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Abstract

The evolution of the long, slow human life history is a major challenge to evolu-
tionary biologists. A compelling theory states that our late age at maturity allows us
to acquire the many skills needed to survive in the economically intensive human for-
aging niche. Cultural transmission may be a crucial part of this process, by exposing
learners to a wealth of information and skills that they would otherwise not likely dis-
cover. I use mathematical models to show that whether cultural transmission allows
a later age at maturity depends on the details of selection and population regulation.
In particular, cultural transmission appears to readily allow a later age at maturity
under density-dependent fertility, but may not under density-dependent mortality or
density-independent population growth. I close with a discussion of possibilities for
future theoretical and empirical research.

1 Introduction

The unusually long and slow human life history pattern has provoked much research and
debate among evolutionary anthropologists. Even among the primates, humans have an
usually long period of juvenile dependency, a late age at sexual maturity, and a long lifespan.
Adults reproduce for many years at short interbirth intervals, and, with luck, enjoy a long
post-reproductive period (see Kaplan et al., 2000; Mace, 2000; Jones, 2011 for useful reviews
of human life history patterns from evolutionary perspectives).

Some researchers have argued that much of this slow life history is the result of selection
for an extended juvenile learning period, during which we devote energy to the development
of the complex skills needed to survive and reproduce in the extractive human foraging niche
(Kaplan et al., 2000). Mastery of extractive foraging skills ultimately reduces adult mortality
rates, so that a long juvenile period, long lifespan, and productive adulthood coevolve. This
theory is often referred to as the “embodied capital theory” of human life history evolution
(e.g. Kaplan et al., 2003). Although I have argued elsewhere that this theory may require
further theoretical investigation (Baldini, 2013), the idea is compelling and appears to enjoy
some empirical support (Kaplan et al., 2000).

In this paper I argue, similarly to Sterelny (2012), that cultural transmission may be
essential to the embodied capital theory, especially with regard to the extended juvenile
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learning period. Cultural transmission exposes learners to many complex skills and tech-
nologies that the vast majority of people could not discover for themselves. These skills
require many years of individual practice and experience to develop, but ultimately yield
high reward in adulthood. Without culture, there would therefore be little that a young
human forager could realistically master, and therefore little reason to extend the juvenile
period for so long. I investigate this hypothesis with mathematical models of life history
evolution under a variety of selection and population regulation mechanisms. I find that
whether culture facilitates a long juvenile period depends on the details of how selection
and population regulation operate. Specifically, culture readily facilitates longer juvenile pe-
riods under density-dependent regulation of fertility (or infant survival), but may not under
density-dependent mortality or exponential population growth. This result suggests that we
need to better understand the demographic conditions under which the unique human life
history evolved.

The following section develops the argument in more detail and provides an accessible
(but not general) mathematical argument for why culture might facilitate a long juvenile
learning period. Section 3 contains more explicit models of life history evolution, in which
age at maturity and the investment in individual learning coevolve. Because the results of
life history models depend strongly on the details of selection and population regulation,
section 3 investigates a variety of selective and demographic cases, each of which leads
to different qualitative outcomes. The detailed mathematical and numerical results of this
section reside in appendices at the end of the paper. Section 4 summarizes the results and
suggests directions for future theoretical and empirical research.

2 The argument and a heuristic model

2.1 The argument

Much of the human maturation process appears to involve the development of complex skills.
This is clearly true of modern societies, in which humans spend many years of their lives
in formal education systems, even well into reproductive maturity. Subsistence economies,
too, require the mastery of many difficult skills. Some evolutionary anthropologists, for ex-
ample, argue that hunting requires decades of practice to reach peak proficiency, which may
not occur until many years after reaching peak physical condition1. Individual experience is
likely a crucial aspect of this learning process; difficult tasks can’t be learned vicariously.
A mathematician can’t master analysis without working through proofs and essentially re-
discovering the theorems for himself. Similarly, a forager can’t become proficient simply by
observing others; he must log many hours of personal practice before he can support himself
and others.

At first glance, the primacy of individual experience seems to discount the role of cul-
tural transmission, because the complex skills needed for survival and reproduction in the

1See Kaplan et al. (2000); Walker et al. (2002); Walker and Hill (2003); Gurven et al. (2006). There is
a debate, however, whether patterns in human foraging productivity across age reflect skill acquisition or
simply physical growth and senescence. For an argument supporting the latter, see Bliege Bird and Bird
(2002); Bird and Bliege Bird (2002); Blurton Jones and Marlowe (2002).

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2014. ; https://doi.org/10.1101/007930doi: bioRxiv preprint 

https://doi.org/10.1101/007930
http://creativecommons.org/licenses/by-nc-nd/4.0/


human niche can’t be readily transmitted. Yet cultural transmission is essential, because the
behavioral domains in which we develop our skills are only available because of the culturally-
transmitted information accumulated over generations. Humans spend years learning to use,
build, and maintain a complex toolkit and develop complicated skills. Very little of this
information is likely to be invented by the young learners themselves.

As an instructive case, consider the bow and arrow. The bow and arrow, with its greater
accuracy and stealth than the atlatl, increases an individual hunter’s return rate substan-
tially. Its advantage is so great that its introduction appears to have revolutionized economic
and social organization in much of western North America (Bettinger, 2013). The rewards
of a bow-and-arrow-based subsistence strategy are likely most enjoyed by those who invest
the many hours of practice needed to master the tool’s construction, use, and maintenance.
The invention may therefore favor a longer learning period than would simpler technologies,
because increased practice continues to pay off. But this long learning period is only possible
because hunters are able to culturally inherit the tool and its hunting tactics from previous
generations. Of course, the typical human life history was already well established before the
invention of the bow and arrow. But the principle should apply to simpler, earlier behaviors.
One cannot spend time learning how best to extract honey from a bee hive, use poison to
paralyze fish, or weave rain-proof roofing until one is made aware of the possibility to begin
with. For all but a few independent inventors, the introduction must occur through social
learning. Without such complex tools and techniques, there would be little for a young per-
son to master in the first place, and so little reason to delay reproduction longer than other
primates.

This is a somewhat different view of the relationship between social and individual learn-
ing than is often presented in the theoretical literature. Usually, theorists assume that social
and individual learning are competing learning strategies (e.g. Rendell et al., 2010). While
it is true that the information one gathers at any time is either socially derived or not, this
view misses the synergy that can arise between social and individual learning. The cultural
transmission of complex skills can augment the benefit to individual learning by introduc-
ing the learner to otherwise unavailable behavioral domains. My argument echoes Sterelny’s
(2012) claim that “human life history characteristics coevolve with technological compe-
tence and cultural learning... Extensive cultural transmission supports the development of
technological foraging skills that generate extremely rich returns.”

2.2 A heuristic mathematical demonstration

Consider the evolution of the age of maturity for some asexual organism. The life course is
divided into two learning phases: (1) the learning phase, and (2) the reproductive phase2.
The learning phase begins at birth, and the reproductive phase begins at some age a. For
simplicity, assume that the death rate, µ, is fixed for all individuals and ages, and that, after
maturity, one’s fertility rate, m, depends on the amount of information (or individual learning

2Of course, humans can continue to learn after they reproduce. Ideally one would want to represent the
effort contributed to learning and to reproduction with real numbers, rather than dividing it into discrete
stages. I do the latter here for simplicity; future investigations should check that the same basic results
arrive. Kaplan et al. (2000) do include a learning process after reproduction, but simply assume that it is a
an unevolving process of exponential skill growth, which seems unrealistic.
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experience), I, the individual acquired during the learning phase. I is itself a function of a;
those who spend a longer time learning acquire more information. If we assume further that
all strategies are equally strongly regulated by population density through fertility or infant
survival, then selection will favor strategies with higher expected lifetime number of offspring,
often called R0 (see appendix A):

R0(a) =
e−µam(I(a))

µ
. (1)

Hence, an increase in a requires
R′0(a) > 0,

or
m′(I(a))I ′(a)

m(I(a))
− µ > 0, (2)

where the prime denotes a derivative. Consider the term I ′(a), which is the marginal increase
in information gained by extending one’s learning phase beyond the current age a. Holding
all other things constant, an increase in this derivative causes selection for a longer learning
period. My argument is that cultural transmission can increase this derivative by expos-
ing learners to many complex, high-return behaviors and technologies that require years of
individual learning to master.

To formalize this argument, suppose that there are n possible domains of behavior that
one could acquire experience in. These could be conceived as very broad, large-scale behav-
iors, such as hunting, gathering, fishing, pottery, shelter-building, etc. They could be more
narrow, such as “hunting with a bow,” or “hunting species A.” Even narrower, they could
represent “processing food with technique B,” “fishing with nets,” or “making tools in style
C.” Each of these domains has some probability of being discovered anew by a learner with-
out cultural transmission. Assume for now that this probability of invention is some small
number p. Assuming (again for simplicity) that inventions occur at a young age, then the
number of domains available to a learner without cultural transmission on average is simply
np. Learners then spend their youth developing skill in these domains.

Now consider a population in which learners can observe and imitate the behaviors of
others, so that behavioral domains can be learned socially. The probability of acquiring a
domain then depends on its frequency in the population, the social learning strategy being
used, network size and structure, and so on. I ignore these mechanistic details and simply
assume that the probability of acquiring a domain through social learning is an increasing
function of the domain’s frequency, q, among adults in the population. For example, suppose
that the ultimate probability of acquiring some domain is

P(acquire domain) = p+ (1− p)
(
1− e−βq

)
, (3)

where β measures the strength of “cultural selection” (depending on psychological biases,
social network composition, and other factors) for the domain. This equation says that, in
a cultural population, one can learn the behavior either through individual invention (with
probability p), or, if not (1− p), then through social learning (1− exp(−βq)). Because q is
itself an evolving variable, this probability changes through time as more or fewer people
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become aware of the behavioral domain. This will tend to settle down on some equilibrium
value q̂. Although equation (3) can’t be solved for equilibrium in elementary terms, it is
clear that q̂ will be larger than p because of the additional probability of learning behavioral
domains socially. It may be much larger if social learning is effective and the domain is very
difficult to discover individually. Because there are more known skills to develop, the returns
to individual learning diminish more slowly that in an acultural population, and I ′(a) will
likely be greater.

It is possible that the shift toward social learning reduces individual inventiveness such
that p will be reduced to some value p∗ < p. In that case, one can show that q̂ > p only if

β >
log(1− p∗)− log(1− p)

p
, (4)

which, if p, p∗, and their difference are all small, can be reasonably approximated by

β > 1− p∗

p
. (5)

The condition β > 1 is required for a social learning population to maintain a domain in the
population in the first place, so the above inequality is reasonable.

For the remainder of the paper, I do not treat the evolution of cultural transmission itself.
Rather, I focus on how an increase in q̂ affects life history evolution. The implication is that
cultural transmission will tend to increase q̂, based on the above argument.

3 Results of complete models

A more complete analysis should track not only the genetic evolution of the age at maturity,
but also the amount of energy invested in individual learning itself, as this is likely to
change as the learning period changes. In other words, everything else is not held constant
in inequality (2). Let the variable α represent the amount of energy or effort devoted to
individual learning. An increase in α increases the rate at which information is learned, but
comes at a cost to either survival or fertility (see cases below) because of the energy needs of
maintaining the cognitive structures that allow for learning, or because the time-consuming
act of learning itself may reduce survival or fertility.

For the individual learning function I, I assume a diminishing-returns function:

I(a, α) = nq̂

(
1− exp

(
− α

nq̂
a

))
. (6)

The derivation is as follows: an individual devotes an amount of energy α to individual
learning. This is divided evenly into all the domains available to the learner - of which there
are nq̂, on average. The rate of learning diminishes exponentially toward an asymptote of
1 for each domain. When added across all domains, this implies a maximum total I of nq̂.
Learners never quite reach this maximum value; they may fall well short of it if the length
of their learning period is short. Figure 1 shows the general shape of I(a) for different values
of q̂ and α.
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Figure 1: Learned information I as a function of length of learning stage a. Larger α allows
faster learning; larger q allows more to learn. n = 10.

I consider simultaneous evolution in a, the age at maturity, and α, the energy devoted
to individual learning. In general, the action of selection depends on how vital rates (mor-
tality or fertility) are affected by learning, and how the population grows and is ultimately
regulated (Charlesworth, 1994). The heuristic argument above only considered selection and
density dependence acting on fertility. Below I allow two simple kinds of selection: case 1,
where increased information leads to higher fertility, and case 2, where increased informa-
tion leads to lower mortality. Within these cases I allow three kinds of population regulation:
density-dependent fertility, density-dependent mortality, and unregulated, exponential popu-
lation growth. Under the conditions explained in Appendix 1, the latter two forms of growth
always select for the same strategy, so I combine them in the following analysis. In reality,
density may affect both mortality and fertility. In that case, the evolutionary equilibrium lies
somewhere between the two extremes (Baldini, 2013).

3.1 Case 1: selection on fertility

First consider the case where information gained through learning increases one’s fertility
rate, but not one’s mortality rate. That is, skills acquired in learning increase an adult’s
ability to produce surviving offspring - perhaps by better acquiring resources, attracting
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mates, or providing proper care for infants. I assume a simple linear effect of information I
on the fertility rate, m, so that equation (6) becomes

m(I, α) = sI(a, α) exp(−cα). (7)

This assumes that an individual with no learned information at all has zero fertility.

Case 1a: density-dependent fertility

Suppose that the fertility rates of all strategies decrease as population density grows. The
appendix contains the mathematical details of this model, and derivations of the selection
gradients on a and α. The general result arises that there is a single positive optimum,
denoted by â and α̂, and any increase in q̂ always selects for larger â and α̂. Thus, if cultural
transmission exposes people to more behavioral domains, selection will favor longer, more
intensive juvenile learning periods under Case 1a conditions.

Figure 3a shows the typical shape of â as affected by q̂. Since q̂ is always multiplied by n
in the model, figure 3a plots â on this product, which can be interpreted as the number of
behavioral domains in which the average learner can gain experience. The effect of nq̂ can be
large, especially compared to the case of density-dependent mortality or exponential growth
(figure 3b; see just below).
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(a) Case 1a: density-dependent fertility
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(b) Case 1b: density-dependent mortality, or no
density dependence

Figure 2: Equilibrium age at maturity (â) under various numbers of available learning do-
mains (nq̂) when selection acts on fertility. µ = 1/30, c = 1/30, s = 0.02. The unplotted
range for small nq̂ corresponds to population extinction.
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Case 1b: density-dependent mortality, or exponential growth

Now suppose that either the mortality rate increases linearly with population density, or
neither mortality nor fertility are density-dependent. These two cases select for the same life
history schedule under the simple functional forms shown in Appendix A. Unfortunately,
I have been unable to derive any general result about the effect of q̂ on â or α̂, as the
gradients are more complicated. For any particular set of parameters, however, we can solve
for equilibrium numerically. Appendix B contains tables for many such equilibria under
various parameter values.

In every case analyzed, there was only one positive equilibrium â and α̂, and the effect
of q̂ on â was about the same. For small q̂, an increase in q̂ causes â to decrease. At some
critical point in q̂, the effect reverses, so that further growth in q̂ causes â to grow as well.
Figure 3b shows an example of this effect. Thus, the effect of behavioral domain number on
optimal age at maturity appears to be equivocal. Furthermore, the effect is generally weaker
in case 1b than in all other cases. I have not been able to explain on intuitive grounds why
the differences arise.

3.2 Case 2: selection on mortality

Now consider the case where information gained through learning decreases one’s mortality
- or, in other words, lengthens one’s lifespan. A difficulty arises here, because the learner’s
mortality rate should then change over time as the learner acquires more information. I
ignore this complication by simply assuming that an individual has a constant death rate
determined by the amount of information that he will ultimately acquire. One justification of
this is to imagine that one’s juvenile birth rate is a function of his parent’s skill level, which,
because of asexual reproduction, is exactly that which the juvenile will eventually acquire.
This justification is admittedly contrived, and the functional form I choose probably strongly
affects the results of selection. I leave more detailed investigation of mortality patterns to
future research.

The mortality rate must be positive, so I assume a negative exponential effect of I on µ,
and a positive linear cost to individual learning:

µ(I, α) = (µ0 + cα) exp(−sI). (8)

µ0 is the baseline mortality rate for a learner with I = α = 0. I simply let µ0 = 1, so that
the majority of individuals born into a lineage with 0 knowledge would die within 1 year of
birth. I is again given by equation (7). Note now that m, the fertility rate, is fixed for each
strategy.

Unlike Case 1, Case 2 always has a stable equilibrium at â = α̂ = 0, where individuals
forgo a juvenile learning period entirely (see appendix A). Instead, they mature as soon
as they are born (or, more realistically, as early as is physiologically possible, considering
other constraints on the organism). There is usually also a positive stable equilibrium, with a
juvenile learning period, but its existence is not guaranteed. This means that the long-term
result of selection may depend on the population’s initial state. In particular, selection on
mortality alone cannot get a short-lived population “off the ground,” but, once past a critical
threshold, the population may evolve a longer juvenile period. I consider this 0 equilibrium
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to be unrealistic for humans and primates: clearly humans have long juvenile period. Thus
I focus below on the positive equilibrium, when it exists.

Case 2a: density-dependent fertility

Density dependence operates as in Case 1a. Appendix A contains the selection gradients on
a and α. I could not derive general results about â. Nonetheless, the tables in Appendix B
consistently show that increasing nq̂ selects for a longer juvenile period â. The effect can be
very strong, and always has the same general shape. An example is shown in figure 3a. The
strength of the effect notably increases as the effect of information on mortality increases
(i.e. as s increases). In other words, the more one can lengthen one’s lifespan by learning,
the later is the optimal age at maturity.
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(a) Case 2a: density-dependent fertility
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(b) Case 2b: density-dependent mortality, or no
density dependence

Figure 3: Equilibrium age at maturity (â) under various numbers of available learning do-
mains (nq̂) when selection acts on mortality. µ0 = 1, c = 1/30, s = 0.1, m = 1. The unplotted
range corresponds to population extinction.

Case 2b: density-dependent mortality, or exponential growth

Appendix A contains the selection gradients. Again, I could not derive general results, but
the tables in Appendix B suggest that increasing nq̂ always selects for a shorter juvenile
period α̂. This is opposite to Case 1a and 2a. The effect appears to be strong; figure 3b
shows an example.
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4 Summary, problems, and possible extensions

Table 1 summarizes the basic qualitative results of my analysis.

Density Dependence:
Fertility Mortality

Fertility â ↑ â ↑ or ↓
Selection: strong weak

Mortality â ↑ â ↓
strong strong

Table 1: The effect of increasing nq̂, the number of behavioral domains available to learners,
on â, the optimal age at maturity. Arrows indicate the directional effect. Each cell indicates
whether the effect is relatively strong or weak. Only the top left cell is proven.

One conclusion is certain: the effect of cultural transmission on the evolution of age at
maturity depends on the nature of population regulation. Sometimes the effect is in the
predicted direction, with cultural transmission facilitating later maturity, and sometimes
not. I found a similar dependence on demographic conditions when reanalyzing an earlier
model of embodied capital theory (Kaplan et al., 2000; Baldini, 2013). Together, these papers
prove that our understanding of human life history evolution cannot proceed much without
a better understanding of the demographic conditions faced by our ancestors.

A tenuous pattern found here is that selection readily favors later maturity under density-
dependent fertility, but not under density-dependent mortality or density-independence. A
possible explanation of this is as follows: The age at maturity is strongly affected by lifes-
pan, because dying before maturity implies zero fitness. Under density-dependent evolution,
selection always leads to a larger equilibrium population size, which in turn leads to higher
mortality and a shorter lifespan. This effect may cancel out any positive effect of selection
on investment in lifespan. The corresponding effect for exponentially growing populations is
this: as selection favors strategies that grow ever faster, the reproductive values of older ages
become ever more discounted, weakening the strength of selection for delayed reproduction.
This effect does not arise under density-dependent fertility, because there the mortality rate
either stays the same or shrinks as the population acquires more information and grows.

I caution, however, against taking this pattern too seriously. More theoretical work is
needed. I have only considered the simplest functional forms for vital rates and density-
dependence - some of which are unrealistic for primates. The assumptions of a constant
mortality rate and a constant fertility rate following maturity do not fit primate life history
patterns. Furthermore, I assumed that density-dependent mortality affects all ages equally,
but this is probably not true (see, e.g., Wood and Smouse, 1982). I did not consider vari-
ation in the effect of population density on different strategies, which essentially rules out
the possibility of any r vs. K selection effects. On a more technical level, I have not demon-
strated that each parameter combination investigated actually causes a stable demographic
equilibrium - an important concern for the density-dependent models in particular, as cycles
and chaos may arise. Nor could I investigate evolutionary stability rigorously, as this requires
explicit genetic models.
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A possibly important omission of this paper is to not allow cultural transmission itself
to evolve. Instead, it acts as an exogenous parameter through q̂. A simple way to resolve
this would be to let β (of equation (3)) evolve similarly to α, by imposing a cost to higher
values. Large β would imply more social learning. I ignored this detail here for two reasons.
First, much has been written about the evolution of cultural transmission itself (see reviews
in Henrich and McElreath, 2003; Richerson and Boyd, 2005; Boyd et al., 2011), though I
know of none that considers its effect on life history. Second, because culture transmission
does not directly interfere with individual learning in the present theory, there is little reason
to believe that it wouldn’t evolve in the first place. Still, it is possible that including social
learning in the organism’s energy budget would alter the results; future work should check
this.

Altogether, the most valuable next step for theoretical research might be to use more
primate- or human-typical life history schedules in our theoretical models. The demographic
conditions under which the modern human life history evolved must lie somewhere in the
range spanned by modern human populations and our primate relatives. Investigating this
range will constrain our attention to only the most relevant conditions, and has already
revealed some possible generalities about human evolution (Jones, 2009). In the empirical
domain, we desperately need a better quantitative understanding of how human populations
are regulated in subsistence economies. Little direct research on humans exists. I know only
of the empirical study by Wood and Smouse (1982) on a New Guinea population, which
suggested that density-dependent mortality may act strongly on the youngest and oldest
age classes. The large literature on population regulation among other large mammals (see
a review in Gaillard et al., 1998) may provide useful methods and hypotheses.
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A Selection gradients for a and α

Case 1a

Suppose that the total population density, N , reduces the fertility function, m, via an expo-
nential multiplier:

m(I(a)) = sI(a) exp(−DN),

whereD measure its affect on fertility. Selection favors the strategy in a and α which produces
the largest carrying capacity (Charlesworth), subject to the constraint

1 =

∫ ∞
a

exp(−µx−DN − cα)sI(a) dx. (9)

The term exp(−DN) can be removed from the integral, so maximizing N is equivalent to
maximizing the expected lifetime number of offspring at N = 0, often called R0:

R0 =

∫ ∞
a

exp(−µx− cα)sI(a) dx

=

e−µa−cα snq̂

(
1− exp

(
− α

nq̂
a

))
µ

.

The second line follows from the form of I assumed in the text.
The selection gradients for a and α are the derivatives of R0, which are proportional to

∂R0

∂a
∝ α−

(
exp

(
α

nq̂
a

)
− 1

)
nq̂µ (10)

∂R0

∂α
∝ a−

(
exp

(
α

nq̂
a

)
− 1

)
nq̂c. (11)

The equilibrium values, α̂ and â, are found by setting these equal to zero and solving for the
two variables. That is, they solve the equations

0 = α̂−
(

exp

(
α̂

nq̂
â

)
− 1

)
nq̂µ (12)

0 = â−
(

exp

(
α̂

nq̂
â

)
− 1

)
nq̂c. (13)

These cannot be solved in elementary terms, but we can prove in general that α̂ and â always
increase with q̂, and therefore will be larger in a social learning population.

To see this, multiply the expression in (11) by α̂ and the expression in (12) by â. The
resulting expressions are still zero, so we may set them equal to each other:

âα̂− â
(

exp

(
α̂

nq̂
â

)
− 1

)
nq̂µ = âα̂− α̂

(
exp

(
α̂

nq̂
â

)
− 1

)
nq̂c.

Simplifying this shows that
µâ = cα̂.
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Plugging this result into (11) gives us

0 =
µâ

c
−
(

exp

(
µâ2

cnq̂

)
− 1

)
nq̂µ. (14)

This equation has a unique positive solution in â: the quantity on the right has a root at
0, increases from â = 0, has only one critical point, and approaches −∞ as â approach ∞.
This means that the right hand side of (14) reaches a single positive maximum after which it
decreases indefinitely, crossing zero at some positive value for â. Its derivative with respect
to â must be negative at the positive root - a fact which is used below.

Expressing â as a function of q, implicitly differentiating (13) for q, and solving for â′(q)
gives us

â′(q) =

1 +
µâ2

cnq̂
exp

(
µâ2

cnq̂

)
− exp

(
µâ2

cnq̂

)
1

cn

(
2µâ exp

(
µâ2

cnq̂

)
− 1

) . (15)

I prove that this is positive by showing that the numerator and the denominator are both
positive. First, the numerator of (14) is an expression of the form

1 + x ex− ex,

where x, in this case, is positive. Expressing ex as a Taylor series allows the following ma-
nipulations:

1 + x ex− ex = 1 + x
∞∑
i=0

xi

i!
−
∞∑
i=0

xi

i!

= 1 +
∞∑
i=0

xi+1

i!
−
∞∑
i=0

xi

i!

= 1 +

(
x+

∞∑
i=1

xi+1

i!

)
−

(
1 + x+

∞∑
i=2

xi

i!

)

=
∞∑
i=1

xi+1

i!
−
∞∑
i=1

xi+1

(i+ 1)!

=
∞∑
i=1

(i+ 1)xi+1 − xi+1

(i+ 1)!

=
∞∑
i=1

ixi+1

(i+ 1)!

Because i and x are always positive, the sum is always positive. Second, the denominator
of (15) is proportional to the negative of the derivative of the right hand side of (14) with
respect to â. I proved above that the derivative is negative at â, so the denominator of (15)
must be positive. Therefore â′(q) is positive and, because, α̂ ∝ â, α̂′(q) is also positive.

The trivial equilibrium â = α̂ = 0 is unstable and, in fact, impossible, because it implies
zero fertility and therefore extinction. For small a and α, R0 ≈ aαs/µ. Selection always
favors larger R0, so α and a always evolve upward from very small values.
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Case 1b

Suppose that the mortality rate increases linearly with density, again by an amount D. Then
selection maximizes N , subject to the equation:

1 =

∫ ∞
a

exp(−(µ+DN)x− cα)sI(a) dx. (16)

In this case, the term involving N cannot be removed from the integral, so selection does
not favor the same strategy as in case 1a; we cannot simply maximize R0. We must instead
maximize N above.

Alternatively, consider the case without density-dependence, such that a population ap-
proaches a constant growth rate r. Then the Euler-Lotka equation is

1 =

∫ ∞
a

exp(−(µ+ r)x− cα)sI(a) dx. (17)

A strategy that grows exponentially faster than all others will eventually approach fixation,
so selection maximizes r. But notice that r of equation (16) has the same functional role as
DN in equation (15). Thus, selection favors the same life history strategies in both cases. I
use the density-independent notation (r) here, but the following results apply to both.

The solution to (16) in r is

r =

W

[
anq̂s

(
exp

(
α

nq̂
a

)
− 1

)
exp
(
−α
(
c+ a

nq̂

))]
a

− µ (18)

The W[∗] term denotes a product-log, defined implicitly by the equation x = W[x] eW[x]. It
is positive whenever its argument is positive, which is the case here. The selection gradients
for a and α are then proportional to

∂r

∂a
∝ aα−

(
exp

(
α

nq̂
a

)
− 1

)
nq̂ W

[
anq̂s

(
exp

(
α

nq̂
a

)
− 1

)
exp

(
−α
(
c+

a

nq̂

))]
(19)

∂r

∂α
∝ a−

(
exp

(
α

nq̂
a

)
− 1

)
nq̂c. (20)

As in Case 1a, the equilibrium â = α̂ = 0 is unstable and causes population extinction.
For small a and α, r ≈ aαs− µ, so r increases with a and α when they are small, implying
positive selection.

Case 2a

By the same logic as in Case 1a, but now applied to mortality selection, we have

R0 =

∫ ∞
a

exp(−(µ0 + cα) exp(−sI(a))x)m dx (21)

=
m

αc+ µ0

exp(−a(αc+ µ0) exp(−sI) + sI). (22)
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The gradients in a and α, using I from equation (7), are then

∂R0

∂a
∝ αs exp

(
nq̂s

(
exp

(
−αa
nq̂

)
− 1

))
+ (αc+ µ0)

(
aαs− exp

(
αa

nq̂

))
(23)

∂R0

∂α
∝ as(αc+ µ0)− c exp

(
αa

nq̂

)
(24)

A population at equilibrium â = α̂ = 0 avoids extinction if m > µ0. It is stable whenever
it exists: the gradients for a and α are then −µ0 and −c, respectively. Searching for roots
numerically shows that there are often two positive equilibria, of which only one can be
stable. The paper focuses on this stable positive equilibrium.

Case 2b

By the same logic as in Case 1b, but now applied to mortality selection, we have

1 =

∫ ∞
a

exp
(
− ((µ0 + cα) exp(−sI(a)) + r)x

)
m dx, (25)

The solution in r is

r =
W [am]

a
− (αc+ µ0) exp(−sI). (26)

Using I from equation (7), the gradients in a and α are

∂r

∂a
∝ αs(αc+ µ0) exp

(
−αa
nq̂
− snq̂

(
1− exp

(
−αa
nq̂

)))
− W[am]2

a2(1 + W[am])
(27)

∂r

∂α
∝ as(αc+ µ0)− c exp

(
αa

nq̂

)
(28)

A population at equilibrium â = α̂ = 0 exists and is stable under the same conditions as
Case 2a. There are, again, often two positive equilibria, only one of which may be stable.

B Tables in â

Fertility selection

The following tables show the equilibrium age at maturity (â) for cases 1 and 2. Each table
shows how variation in nq̂ and some other parameter affect â. Variables not shown in each
table are kept at a baseline value, as follows: s = 0.05, µ = 1/30, c = 1/30. Empty cells
indicate that the population goes extinct under that set of parameter values.
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Case 1a

µ
1/60 1/50 1/40 1/30 1/20 1/10

1 3
2 4.06 3.66 3.22
3 4.84 4.36 3.83 3.25
4 5.47 4.92 4.33 3.66 2.88
5 6.01 5.41 4.75 4.01 3.16
10 8.03 7.21 6.32 5.32 4.17 2.72

nq̂ 15 9.48 8.5 7.44 6.25 4.87 3.15
20 10.64 9.54 8.33 6.99 5.43 3.49
25 11.63 10.41 9.09 7.61 5.9 3.78
30 12.5 11.18 9.75 8.15 6.31 4.02
35 13.27 11.86 10.33 8.63 6.67 4.23
40 13.97 12.49 10.87 9.06 6.99 4.41
45 14.62 13.06 11.35 9.46 7.28 4.58
50 15.22 13.58 11.8 9.83 7.55 4.74

c
1/60 1/50 1/40 1/30 1/20 1/10

1
2 2.03 2.2 2.42
3 2.42 2.61 2.87 3.25 3.84 5.1
4 2.73 2.95 3.25 3.66 4.33 5.72
5 3.01 3.25 3.56 4.01 4.74 6.25
10 4.01 4.33 4.74 5.32 6.25 8.15

nq̂ 15 4.74 5.1 5.58 6.25 7.31 9.46
20 5.32 5.72 6.25 6.99 8.15 10.48
25 5.81 6.25 6.81 7.61 8.85 11.33
30 6.25 6.71 7.31 8.15 9.46 12.05
35 6.64 7.12 7.75 8.63 10 12.68
40 6.99 7.49 8.15 9.06 10.48 13.24
45 7.31 7.83 8.51 9.46 10.96 13.75
50 7.61 8.15 8.85 9.83 11.33 14.21
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Case 1b

s
0.005 0.01 0.02 0.05 0.1 0.2

1 1.78 1.23 0.86
2 1.71 1.2 0.84
3 2.72 1.69 1.19 0.84
4 2.69 1.69 1.19 0.85
5 3.82 2.67 1.69 1.2 0.86
10 3.77 2.67 1.71 1.23 0.89

nq̂ 15 5.33 3.78 2.7 1.75 1.26 0.91
20 5.34 3.81 2.73 1.78 1.29 0.93
25 5.37 3.84 2.77 1.8 1.31 0.95
30 5.4 3.88 2.8 1.83 1.33 0.96
35 5.43 3.91 2.83 1.85 1.34 0.98
40 5.47 3.94 2.86 1.87 1.36 0.98
45 5.5 3.97 2.88 1.89 1.37 0.99
50 5.54 4 2.9 1.9 1.38 1

c
1/60 1/50 1/40 1/30 1/20 1/10

1
2 2 2.18 2.42
3 1.95 2.13 2.37 2.72 3.3 4.63
4 1.93 2.1 2.34 2.69 3.28 4.61
5 1.91 2.08 2.32 2.67 3.27 4.62
10 1.88 2.06 2.31 2.67 3.29 4.7

nq̂ 15 1.89 2.08 2.33 2.7 3.34 4.81
20 1.91 2.09 2.35 2.73 3.39 4.9
25 1.92 2.11 2.38 2.77 3.43 4.97
30 1.94 2.14 2.4 2.8 3.48 5.04
35 1.96 2.15 2.42 2.83 3.51 5.1
40 1.97 2.17 2.45 2.86 3.55 5.16
45 1.99 2.19 2.47 2.88 3.58 5.2
50 2 2.21 2.49 2.9 3.61 5.24

Mortality selection

Case 2a

0 implies that there is no positive evolutionary equilibrium. µ0 = 1, c = 1/30, s = 0.1.
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s
0.05 0.06 0.08 0.1 0.15

5 0 0 0 0 0.45
10 0 0 0 0.73 1.36

nq̂ 15 0 0 1.02 1.48 2.88
20 0 0.99 1.73 2.53 5.55
25 1.04 1.59 2.66 4.07 10.11
30 1.61 2.28 3.93 6.31 17.75
35 2.21 3.13 5.66 9.54 30.28
40 2.92 4.21 7.99 14.15 50.49
45 3.78 5.58 11.11 20.65 82.73
50 4.83 7.3 15.27 29.73 133.61

c
1/60 1/50 1/40 1/30 1/20 1/10

5 0 0 0 0 0 0
10 0.69 0.71 0.73 0.73 0 0

nq̂ 15 1.27 1.33 1.4 1.48 1.57 1.55
20 2.1 2.21 2.35 2.53 2.77 3.09
25 3.3 3.5 3.74 4.07 4.52 5.24
30 5.04 5.36 5.76 6.31 7.09 8.44
35 7.51 8.02 8.66 9.54 10.84 13.17
40 11.01 11.78 12.78 14.15 16.22 20.07
45 15.89 17.05 18.56 20.65 23.86 30
50 22.66 24.37 26.61 29.73 34.6 44.13

Case 2b

Baselines: m = 1/4, µ0 = 1, s = 0.1. Blank values indicate that the population goes extinct
for that parameter combination.

s
0.05 0.06 0.08 0.1 0.15

20 2.4
25 1.63
30 3.39 1.13
35 4.74 2.54 0.79
40 3.68 1.93 0.55
45 2.89 1.49 0.39
50 5.59 2.3 1.15 0.28
55 4.55 1.85 0.9 0.20
60 6.85 3.75 1.49 0.71 0.14
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c
1/60 1/50 1/40 1/30 1/20 1/10

20
25 2.47 2.87 3.48
30 1.93 2.21 2.64 3.39 5
35 1.5 1.71 2.02 2.54 3.61 7.44
40 1.18 1.34 1.56 1.93 2.67 5.08
45 0.93 1.05 1.22 1.49 2.01 3.6
50 0.74 0.83 0.96 1.15 1.53 2.62

m
1/10 1/8 1/6 1/4 1/2

25 2.05
30 5.35 3.39 1.58
35 6.94 5.41 3.94 2.54 1.22
40 5.12 4.02 2.96 1.93 0.95
45 3.85 3.05 2.26 1.49 0.74
50 2.95 2.34 1.74 1.15 0.57
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