates of the admixture frac-205

tions, so some of the variability seen in the distribution of admixture frac-206

tions will be due to estimation variability. To account for this, we assume207

that the estimations errors are additive and iid :208

Ĥi(g) = Hi(g) + ǫi.

Because cumulants are additive,209

E(kn) = E
(
κn(Hi(g) + ǫi|G)

)

= E
(
κn(Hi(g)|G)

)
+ κn(ǫi).

The expectations we have computed are just the term of this sum. To correct210

for the variability in the estimates, we need to subtract off the second term.211

We use a block bootstrap to estimate these effects.212

One additional complication arises in dealing with genotyping data. We213

have assumed that we have the ancestry fractions for each haplotype in the214

sample, but with genotyping data, we instead have their pairwise means:215

(H1(g) + H2(g))/2 . . . . This is results in a decrease in the expectations of216

the k-statitics. Conditional on the random distribution G, H1(g),H2(g), . . .217

are iid drawn from G. Cumulants are additive, so we use the law of total218

expectation to find that219

κi

(
H1(g) +H2(g)

2

)

= E

(

κi

(
H1(g) +H2(g)

2

∣
∣
∣
∣
G

))

= E

(

κi

(
H1(g)

2

∣
∣
∣
∣
G

)

+ κi

(
H2(g)

2

∣
∣
∣
∣
G

))

= 2−i+1
E
(
κi
(
H1(g)

∣
∣G
))

= 2−i+1κi
(
H1(g)

)
.

Comparison to Verdu and Rosenberg. The recursion equations given220

by Verdu and Rosenberg (2011) are different from the ones we have derived.221

This is partly because we have accounted for the effects of genetic drift and222

recombination, but also because we are computing the moments of slightly223

different quantities.224

In figure 2, we have shown the admixture fractions for five replicate pop-225

ulations 5, 50, and 500 generations after an admixture pulse. The variance226

that (Verdu and Rosenberg, 2011) compute variance over all the replicate227
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UNDERSTANDING ADMIXTURE FRACTIONS 11

populations, while the variance we have computed in this paper is the ex-228

pectation of the variance within a single population. When g is small, these229

similar, but when g is large, the variance within a population goes to zero,230

but the variance across the replicate populations does not. This effect is231

shown in Figure 3. Initially, both quantities decline exponentially in g, but232

after 2g > nLg , the variance we predict begins to decline linearly instead.233

This is because variance is inversely proportional to the number of genetic234

ancestors of the sample. When g is small, the number of genetic ancestors235

is approximately 2g. However, the approximate number of recombination236

events in the sample is approximately bounded by nLg, so when this quan-237

tity is smaller than 2g, it provides a better approximation for the number238

of genetic ancestors. In this regime, the variance will decline linearly in g.239

It is also possible to compute the variance over all population replicates240

under our model, which allows a direct comparison to Verdu and Rosenberg241

(2011). In the case of one pulse of admixture, we can now solve equations 1242

for P {A1,g(ℓ) = 1, A1,g(ℓ
′) = 1} to get243

var(H1(g)) = E(H2
1,g)− s20

=
1

L2

∫ L

0

∫ L

0
P
{
A1,g(ℓ) = 1, A1,g(ℓ

′) = 1
}
dℓdℓ′ − s20

=
1

L2

(
s0 − s20

)
∫ L

0

∫ L

0
1−

(
1− [ℓℓ′]

) 1− [ℓℓ′]g
(
1− 1

2N

)g

1− [ℓℓ′]
(
1− 1

2N

) dℓdℓ.(5)

This variance and the expectation of the second k-statistic have the same244

limit as N → ∞, but for finite N , the variance is larger. This is because245

var(H1(g)) = var
[
E(H1(g)|G)

]
+ E

[
var(H1(g)|G)

]
= var[k1] + E[k2].

The first variance is small when N is large, but is always non-negative.246

The difference between this equation and equation 1 only becomes significant247

on a coalescent time scale. In the absence of genetic drift, the admixture248

fractions are approximately independent, becuase the samples do not share249

ancestors.250

Application to African American Data. We applied this method to a251

subset of the ASW, CEU, and YRI data from the HapMap 3 project (Con-252

sortium et al., 2010). After excluding children from trios, there were the253

genotypes for 49 ASW, 113 YRI, and 112 CEU individuals. We estimated254
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12 MASON LIANG AND RASMUS NIELSEN

the admixture fractions using the supervised learning mode of Admixture,255

with the CEU and YRI individuals assigned to separate clusters. The sam-256

pling distribution of the admixture fractions was estimated using the block257

bootstrap with 104 replicates and 2678 blocks, giving a block size of approx-258

imately 10 CM. The admixture fractions for the 49 ASW samples are shown259

in Figure 1 and the observed k-statistics are given in table 6.260

We assumed a 3-parameter model of constant admixture. For gstart ≤261

g ≤ gstop, sg = s with sg = 0 elsewhere. By matching the block-bootstrap262

corrected k2 and k3 to the predictions of equation 1, we obtained a point263

estimates of264

ŝ = 0.0277

ĝstart = 2

ĝstop = 11.

We obtained confidence intervals, shown in Figure 5, by simulation. For265

each cell in the grid, we simulated 103 replicates under the corresponding266

gstart and gstop, with s = 1− k
1/(gstop−gstart+1)
1 . For each replicate, we com-267

puted the k2, k3, and k4 statistics. A cell was then included in the confidence268

interval if and only if the corrected k2, k3, and k4 statistics from the HapMap269

data fall inside a centered interval containing 98.7% of the probability mass270

of the simulated distribution. This mass was chosen so that under the Bon-271

ferroni correction for three tests, there is at least a 95% chance of including272

the true parameter values in the confidence region.273

The point estimates for gstart and gstop correspond to the values for which274

the observed k-statistics are closest to their simulated medians.275

Discussion276

We have extended the mechanistic model of Verdu and Rosenberg (2011)277

to account for recombination and genetic drift. Doing so allows us to apply278

the predictions of this model to data. This mechanistic model allows for a279

large number of parameters. For the purposes of inference, it seems that280

imposing constraints, i.e. a small number of pulses or constant admixture,281

will be needed to narrow the search space.282

In this paper, we have assumed that admixture only comes from one283

source population, this need not be the case. To account for admixture284

from multiple source populations, equation 1 must be modified to account285
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UNDERSTANDING ADMIXTURE FRACTIONS 13

for the probability that haplotypes trace their descent to multiple source286

populations. Algorithmically, this is feasible, but the notation is cumber-287

some. The resulting equations are given in the appendix, along with the288

equations for computing expectations of higher-order k-statistics.289

Applications of the method to African-American HapMap data provides290

estimates of the time since admixture between people of Europe and and291

African descent in America. Notice that the confidence set for the admix-292

ture parameters does not include values of gstop = 0. We interpret this as293

evidence that admixture rates have declined the last few generations. The294

point estimate of time gene-flow stopped is gstop = 2. This probably reflects295

a more gradual reduction in gene-flow within the last 5 generations or so,296

rather than a discrete stop in gene-flow 2 generations ago. The discreteness297

is enforced by the model. Also notice that admixture before 15 generations298

ago can be rejected. With a generation time of 25-30 years, this corresponds299

to 325-400 years, and is in good accordance with the historical record. The300

point estimate of the time of first admixture is 11 generations, or approx.301

275-330 years ago.302

Structure analyses have become one of the most commonly applied tools303

in population genomic analyses. The theory developed in this paper allows304

users of structure analyses to interpret their data in the context of a model of305

admixture between populations, and should find use in many studies aimed306

at understanding the history of populations.307
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Figure 1. Admixture fractions for 49 African American in-
dividuals in the HapMap 3 data. Source population allele
frequencies were estimated using 113 Yoruban and 111 Eu-
ropean individuals.
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g=
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0

Figure 2. The admixture fractions of five replicate popu-
lations (each column) 5, 50, and 500 generations after an
admixture pulse. As the admixture event grows more an-
cient, the variability within a replicate population decreases,
but some variability is still maintained across the popula-
tions.
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Figure 3. The variance predicted by Verdu and Rosenberg
(2011) and equation 5, plotted on a logarithmic scale. The
variance we predict (red) is always larger, but the two a very
similar when g is small.
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Figure 4. The expected sample variance given by equation
1 plotted on a logarithmic scale, for a three different map
functions. We used a map distance of L = 1 Morgan and
N = 104. The Haldane map function (1/2 − e−2x/2) is in
red, the Kosambi map function (tanh(2x)/2) is in yellow,
and the complete interence map function (x) is in blue. For
all values of g, the expectations are ordered in the same order
as the map functions, but the difference between the three
disappears by g = 100.
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Figure 5. 95% confidence region for a model with constant
admixture from generations gstart to gstop. The point esti-
mate of gstart = 11 and gstop = 2 generations ago is colored
green.
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Observed Bootstrap Corrected
k1 0.777 −2.22× 10−15 0.777
k2 9.00 × 10−3 2.59 × 10−4 8.75 × 10−3

k3 2.98 × 10−4 1.60 × 10−5 2.82 × 10−4

k4 −3.99 × 10−5 −1.41× 10−6 −3.85× 10−5

Figure 6. k-statistics

Appendix363

These are the matrices for computing E(k3). The matrices for computing364

E(k4) are 15× 15 and not given here, but can be found in (Hill, 1974).365

v3(g) =











P{A1(g)(ℓ) = A1(g)(ℓ
′) = A1(g)(ℓ

′′) = 1}

P{A1(g)(ℓ) = A1(g)(ℓ
′) = A2(g)(ℓ

′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A2(g)(ℓ

′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A1(g)(ℓ

′′) = 1}

P{A1(g)(ℓ) = A2(g)(ℓ
′) = A3(g)(ℓ

′′) = 1}











U3 =











[ℓℓ′ℓ′′] [ℓℓ′|ℓ′′] [ℓ|ℓ′ℓ′′] [ℓℓ′′|ℓ′] 0

0 [ℓℓ′] 0 0 [ℓ|ℓ′]

0 0 [ℓ′ℓ′′] 0 [ℓ|ℓ′′]

0 0 0 [ℓℓ′′] [ℓ′|ℓ′′]

0 0 0 0 1











L3 =
1

4N2











4N2 0 0 0 0

2N 2N − 1 0 0 0

2N 0 2N − 1 0 0

2N 0 0 2N − 1 0

1 2N − 1 2N − 1 2N − 1 (2N − 1)(2N − 2)











D3(g) =











1− sg 0 0 0 0

0 (1− sg)
2 0 0 0

0 0 (1− sg)
2 0 0

0 0 0 (1− sg)
2 0

0 0 0 0 (1− sg)
3











When there is migration from both source populations, the recursion re-366

lations for the i-point correlation functions will depend on i− 1-point, i− 2-367

point, . . . correlations functions as well. As as example, consider the case of368

v2(g). Let the introgression probability from the second source population369

be given by tg. The recursion equation for v2(g) now also depends on v1(g).370
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v2(g+1) = L2

(

1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(

tg

t2g + 2tgP{A1(g)(ℓ) = 1}

)

= L2

(

1− sg − tg 0

0 (1− sg − tg)
2

)

U2v2(g) +

(

tg

t2g + 2tgv1(g)

)

.

Similarly, the recursion equation for v3(g) depends on v2(g) and v1(g).371
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