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Abstract 

 

Principal components analysis on allele frequencies for 14 and 50 populations (from 1K 

Genomes and ALFRED databases) produced a factor accounting for over half of the variance, 

which indicates selection pressure on intelligence or genotypic IQ. Very high correlations 

between this factor and phenotypic IQ, educational achievement were observed (r>0.9 and 

r>0.8), also after partialling out GDP and the Human Development Index. Regression analysis 

was used to estimate a genotypic (predicted) IQ also for populations with missing data for 

phenotypic IQ. Socio-economic indicators (GDP and Human Development Index) failed to 

predict residuals, not providing evidence for the effects of environmental factors on intelligence. 

Another analysis revealed that the relationship between IQ and the genotypic factor was not 

mediated by race, implying that it exists at a finer resolution, a finding which in turn suggests 

selective pressures postdating sub-continental population splits. 

Genotypic height and IQ were inversely correlated but this correlation was mostly mediated by 

race. In at least two cases (Native Americans vs East Asians and Africans vs Papuans) genetic 

distance inferred from evolutionarily neutral genetic markers contrasts markedly with the 

resemblance observed for IQ and height increasing alleles.  

A principal component analysis on a random sample of 20 SNPs revealed two factors 

representing genetic relatedness due to migrations. However, the correlation between IQ and 

the intelligence PC was not mediated by them. In fact, the intelligence PC emerged as an even 
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stronger predictor of IQ after entering the “migratory” PCs in a regression, indicating that it 

represents selection pressure instead of migrational effects. 

Finally, some observations on the high IQ of Mongoloid people are made which lend support to 

the “cold winters theory” on the evolution of intelligence. 

 

Introduction 

 

IQ and height are highly polygenic traits (Allen et al., 2010; Benyamin et al., 2013), which show 

strong heritability (Plomin et al., 2008). 

These traits also show considerable variation between populations and racial groups (Lynn & 

Vanhanen, 2012). Intense effort has been spent on trying to identify genetic variants that 

account for phenotypic variation within populations. Recently, attempts have been made to 

explain phenotypic differences between populations using genetic variants with known effects 

on height (Turchin et al., 2012; Piffer, 2014) and intelligence (Piffer, 2013; Woodley et al., 2014). 

Encouraging results also come from a recent population genetics study of happiness, which 

showed that the frequency of a genetic variant (5-HTT) and Danish ancestry predict happiness 

among countries and between individuals even after accounting for GDP and socio-economic 

variables (Proto & Oswald, 2014). 

The goals of this paper are: a) to find out whether the genotypic IQ factor predicts phenotypic IQ 

also after controlling for socio-economic indicators and genetic variation due to human 

migrations; b) to predict genotypic IQ scores for populations in the 1K Genomes and ALFRED 

data set. This is an important test of the model because specific predictions are generated that 

can be tested by assessing the IQ of populations whose phenotypic IQ has not been estimated 

yet; moreover it allows us to: c) test the environmentalist hypothesis that residuals (countries 

whose estimated IQs are lower or higher than predicted by their genetic factor scores) are 

explained by socioeconomic factors. Finally: d) to shed light on the correlation between height 

and intelligence at the population genetics and evolutionary level.  

 

A relatively well-known study (Chabris et al., 2012) claimed that, although a number of 

candidate genes had been reported to be associated with intelligence, the effect sizes were 

small and almost none of the findings had been replicated. However, since that paper went into 

press, a number of genetic variants have been shown to be consistently related to intelligence 

across different studies. 

Rietveld et al. (2013)’s meta-analysis found ten SNPs that increased educational attainment, 

comprising three with nominal genome wide significance and seven with suggestive 

significance. Recently, a new study has replicated the positive effect of these top three SNPs  

rs9320913, rs11584700 and rs4851266 on mathematics and reading performance in an 

independent sample of school children (Ward et al., 2014). Intelligence is a good predictor of 

performance in educational achievement tests, particularly in subjects such as math and 

English, where it explained, respectively, 58.6% and 48% of the variance in a longitudinal study 

based on 70,000+ English children (Deary et al, 2006). Kaufman et al (2012) found high 

correlations between measures of academic g and cognitive g. Interestingly, two of the three 

alleles were among the four with the highest loadings in Piffer’s factor analysis of IQ-increasing 

allele frequencies (Piffer, 2013). For these reasons, I selected only the top three alleles from 
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Rietveld et al.’s meta-analysis whose positive effect on educational attainment was replicated in 

the study by Ward et al. (2014). Another SNP was selected (rs236330), located within gene 

FNBP1L, whose significant association with general intelligence has been reported in two 

separate studies (Davies et al, 2011; Benyamin et al, 2013). This gene is strongly expressed in 

neurons, including hippocampal neurons and developing brains, where it regulates neuronal 

morphology (Davies et al, 2011).  

Principal components analysis (PCA) was used in two separate fashions and with two distinct 

goals: 1) to detect signals of recent natural selection, or a genotypic intelligence factor, following 

the method outlined by Piffer (2013), that is selecting trait-increasing alleles and regarding the 

outcome positive if the extracted component met the following two criteria: a) it represents the 

first component (explaining the biggest share of the variance); b) all or most of the increasing 

alleles have high (>0.5) positive loadings on it. 

2) To control for genetic distance due to migration (or any statistical artifacts that could arise 

from analysis of spatial population genetic variation), a random sample of genetic variants 

(SNPs) is selected, without specifically picking alleles with a particular effect (Tishkoff et al., 

2009). The components are then interpreted according to historical information on population 

movements. The rationale behind this method is that migration acts on all the alleles in the 

same direction (irrespective of their effect on phenotypes) (Cavalli-Sforza et al., 1996), unlike 

random drift which unpredictably shifts upwards or downwards allele frequencies at unlinked 

loci. 

Note that although these two uses of PCA appear superficially similar, they produce entirely 

different results because the former is based on allele pre-selected on the basis of their 

association with a trait and the factor loadings need to be all (or mostly) positive (if the allele is 

trait-increasing) for it to be interpretable. The second method, extensively used by Cavalli-

Sforza’s group, selects random alleles (without regards to their phenotypic effects or possible 

selection pressure) and does not depend on the sign of factor loadings. 

 

 

 

Methods 

 

IQs were obtained from Lynn (2006) and Lynn & Vanhanen (2012). Some values were updated 

if they differed markedly from the PISA 2012 results, measuring both fluid intelligence (Creative 

Problem Solving) and more academic skills (PISA reading, math and science). Finland’s IQ was 

adjusted upwards to 101 (from 97 in Lynn & Vanhanen), to account for recent, more accurate 

estimates (Armstrong et al., 2014). Spain’s IQ was revised downward to 94 (from 97) to 

accommodate the PISA 2012 results (OECD, 2014). IQ for the Basques was obtained from 

PISA 2012. IQ for Italy (Tuscany and the north) was obtained from Piffer & Lynn (2014). 

Two socio-economic indicators were used: Gross Domestic Product (World Bank, 2014) at 

purchasing power per capita (GDP (PPP)) and the Human Development Index for 2014 (United 

Nations Development Programme, 2014).  

The frequencies of increaser alleles (those found to increase intelligence or educational 

attainment in previous GWAS), were obtained from 1000 Genomes 
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(http://www.1000genomes.org/) and ALFRED (http://alfred.med.yale.edu/), returning data (no 

missing values) for 14 and 50 populations, respectively. 

When an SNP was not found on ALFRED, the most closely linked SNPs was searched, and if 

not found, the second closest and so on, until r2≥0.8.Linkage disequilibrium was calculated with 

SNAP (SNP Annotation and Proxy Search, https://www.broadinstitute.org/mpg/snap/), using the 

1000 Genomes pilot 1 dataset, CEU as population panel and a distance limit of 500 kB. 

 

Results 

 

1000 Genomes dataset. 

 

A PCA was carried out on the 4 IQ increasing alleles employing the 1K Genomes dataset. 

A single component (PC) was extracted that explained 77.04% of the variance (the other 

components had eigenvalues <1 and each explained a small proportion of the variance). Kaiser-

Meyer-Olkin (KMO) was acceptable (0.537). Component scores were obtained using the 

regression method and are reported in table 1 (column 2). 

All four alleles loaded highly (>0.8) and in the right direction (positive sign) on the PC (table 2), 

indicating that the component represented selection pressure on intelligence or a genotypic 

intelligence factor (Piffer, 2013). 

The correlation between IQ and the PC was very high (r=0.93) and significant (N=14; p=0.000). 

The correlation between PISA and the PC was strong (r= 0.897; N=10; p= 0.897).  

The partial correlation between IQ and the PC after accounting for GDP was highly significant 

(r=0.937;p=0.000; N=13). A similar result was obtained after partialling out HDI (r=0.942; 

p=0.000; N=12).  

A linear regression (Enter method) was run with IQ as dependent and the PC as independent 

variable. A significant model emerged (F1,12: 76.49; p=0.000;R²= .865; Adjusted R²= 0.854). 

Predicted IQ and standardized residuals (Z_RES) were also calculated (table 1, cols. 4-5).  

The correlation between Z_RES and HDI, GDP were 0.387 and 0.141 but failed to reach 

significance (p=0.214; p=0.645; N=12 and 13, respectively). 

In another regression, Z_RES was used as dependent variable and GDP, HDI were used as 

predictors to evaluate the effect of socioeconomic factors on phenotypic IQ. 

A non-significant model emerged (F2,9: 0.834; p= 0.465; R²= .156; Adjusted R²= -0.031). 

Neither HDI nor GDP significantly predicted Z_RES (p=0.791 and 0.794, respectively).   

The principal components obtained from 46 alleles (table1, col.7) and 6 replicated alleles (table 

1, col.8) reported in Piffer (2014) were correlated to the IQ PC found in the present study. 

The correlations of the IQ PC with “PolHeight” and “HeightRepl” were r=-0.933 (N=14, p= 0.000) 

and -0.558 (N=14; p=0.038). 

To test whether the IQ PC predicted IQ also within races, an univariate ANOVA was carried out 

with IQ as dependent variable, Group as fixed factor and IQPC as covariate. Four groups were 

created corresponding to the four continents of 1000 Genomes (Africa=0; America=1; Asia=2; 

Europe=3). 

Both the IQ PC and Group were significant predictors in the model (p=0.032 and 0.029, 

respectively), indicating that the IQ PC had predictive power also within racial groups (table 3). 
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To test whether the IQ PC predicted genotypic height also within races, an univariate ANOVA 

was carried out with IQ as dependent variable, Group as fixed factor and IQPC as covariate. 

The results are reported in table 4.  

 

 

Table 1* 

 

Countr

y 

IQ PC IQ Predicted 

IQ 

Z_RES PISA PolHeight** HeightRepl

** 

ASW -1.438 85 76.927 1.833 422 1.34 0.65 

LWK -1.769 74 73.372 0.142  1.57 0.87 

YRI -1.805 71 72.998 -0.454  1.89 0.69 

CLM -0.136 83.5 90.865 -1.673  -0.28 -0.14 

MXL -0.256 88 89.584 -0.359 420 -0.4 0.08 

PUR 0.034 83.5 92.692 -2.088  -0.02 0 

CHB 1.138 105 104.520 0.108 577 -1.35 -1.69 

CHS 0.950 105 102.507 0.566 545 -1.22 -1.69 

JPT 0.931 105 102.300 0.613 539 -1.18 -1.83 

CEU 0.593 99 98.689 0.070 520 -0.11 0.93 

FIN 0.655 100.5 99.350 0.261 543 -0.34 0.59 

GBR 0.612 100 98.886 0.253 500 0.02 0.68 

IBS 0.003 94 92.370 0.277 484 0.27 0.13 

TSI 0.485 99.5 97.523 0.449 493 -0.18 0.74 

 

* ASW: African ancestry in SW USA;LWK: Luhya, Kenya; YRI: Yoruba, Nigeria; CLM: 

Colombian; MXL: Mexican ancestry from LA, California; PUR: Puerto Ricans from Puerto Rica; 

CHB: Han Chinese in Bejing, China; CHS: Southern Han Chinese; JPT: Japanese in Tokyo, 

Japan; CEU: Utah Residents with Northern and Western European Ancestry; FIN: Finnish in 

Finland; GBR: British in England and Scotland; IBS: Iberian population in Spain; TSI: Toscani in 

Italy.  

**PolHeight= PC extracted using 46 alleles (Piffer, 2014). HeightRepl= PC extracted using only 

the 6 replicated hits (Piffer, 2014). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2014. ; https://doi.org/10.1101/008011doi: bioRxiv preprint 

https://doi.org/10.1101/008011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 2. Factor loadings. 

 

SNPs Loadings 

rs9320913 A 0.805 

rs1584700 G 0.844 

rs4851266 T 0.952 

rs236330 C 0.902 

 

 

Table 3. 

Tests of Between-Subjects Effects      

Dependent Variable:   IQ       

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

Corrected Model 1634.32

1
a 

4 408.580 40.99

3 

.000 

Intercept 95592.1

27 

1 95592.1

27 

9.590,

906 

.000 

IQPC 64.071 1 64.071 6.428 .032 

Group 142.901 3 47.634 4.779 .029 

Error 89.703 9 9.967     

Total 121066.

088 

14       

Corrected Total 1724.02

3 

13       

a. R Squared = .948 (Adjusted R Squared = .925)      

 

 

Table 4.  
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Tests of Between-Subjects Effects      

Dependent Variable:   HeightPol       

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

Corrected Model 12.707
a 4 3.177 97.2 ,000 

Intercept .014 1 .014 .435 ,526 

IQPC .156 1 .156 4.79 ,056 

Group 1.393 3 .464 14.2 ,001 

Error .293 9 .033     

Total 13.000 14       

Corrected Total 13.000 13       

a. R Squared = .977 (Adjusted R Squared = .967)      

 

 

 

ALFRED dataset. 

 

A PCA was carried out on the 4 IQ increasing alleles (or when these were not available, those in 

strong linkage disequilibrium: r
2
>0.8) employing the ALFRED dataset. 

A single component (PC) was extracted that explained 58.83% of the variance (the other 

components had eigenvalues <1 and each explained a small proportion of the variance).  

KMO was good (0.703). All four alleles loaded moderately high on the component (table 6), 

indicating that it represented selection pressure on intelligence or a genotypic intelligence factor 

(Piffer, 2013). 

Component scores were obtained using the regression method and are reported in table 5.  

The correlation between IQ and the PC was very high (r=0.89) and significant (N=19; p=0.000).  

A linear regression was run (Enter method) with IQ as dependent and the PC as independent 

variable. A significant model emerged (F1,17: 62.21; p=0.000;R²= .788; Adjusted R²= 0.776). 

Predicted IQ and standardized residuals (Z_RES) were also calculated (table 5, cols. 4-5).  

The correlation between the Height PC and the IQ PC was strongly negative (r= -0.816; p= 

0.000; N=50).  

To test whether the IQ PC predicted genotypic height also within races, an univariate ANOVA 

was carried out with IQ as dependent variable, Group as fixed factor and IQPC as covariate. 
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Seven groups were created (0=African; 1=Middle Eastern; 2=European; 3= Western Asia; 4= 

East Asian; 5=Native American; 6:South East Asian). 

Group was a significant predictor in the model (p= 0.000) but the IQ PC was not (p= 0.768) 

(table 7) indicating that the inverse correlation between genotypic height and IQ is mediated by 

racial origin. 

 

 

 

 

 

Table 5. 

 

Populations PC1 IQ Predicted IQ Z_RES Top4Height 

Bantu -2.415 67 67.42 -0.068 2.46 

San -2.069  71.15  2.42 

Biaka -1.634  75.86  1.83 

Mbuti -1.848  73.55  2.02 

Yoruba -2.213 71 69.60 0.226 2.01 

Mandenka -1.896 62 73.03 -1.793 2.05 

Mozabite -0.557 84 87.49 -0.568 0.45 

Bedouin -0.386  89.34  0.83 

Druze 0.282 83 96.58 -2.209 0.08 

Palestinian 0.153  95.19  0.22 

Adygei 0.437  98.26  0.27 

Basque -0.199 97 91.36 0.850 0.63 

French 0.152 100 95.17 0.784 0.55 

CN Italians 0.370 101 97.53 0.563 0.66 

Orcadian 0.881 100 103.05 -0.497 0.38 

Russian -0.345 97 89.79 1.090 0.14 

Sardinian -0.513 94 87.97 0.978 0.34 
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Burusho 0.302  96.79  -0.02 

Kalash 0.614  100.16  -0.25 

Pashtun -0.239  90.94  -0.01 

Mongolian 1.194  106.44  0.14 

Balochi 0.244  96.17  -0.15 

Brahui -0.027  93.23  -0.6 

Hazara 0.867  102.90  -0.17 

Sindhi -0.317 84 90.09 -0.990 -0.75 

Dai 0.546  99.43  -0.99 

Daur 1.589  110.71  -0.89 

Han 0.947 105 103.76 0.200 -1.05 

Hezhe 1.377  108.41  -0.88 

Japanese 0.725 105 101.37 0.590 -1.18 

Koreans 1.135 106 105.80 0.031 -1.17 

Lahu 0.568  99.67  -0.94 

Miao 0.634  100.38  -0.99 

Naxi 0.210  95.80  -0.4 

Oroqen 0.717  101.28  -0.68 

She 0.416  98.03  -1.3 

Tu 0.726  101.37  -1.03 

Tujia 1.299  107.57  -0.98 

Uyghur 0.805  102.23  -0.74 

Xibe 0.896  103.21  -0.97 

Yi 0.977  104.09  -0.92 

Cambodians, 

Khmer 

0.129 94 94.93 -0.151 -0.65 
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Papuan New 

Guinean 

-1.399 83 78.40 0.665 -0.54 

Melanesian, 

Nasioi 

-0.225 85 91.09 -0.990 -0.47 

Yakut 0.606  100.08  -0.4 

Pima, Mexico -0.284  90.45  -0.52 

Maya, Yucatan -0.945  83.30  0.6 

Amerindians -1.428 86 78.08 1.28661 0.48 

Karitiana -0.388  89.33  1.04 

Surui -0.476  88.37  0.01 

  

 

Table 6. Factor loadings. 

 

SNP Loadings 

rs9320913 A .580 

rs1584700 G .820 

rs4851266 T .858 

rs236330 C .780 

 

 

Table 7. 

 

 

Tests of Between-Subjects Effects      

Dependent Variable:   HeightTop4       

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. 

Corrected Model 43.757
a 7 6.251 53.7 .000 

Intercept 1.152 1 1.152 9.91 .003 
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IQPC .010 1 .010 .088 .768 

Group2 8.360 6 1.393 11.9 .000 

Error 4.532 39 .116     

Total 48.332 47       

Corrected Total 48.290 46       

a. R Squared = .906 (Adjusted R Squared = .889)      

 

 

 

 Controlling for genetic relatedness 

 

1K Genomes 

 

A random set of 20 SNPs was obtained, each located on a different chromosome (to avoid 

linkage). These were divided into two sets, belonging to Chr.1-10 and 11-20. Two separate PC’s 

were performed. 

The first set produced two components (KMO= 0.676) accounting for 47.78 and 35.89 % of the 

variance. The second set yielded three components (KMO=0.439), explaining 44.75, 26.88 and 

10.9% of the variance respectively.  

Table 8 represents the correlation between all the factors. The logic behind this method is that if 

two factors are not random noise, they should be correlated across sets of different SNPs. 

Indeed, this is what was found. Factor 1 of set 1 was significantly correlated to factor 1 of set 2; 

accordingly, factor 2 of set 1 was correlated with factor 2 of set 2. To simplify the analysis (and 

avoid the issue of multiple comparisons), the two similar pairs were averaged so as to obtain 2 

factors (table 9). These were correlated to the variables of interest (IQ, IQ PC). Correlations are 

reported in table 10. 

Factor 1 was not significantly correlated either to IQ or IQ PC and was not clearly interpretable, 

but perhaps it indicated north-south migrations. Factor 2 had significantly negative correlations 

with both. This factor likely represents genetic relatedness to Africans (due to migration), as it 

has higher values among Africans and lower among Europeans, lower still among Americans 

and the lowest among East Asians, similar to genetic distances reported using other genetic 

markers (Cavalli-Sforza et al., 1996). It’s a common finding from PCA of genetic markers that 

the difference between Africans and non-Africans is greater than between other populations, as 

reflected by the first PC usually distinguishing between Africans and non-Africans in worldwide 

samples (Tishkoff et al., 2009). 

A partial correlation was carried out to assess the relationship between IQ and the estimated 

genotypic IQ factor (IQ PC), partialling out the “African” factor (Factor 2). 

The partial correlation was still highly significant (r= 0.841; p=0.000; N=14). As a cross-check, 

another partial correlation was computed between the “African” factor (Factor 2) and IQ, after 
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partialling out IQ PC. The rationale is that if the IQ PC really represents an intelligence factor 

due to selective pressure and is not a statistical artefact or a by-product of migrations, then 

partialling out non-selective factors (such as African admixture) will not substantially alter its 

effect on IQ. Conversely, if the African factor does not represent a genuine intelligence factor 

due to selection, its correlation with IQ will be spurious (i.e. it will disappear after partialling out 

the IQ PC). This is indeed what was found: the partial correlation between IQ and Factor 2 

(“African”) after controlling for IQ PC became negligible and even reversed its sign (r= 0.181; p= 

0.554).  

To assess the effects of all genetic factors, a multiple linear regression was ran with IQ as 

dependent variable and IQ PC, PCs 1,2 as predictors. Results are reported in table 11. IQ PC 

emerged as the only significant predictor of IQ, with a SD change corresponding to an increase 

of over 1 SD in population IQ. PC 2 lost all its negative association with IQ and even had a small 

positive effect, albeit failing to reach significance. This suggests that its negative correlation with 

IQ is spurious (i.e. mediated by the intelligence factor). 

Another multiple regression was run with IQ PC as dependent and the genotypic height factor 

(PolHeight) plus the two migratory factors. Again genotypic height was the only significant 

predictor (Beta= -1.44; p= 0.02).   

 

 

ALFRED 

 

A set of 10 SNPs (different from those used in the 1K analysis) was randomly chosen (Chr.1-

10). Principal component analysis extracted three components with eigenvalues greater than 1, 

accounting for 32.86, 16.99, 14.6 % of the variance. KMO was acceptable (0.608). PC scores 

are reported in table 12. The first component clearly represents genetic distance from Africans, 

as African populations show the highest values, and the component scores for the other 

populations follow the well-established pattern of progressive distance from Africans in the 

following order (found in studies employing much larger numbers of genetic markers): Middle 

Eastern> European>SW Asian>East Asians>Native American>Oceanian (Eurogenes, 2014).  

The other components had no clear interpretation and since they accounted for a small portion 

of the variance, it is likely that they constitute statistical noise. 

The correlation between the first component and the genotypic IQ factor was negative (r=-

0.468, N=50, p=0.000).  

A multiple linear regression was run with IQ as dependent variable and genotypic IQ factor plus 

the three “migration components”. A significant model emerged (F4,14= 15.77, p=0.000; (R²= 

.818; Adjusted R²= 0.767). Only the genotypic IQ factor was a significant predictor of IQ. Beta 

coefficients and p values are reported in table 13.  

Another multiple regression was run with IQ PC as dependent and the genotypic height factor 

plus the three migratory principal components. IQ PC had a significantly negative effect (Beta= -

0.838; p= 0.000) but the other variables did not achieve significance at the p= 0.05 level. 
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Table 8.  

 

Correlations       

   FAC1_set2 FAC2_set

2 

FAC3

_set2 

fac1s

et1 

fac2set1 

FAC1_set2 Pearson 

Correlation 

1 .000 .000 .883
** .263 

 Sig. (2-tailed)   1.000 1.000 .000 .363 

 N 14 14 14 14 14 

FAC2_set2 Pearson 

Correlation 

.000 1 .000 -.305 .883
** 

 Sig. (2-tailed) 1.000   1.000 .289 .000 

 N 14 14 14 14 14 

FAC3_set2 Pearson 

Correlation 

.000 .000 1 -.073 -.290 

 Sig. (2-tailed) 1.000 1.000   .804 .315 

 N 14 14 14 14 14 

fac1set1 Pearson 

Correlation 

.883
** -.305 -.073 1 .000 

 Sig. (2-tailed) .000 .289 .804   1.000 

 N 14 14 14 14 14 

fac2set1 Pearson 

Correlation 

.263 .883
** -.290 .000 1 

 Sig. (2-tailed) .363 .000 .315 1.000   

 N 14 14 14 14 14 

**. Correlation is 

significant at the 0.01 

level (2-tailed). 
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Table 9.* PCs extracted from 20 random SNPs (Averages from the two sets of 10 alleles). 

 

 PC1 PC2 

ASW 0.65 1.19 

LWK 1.22 1.65 

YRI 1.22 1.33 

CLM -0.49 -0.52 

MXL -0.12 -0.69 

PUR -0.77 0.12 

CHB 1.06 -1.23 

CHS 0.91 -1.16 

JPT 1.17 -1.47 

CEU -0.85 0.15 

FIN -1.03 -0.32 

GBR -1.05 0.17 

IBS -0.98 0.64 

TSI -0.93 0.14 

 

* ASW: African ancestry in SW USA;LWK: Luhya, Kenya; YRI: Yoruba, Nigeria; CLM: 

Colombian; MXL: Mexican ancestry from LA, California; PUR: Puerto Ricans from Puerto 

Rica; CHB: Han Chinese in Bejing, China; CHS: Southern Han Chinese; JPT: Japanese in 

Tokyo, Japan; CEU: Utah Residents with Northern and Western European Ancestry; FIN: 

Finnish in Finland; GBR: British in England and Scotland; IBS: Iberian population in 

Spain; TSI: Toscani in Italy.  

 

 

 

Table 10.  
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Correlations      

   IQ IQPC Averag

eFac1 

Average

Fac2 

IQ Pearson Correlation 1 .930
** -.219 -.744

** 

 Sig. (2-tailed)   .000 .451 .002 

 N 14 14 14 14 

IQPC Pearson Correlation .930
** 1 -.345 -.839

** 

 Sig. (2-tailed) .000   .227 .,000 

 N 14 14 14 14 

AverageFac1 Pearson Correlation -.219 -.345 1 -.011 

 Sig. (2-tailed) .451 .227   .970 

 N 14 14 14 14 

AverageFac2 Pearson Correlation -.744
** -.839

** -.011 1 

 Sig. (2-tailed) .002 .000 .970   

 N 14 14 14 14 

**. Correlation is significant at 

the 0.01 level (2-tailed). 

     

 

 

Table 11. 

 

Coefficients       

Model  Unstandardize

d Coefficients 

 Stan

d. 

Coef

f. 

t Sig. 
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  B Std. Error Beta   

1 (Constant) 92.328 1.096   84.250 .000 

 IQPC 15.184 2.752 1.31

9 

5.517 .000 

 AverageFac1 2.838 1.543 .239 1.839 .096 

 AverageFac2 4.328 2.663 .365 1.626 .135 

a. Dependent Variable: IQ       

 

 

Table 12. “Migration” PCs from 10 SNPs (ALFRED). 

 

 

 PC1 PC2 PC3 

Bantu 1.946 -0.240 1.184 

San 1.840 0.236 -0.513 

Biaka 2.869 -0.179 2.401 

Mbuti 1.929 -0.439 0.000 

Yoruba 1.997 0.035 2.019 

Mandenka 1.683 0.041 1.435 

Mozabite 0.613 0.798 0.333 

Bedouin 0.812 1.452 -0.149 

Druze 0.409 1.275 -0.783 

Palestinian 0,673 1.474 -0.529 

Adygei -0.174 2.229 -0.615 

Basque -0.518 0.855 -0.430 

French 0.173 1.447 -0.592 

CNItalians -0.010 1.181 -0.924 
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Orcadian -0.635 1.894 -0.063 

Russian -0.137 0.942 -0.558 

Sardinian 0.011 1.394 -1.080 

Burusho 0.403 -0.243 -0.888 

Kalash 0.257 -0.149 0.068 

Pashtun 0.222 -0.573 -0.508 

Mongolian -0.688 -0.387 -0.215 

Balochi 0.223 0.643 -0.502 

Brahui 0.380 -0.071 -0.605 

Hazara -0.434 0.290 -0.163 

Sindhi -0.265 0.027 0.051 

Dai 0.395 -2.021 -0.846 

Daur -0.976 -0.124 -0.241 

Han -0.191 -0.900 -0.733 

Hezhe -0.415 0.042 0.652 

Japanese -0.376 -1.672 -0.265 

Koreans -0.040 -0.995 -0.212 

Lahu -0.224 -1.065 0.040 

Miao -0.457 -0.385 -0.673 

Naxi 0.311 -0.716 -1.521 

Oroqen -0.564 0.091 -0.118 

She -0.248 -1.092 -0.594 

Tu 0.358 -0.584 -0.543 

Tujia 0.111 -1.667 -0.841 

Uyghur 0.267 0.352 0.052 
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Xibe -1.228 -0.285 -0.661 

Yi 0.348 -0.9634 -0.220 

Cambodians, 

Khmer 

0.021 -1.681 -0.651 

Papuan New 

Guinean 

-1.555 -0.496 -0.384 

Melanesian, Nasioi -1.044 -0.352 -0.379 

Yakut -0.795 0.361 0.069 

Pima, Mexico -1.293 -0.550 1.931 

Maya, Yucatan -1.004 0.043 0.477 

Amerindians -1.224 -0.251 2.219 

Karitiana -1.807 -1.135 2.995 

Surui -1.948 2.117 2.081 

 

Table 13. 

 

 

Coefficients
a       

Model  Unst.Coeff.  St.Coeff. t Sig. 

  B S.E. Beta   

1 (Constant) 93.180 1.622   57.44 .000 

 IQPC 9.491 2.125 .780 4.465 .001 

 PC1 -2.594 1.751 -.195 -1.481 .161 

 PC2 -.048 1.443 -.004 .,033 .974 

 PC3 -.286 2.295 -.022 -.124 .903 

a. Dependent Variable: IQ       

 

 

Discussion 
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The genotypic IQ factor extracted with principal component analysis was a strong predictor of 

average population IQ, almost approaching unity in the 1K Genomes dataset and showing 

strong effects in the ALFRED dataset, comprising only partly overlapping populations. 

An additional analysis revealed that this effect was not entirely mediated by race, because the 

genotypic factor significantly predicted IQ in both datasets (1K Genomes and ALFRED) 

consisting of four and seven racial groups, respectively (see table 3 and 7). If replicated, this 

would be a remarkable finding, which implies that evolutionary forces persisted even after 

continental races split into populations that roughly correspond to contemporary national or 

ethnic groups. This also yields more credibility to the results, because it indicates that the effect 

is not due to a broader racial element but is repeated across isolated geographical regions and 

genetic clusters. 

For instance in Europe, northern populations (Finland, Great Britain) have higher genotypic 

scores than southern populations (Iberians), which could be due to lower admixture with 

Africans or higher selective pressure for intelligence. This corresponds to an advantage in terms 

of predicted IQ of almost 6 points (table 1, col. 4), which is reflected in the phenotypic IQ (col. 

2).  

The admixture scenario is unlikely, as Iberians have only low (about 2%) frequency of sub-

Saharan genetic markers (Eurogenes, 2014). 

However, the higher genotypic score of African Americans compared to sub-Saharan Africans 

(77 vs 73) is obviously due to admixture with people of European ancestry. The difference in 

phenotypic IQ between them is much higher (10-15 points), which is probably due to the effect 

of malnutrition that tends to depress intellectual development. It is thus likely that the real sub-

Saharan African genotypic IQ is higher than estimated here or what is measured and instead is 

around 81 (85-4). 

An attempt was made to determine whether the discrepancy between phenotypic and genotypic 

IQ was due to socioeconomic factors. These (GDP per capita, Human Development Index) 

failed to predict the residuals when entered in a regression. It should also be mentioned that 

although they failed to reach significance, the correlations between residuals and GDP/HDI 

were in the right direction, that is to say, larger residuals (phenotypic-genotypic IQ) were 

associated with higher GDP and better human development. The lack of statistical significance 

is most likely due to the small sample size (N<15).  

When allele frequency data will become available for more populations, it will be possible to test 

this hypothesis on a bigger sample. The populations from the ALFRED database comprise in 

part tribes (Papuans, Melanesian,Amerindians) and assigning GDP or HDI to them was not 

possible. Also carrying out a between-groups analysis was problematic because IQ scores for 

some racial groups were available only for a single population. 

However, the ALFRED results also yield interesting insights. 

The populations with the highest genotypic IQ are the Daur and Hezhe (or Nanai) (table 5, col. 

4). 

The Daur speak a Mongolic language and are descendants of the Khitan (Jinhu, 2001), who 

were originally from Mongolia and Manchuria (the northeastern region of modern-day China). 

The Hezhe are a Tungusic people who have traditionally lived in northeastern China and 

Siberia.  
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This finding (if replicated) would yield support to the “cold winters theory”, which posits that the 

higher IQ of East Asians originated in a region roughly corresponding to modern day Mongolia 

and Manchuria, characterized by extremely low winters temperatures and then spread to the 

south of China and Japan through migrational waves (Lynn, 1987). There is recent genetic 

evidence that fits well with a model of north-south migration in China: “The inferred north-south 

pattern in the genetic structure analyses suggests a primary north-south migratory pattern in 

China. This ties in very well with historical records indicating that the Huaxia tribes in northern 

China, the ancient ancestors of the Han Chinese, embarked on a long period of continuous 

southward expansion as a result of war and famine over the past two millennia" and “this one-

dimensional structure of the Han Chinese population is clearly characterized by a continuous 

genetic gradient along a north-south geographical axis, rather than a distinct clustering of 

northern and southern samples" (Chen et al., 2009).  

Some populations that ALFRED groups with East Asians (because they live there) are in fact 

descended from South East Asians, for example the Lahu, the Naxi and the Dai, and have a 

lower genotypic IQ (95-99) than other groups living in China (100-110), resembling the 

genotypic IQ of Cambodians (95) (Table 5). 

Two observations deserve attention, regarding a marked discrepancy between genetic distance 

(as measured by neutral genomic markers) and distance in factor scores for IQ and height. 

1) The lower IQ of Sub-Saharan Africans and the Aboriginals from Papua New Guinea cannot 

be explained in terms of cultural contact or genetic relatedness, because these racial groups are 

geographically very far apart and genetically very distant from each other (Cavalli-Sforza et al., 

1996). 

2) Native Americans have very different genotypic IQ and height from East Asians, being taller 

and with lower phenotypic and genotypic IQ. This contrasts markedly with their genetic similarity 

and relatively recent common origin (Wells, 2002) and argues strongly against the possibility 

that random drift can explain this fact, because the increase in height and decrease in IQ follows 

the worldwide pattern found in the present study. Instead it lends support to a model of an 

evolutionary trade-off between increased height or higher intelligence.  

These two variables were strongly negatively related in both datasets (1K Genomes and 

ALFRED). 

The negative relationship between genotypic height and IQ seems to be mediated by race, as 

the IQ PC failed to predict height after partialling out the effects of race (group). This suggests 

that the evolutionary trade-off between height and IQ predates sub-continent level population 

splits, although this does not rule out that it continued after (as suggested by the marginally 

significant independent effect of genotypic IQ on genotypic height in the 1K Genomes dataset). 

It can only be speculated that this trade-off was due to sexual selection (for brawny vs brainy 

males) or selective pressure due to climate, favoring shorter limbs (via Allen’s rule) and bigger 

brains in colder environments (Piffer, 2014). This between-groups pattern contrasts with the 

within group pattern, where IQ is slightly higher on average in taller people than in shorter 

people (Pearce et al., 2005; Humphreys, Davey & Park, 1985). This correlation is in part due to 

common genetic factors (Marioni et al., 2014) and assortative mating (Beauchamp et al., 2011). 

It is possible that mutational load has decreased both traits, hence creating the genetic 

correlation, which would be strengthened by assortative mating and environmental variables 

(e.g. nutrition). 
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A set of randomly picked SNPs located throughout the genome was used to estimate genetic 

relatedness between populations due to migrations or possible statistical artifacts. This 

methodology was first used by Cavalli-Sforza and colleagues over 30 years ago to study the 

evolutionary history of human populations and reconstruct patterns of migration, and it 

continues to be used today (Ma & Amos, 2010).  

If the component extracted from the IQ increasing alleles really reflects selection pressures on 

intelligence, it will predict IQ also after partialling out the confounding element due to population 

migrations. Although the biggest migration principal component (indicating genetic distance from 

Africans) was negatively correlated to IQ, the genotypic IQ factor emerged as a significant 

independent predictor of IQ in both datasets (ALFRED and 1000 Genomes), independently of 

the other (migration+noise) components.  

This analysis revealed that the effect on IQ of the genotypic IQ factor is stronger than migration 

and is not substantially mediated by it. 

A similar analysis showed that the genotypic height factor had a significantly negative and 

strong effect on the genotypic IQ factor even accounting for the migratory PCs, in both datasets 

(ALFRED and 1K Genomes). 

Overall the results provide support for the validity of the method proposed by Piffer (2013) for 

detecting signals of recent polygenic selection and indicate that the principal components that 

were extracted are clearly distinguishable from those produced by migrations. 

A clear limitation of this study is its reliance on a very small number of genetic variants for 

intelligence (4) although the positive results obtained with a much bigger sample of alleles 

(N=46) affecting height (Piffer, 2014) are encouraging. Future studies using more genetic 

variants will have to attempt a replication of the findings presented here. 
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