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Summary. The well-known Waddington’s epigenetic landscape of cell-fate determination is 

not static but varies because of the dynamic gene regulation during development. 

Mathematical models of bistability cannot fully characterize the landscape’s temporal 

transformation because of limited number of state variables and fixed parameters. Here we 

simulate a model of gene regulation with more than two state variables and time-varying 

repression among regulatory factors. We are able to show sequential multi-lineage 

differentiation at different timescales that portrays the branching canals in Waddington’s 

illustration. We also show that a repressilator-type system activates suppressed genes by 

producing sustained oscillations in a flattened landscape, hence providing an alternative 

strategy for cellular reprogramming. The time-varying parameters governed by gradient-

based dynamics dampen these oscillations resulting in dedifferentiation. The high-

dimensional model integrates the theories of branching and oscillations in cell-fate 

determination, which further explains the mechanisms of cell differentiation and associated 

diseases, such as cancer.  
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Main text:  

Waddington’s epigenetic landscape illustrates the canalization in the cell differentiation and 

fate determination process
1-4

. The topography of Waddington’s illustration represents the 

developmental pathways of tissues formed from totipotent and pluripotent cells to terminally-

differentiated specialized cells (Fig. 1a). Various theoretical studies have quantified 

Waddington’s epigenetic landscape and are able to predict bistability in gene regulatory 

networks (GRNs)
5-9

. However, many of the mathematical models consider only two 

regulatory factors and focus on static epigenetic landscape represented by fixed parameter 

values. In reality, the topography of Waddington’s illustration is dynamic and high-

dimensional, and the parameters that represent gene regulation are changing during the 

development of an organism
10-16

. Mathematical models with two regulatory factors and fixed 

parameter values only describe a particular temporal scenario in cell differentiation. 

The mechanisms that regulate gene expression, such as kinetics of gene regulatory 

factors (GRFs) and the structure of GRF-GRF interaction, influence the outcome of cell-fate 

determination
7,10,11,14,15,17

. Waddington observed that changes (e.g., mutations) in these 

mechanisms can alter the epigenetic landscape leading to cell-lineage switching
1
. However, 

the changes in the GRF-GRF interaction discussed in this paper do not necessarily entail 

mutations but can be due to normal processes. Mathematically, the variations in gene 

regulation can be represented by modifications in the parameter values of the quantitative 

models.  

Bifurcation analyses of existing models have been done
5,7,11,15,16

, but most of them do 

not provide elaborate illustrations of cells trailing the high-dimensional dynamic pathways. 

Here we present numerical illustrations of cells trailing different epigenetic routes such that 

the pathways transform due to changes in the strength of repressive interaction among 

multiple GRFs (see Box 1 and Fig. 1b for the mathematical model). The GRFs in the model 
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(Fig. 1b) has mutual repression because a mature cell expresses only one phenotype and 

constrains the expression of the other phenotypes.   

A desired cell fate can be a cell type/phenotype that is essential for proper normal 

development, or desired cell type during cellular engineering. Our main assumption is that 

gradient-based optimization governs the transformations of the pathways leading to the 

desired cell fate, following the theory that differentiating cells choose the steeper pathways 

(canals) in the epigenetic landscape. This assumption assures that the cells trail the nearby 

steepest pathways shaped by the time-varying antagonistic interaction among the GRFs (see 

Methods). The gradient-based method can be considered as a cell-fate induction strategy such 

that the cells move from a pluripotent state, which has higher entropy, towards differentiated 

state with lesser entropy
18

. We show that the dynamic GRF-GRF interaction can illustrate the 

cascade of branching canals in Waddington’s illustration. It can also describe cell plasticity 

by allowing cell-lineage switching, such as by transdifferentiation and dedifferentiation.  

 

Box 1: Mathematical model 

We consider a minimal gene regulatory network (GRN) of the form shown in Figure 1b, 

where the number of nodes (n) is arbitrary. The network that characterizes decision switches 

in cell-fate determination can be illustrated in this form
10,22,27,34

. A node in this GRN either 

represents a specific gene regulatory factor (GRF), or a coarse-grained subnetwork of 

multiple factors that can be treated as single GRF. We draw the network in such a way that 

each node represents a GRF involved in expressing a specific cell type/phenotype. An 

example of a GRN in the form shown in Fig. 1b is the coarse-grained mesenchymal 

transcription network with RUNX2, PPAR-γ and SOX9 as nodes
17

. 
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One of the simple high-dimensional models that describes the qualitative dynamics of 

the GRN is the following system of differential equations originally proposed by Cinquin and 

Demongeot
10,12

:  

.n,...,2,1i ,gX
XX1

X

dt

dX
i

ij
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jij
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i
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






    (Box Eq. 1) 

The state variable Xi represents the strength/concentration of the GRF involved in expressing 

the gene towards the i-th cell type. The parameters β>0, ρ>0, g≥0 and γij≥0 are the efficiency 

of GRF in expressing the corresponding gene, degradation rate, basal constitutive growth rate, 

and time-varying interaction coefficient associated with the inhibition of Xi by Xj, 

respectively. The kinetics of GRF auto-activation is a sigmoidal increasing function which is 

negatively influenced by the strength of the other GRFs. 

We assume that the goal of gene regulation is to maximize the strength of GRFs so 

that the outcome is moving towards the steepest canal and possibly towards the deepest 

valley in the epigenetic landscape, which is expected in cell-fate determination. Here we 

apply a gradient-based optimization method to the time-varying repression strength γij to 

drive cell-fate induction in the direction of the nearby steep canal (see Methods). This method 

is governed by a timescale factor that declines through time
5,11

. 

 The equilibrium points and sustained oscillations of this model lie on the hyperspace 

n

g
,

g







 






. The model has at most 3

n
 equilibrium points

20
. 

(End of Box 1) 

 

Results. There are two significant dynamics that we observe in our simulations. The first one 

is multi-lineage differentiation via sequentially branching developmental pathways. This 

sequential branching portrays the canalization in Waddington’s landscape at different 
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timescales. The pathways trailed by the differentiating cells depend not only on the structure 

of the GRN and parameter values but also on the initial condition (see Supplementary Fig. 1). 

The second one is flattening of the epigenetic landscape which eliminates the deep valleys, 

resulting in sustained oscillations. The GRN that generates this oscillatory behavior is an 

attracting oscillator where it can lift the strength of a suppressed GRF.  

Mathematically, the sequential branching in the epigenetic landscape towards 

different cell types represents convergence to one of the equilibrium points (Supplementary 

Fig. 1). The variations in the interaction coefficients drive changes in the topography of the 

landscape (Supplementary Fig. 2) and eventually stabilize at different timescales, hence 

sequential branching become possible (refer to the timescale factor in Methods). The pathway 

bifurcates from one branch (a primed state) to multiple branches, which may further have 

sub-branches that culminate in branch endpoints (Figs. 2a, 2c-2e). The final structure of the 

GRN, which is determined by the parameters stabilized at different timescales, dictates the 

number and location of the branch endpoints (Figs. 2a-2e). Generally, in order for sequential 

branching to arise, the initial structure of the GRN and parameter values should allow 

bistability or multistability which is a property of multipotent and pluripotent cells 

(Supplementary Fig. 1). The entropy and the quasi-potential of the landscape are lower in 

differentiated cells compared to the undifferentiated state as expected (e.g., Fig. 2f and see 

the quasi-potential axis in Figs. 2a and 2b). In addition, the pathways with two endpoints that 

are distant from each other are usually more robust against stochastic noise compared to the 

pathways with many endpoints (Supplementary Figs. 3, 6, 8 and 10). This implies that cells 

trailing the pathways with more endpoints can be candidates for stochastic direct 

reprogramming. 

There are cases where a stable equilibrium point vanishes and a stable limit cycle 

emerges, especially when the repressive interaction among GRFs is asymmetric. This stable 
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limit cycle is generated by an oscillator that attracts suppressed genes in partially or 

terminally-differentiated cells, resulting in activation with fluctuating kinetics (Figs. 3b and 

3c). One example of an oscillator is a repressilator-type network (Fig. 3a), which is similar to 

the repressilator proposed by Elowitz and Leibler
19

. In this repressilator-type network, the 

strength of repression in one loop is stronger than the strength of repression in the reverse 

loop. The sustained oscillations generated by this repressilator-type network can arise in a 

GRN with three or more nodes (odd or even number of GRFs; e.g., Figs. 3b and 3c). The 

dynamics of this oscillator can be illustrated by an epigenetic landscape with flattened 

topography, that is, there are no deep valleys in the route of the differentiating cells, and the 

cells are continually sliding in zigzag canals without endpoint. 

The oscillations drive the strengths of the GRFs to have alternating positive and 

negative rates, whereas the gradient-based optimization method forces the dynamics towards 

positive rates only. Thus, oscillatory behavior is not optimal in the sense of differentiation 

towards cell types located at deep valleys in the landscape. We then expect that gradient-

based dynamics which are persistent for some period result in damped oscillations (Figs. 3d 

and 3e). There are cases where the damped oscillations illustrate multipotency (or 

pluripotency depending on the GRN), which is represented by the equal probabilities of 

differentiating towards all the considered cell types (Fig. 3d). In some cases, the interaction 

coefficients vary with different timescales, resulting in partial differentiation and sometimes 

in the reversal of the status of the initially dominant GRF (Fig. 3e). Note that if the 

dampening of the oscillations is fast, the initial oscillations can be unnoticeable yet can still 

activate suppressed genes (Supplementary Fig. 19).      

 

Discussion. Various studies have attempted to model the cell differentiation process, but 

there are still more to uncover in epigenetics. Further theoretical prediction and experimental 
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validation are needed to fully explain cell-fate determination and reprogramming. Varying 

the efficiency of GRF in expressing a gene (β), the degradation rate (ρ), or the constitutive 

growth rate (g) is a straightforward technique in stimulating the activation or deactivation of a 

GRF and its corresponding gene
6,7,10,17,20

. However, regulating the repression strength of 

GRFs (γij) has not been explored, and we have shown numerical illustrations where variations 

in this GRF-GRF repression affect the qualitative behavior of the cell differentiation system. 

We are able to replicate Waddington’s model using a single set of equations with many GRFs 

involved. A GRN with only two nodes generally cannot describe the sequential bifurcation of 

canals and the oscillations in cell-fate determination. The different timescales involved in 

gene interaction influence the outcome of cellular regulation
5,21-24

.  

One of the aims of this study is to spur more discussions on non-equilibrium 

dynamics and oscillations arising from high-dimensional asymmetric systems, which can 

broaden our understanding about the mechanisms of gene regulation. Reversal of the route 

from differentiated state to pluripotency is previously thought to be impossible but now many 

dedifferentiation techniques have been proposed and tested by experiments
9,25,26

. We propose 

another alternative technique for cellular reprogramming, which is by rewiring the GRN to 

have a repressilator-type network, possibly with the aid of external stimulus and stochastic 

noise
17

. External stimulus can be introduced to weaken the repression in one loop (Fig. 3a). 

Our numerical predictions can help design cellular engineering strategies for generating 

induced multipotent stem cells (or pluripotent stem cells depending on the GRN
17,27,28

) using 

the oscillations that can activate silenced genes. Several studies have discussed that 

oscillating GRF expression is indeed an attribute of progenitor cells
29-31

, thus supporting our 

claim. However, note that in reprogramming back to pluripotency, we also need to assure 

activation of defined factors, such as Oct4, Sox2 and Nanog
17,25

. 
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The oscillator motifs (e.g., repressilators) which are part of a larger GRN contribute to 

the fluctuations observed in gene regulation dynamics. In fact, there are many types of 

oscillators
32-34

. The oscillations generated by each oscillator motif when combined are often 

interpreted as stochastic noise or as chaos. However, note that the combined large and small 

oscillations are not entirely stochastic fluctuations, especially when the detected noise is part 

of the gene regulation system and not just coming from random sources
35,36

. In addition, the 

oscillator motif of a larger GRN can be used for artificial transdifferentiation by generating 

oscillations that can prompt cell-lineage switching, similar to what stochastic fluctuations can 

do
36,37

. Transdifferentiation between related cell types branching from one lineage can be 

more straightforward compared to dedifferentiation to pluripotency
38

.  

From our simulations, we formulate some conjectures: (i) The dedifferentiation 

caused by abnormal oscillators (e.g., aberrant repressilator-type network) play a role in the 

existence of cancer stem cells and mutator phenotype
39-43

. Abnormal changes in the structure 

of GRF-GRF interaction, such as abnormal timescale factor and abnormal weakening of 

repression links, can lead to disease. Indeed, partially reprogrammed cells and excessive 

plasticity can cause cancer
38,42,44,45

. Moreover, it is also possible that these oscillators play a 

part in epigenomic reprogramming and influence transgenerational epigenetic inheritance
46

. 

Abnormalities in the GRF-GRF interaction could be passed-on to offspring. (ii) We can 

reprogram cells back to pluripotency by regulating the wiring of the GRN. This implies that 

there are no unique reprogramming factors, and we can reprogram cells using any regulatory 

factor as long as it can lower the “gravity” of the epigenetic landscape
38

. One approach to 

demonstrate our numerical predictions is by employing synthetic biology techniques
19,47

. 

In reality, the temporal transformation in the epigenetic landscape is due to multiple 

intrinsic and extrinsic factors. Here we only consider changes in the GRF-GRF interaction 

coefficient γij but we should not disregard that gene regulation consists of the interplay among 
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many factors and processes. For example, GRF-GRF interaction can be regulated not only 

through γij but also through the modifications in the maximal growth rate (β+g) or through 

the degradation rate (ρ)
6,7,10,17,20

. Increasing the maximal growth rate or decreasing the 

degradation rate of a certain GRF enhances the steady state strength of the GRF, which in 

turn intensifies the repression of the other GRFs. Furthermore, the dynamics observed from 

empirical data combine the various effect of many parameters. For example, a decline in the 

strength of a GRF suggests various possible reasons, such as due to an increased degradation 

rate or due to an increased repression by an antagonist GRF. Hence, we need to interpret data 

by considering all possible factors. 

In summary, our simulations predict the following outcomes: First is the sequential 

branching of lineages in cell-fate determination that portrays differentiation from pluripotent 

state to transient states (lineage progenitors) towards specialized cell types. Second is the 

dedifferentiation driven by oscillations generated by a repressilator-type network, which is a 

possible mechanism for reprogramming cells back to pluripotency. A two-variable switch-

like model usually cannot illustrate the branching phenomena and sustained oscillations, but a 

high-dimensional model with asymmetric reciprocal interaction between GRFs can. 

Oscillatory behavior cannot be taken for granted because this could explain peculiar 

dynamics related to the epigenetic machinery of organisms, such as dedifferentiation as part 

of regenerative process. Oscillations are also involved in pattern formation, circadian rhythms, 

and the progression of diseases
30,33,37,48-52

. Network motifs, such as the repressilators, that are 

part of a larger GRN induce functional fluctuations necessary for tissue development and 

cellular engineering. Investigating the dynamics of these network motifs can be helpful in 

drug discovery
53

. 

  

Methods. In our simulations, we use the following differential equation model (see Box 1): 
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Note that we restrict our simulations to specific parameter values such as β=1, ρ=0.05 and 
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 . We suppose all GRFs have the same value of β and ρ to highlight the effect of 

time-varying γij. The term σAdW represents Gaussian white noise with amplitude σA. Let σA=0 

and σA=0.5 for deterministic and stochastic simulations, respectively. The noise term 

approximates multiple heterogeneous sources of additive random fluctuations.  
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Equation (2) is used for finding relative optimum and is similar to the trait dynamics 

frequently used in evolutionary biology
54,55

. Increasing the value of ui decreases the value of 

repression coefficient γij (j≠i). Hence, the variable ui can be defined as the time-varying 

attribute for maximizing the strength of the GRF Xi. However, note that increasing the value 

of ui does not always result in an increased equilibrium value of Xi, especially when the initial 

value and other parameter values do not allow significant changes in the epigenetic landscape 

in favor of Xi.  

The timescale factor is represented by exp(–εit) with decline rate εi, as described in 

various studies
5,11

. As time progresses (e.g., as cell matures), the timescale factor declines and 
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the value of ui leads to equilibrium. In addition, the dynamic parameter ui is initialized with 

value ui(0)=0.001 for all i. Let σu=0 and σu=0.01 for deterministic and stochastic simulations, 

respectively. For simplicity, we approximate the partial derivative in Equation (2) using 

central difference formula with Δ=0.001. 

Quasi-potential, cell type probability and entropy. The quasi-potential (Φ) of the landscape 

is computed as  

 









i

2

i

dt

dX

dt

d
          (3) 

where the dt
dXi  is deterministic

6,16
. The probability of differentiating to cell type i or the 

expected proportion of cells committed towards cell type i is 





n

1k k

i

X

X
iP . To visualize the 

canalization in Waddington’s illustration, we use three coordinate axes: time, quasi-potential, 

and cell type probability. We also compute for the entropy
56

 defined by 

  .0P ,PlogPE i

i

ii            (4) 

Numerical method. The ordinary and stochastic differential equations are solved using 

Runge-Kutta 4 and Euler-Maruyama with 0.01 as step size, respectively. For supplementary 

mathematical discussions about the differential equation model (Box Eq. 1), refer to related 

literatures
10,17,20

. 

Notes on abstraction. One of the advantages of the model in Box 1 is that it is 

straightforward, thus any peculiar dynamics can be clearly interpreted. However, the model is 

an abstraction of the cell differentiation process. Hence, we focus on the qualitative dynamics 

rather than on exact quantitative values. Likewise, the qualitative dynamics arising from the 

model are possible to arise in a more complex system that contains the minimal GRN as a 

subnetwork. 
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Figure legends 

Figure 1. A sketch of the epigenetic landscape, and a gene regulatory network (GRN) 

for cell-fate determination. (a) Epigenetic landscape adapted from Waddington’s 

illustration
1
. The branching canals depict the various cell lineages towards different fates (cell 

types/phenotypes). The cell fates are illustrated as valleys and traditionally represented as 

mathematical attractors (see Supplementary Figs. 1 and 2). The differentiating cells, 

illustrated as balls, trail a chosen canal towards a specific valley. The canal is chosen based 

on the landscape’s potential (similar to gravitational potential) such that the steeper pathway 

and deeper valley are preferred
8
. The canals are separated by ridges that restrain cells to 

switch lineages. The blue pegs (GRFs) and blue strings (GRF-GRF interaction) alter the 

height of ridges and depth of valleys. The height of ridges and depth of valleys vary through 

time and affect the route of the differentiating cells. (b) A minimal GRN that characterizes 

decision switches in cell-fate determination. We suppose that a node represents a GRF 

involved in expressing a specific cell type, such as master switch genes, transcription factors, 

or coarse-grained modules of a larger GRN that can be simplified as one node. Each node has 

auto-activation as represented by the arrows; while the interaction links among GRFs is of 

repressive behavior (represented by the bars). The repressive behavior of GRFs denotes that a 
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mature cell only expresses one phenotype and hinders the expression of multiple phenotypes. 

Strength of repression is not necessarily reciprocal and a one-way repression is possible. The 

auto-activation and repression can be direct or indirect. Examples of GRNs of this type are 

discussed in various literatures
10,22,27

. 

 

Figure 2. Illustrations of cells trailing the branching pathways in the epigenetic 

landscape (only the deterministic path is shown; see Supplementary Figs. 3, 5, 6, 8 and 10 

for stochastic simulations and for the initial condition and parameter values used). Note that 

the branch endpoints are the coordinates of an equilibrium point. The different numbers of 

endpoints are due to the different timescale factors used. (a) Five different endpoints. (b) No 

branching and only one endpoint (graphs for GRF 1-5 are superimposed to each other). The 

state with equal cell type probabilities represent multipotent or pluripotent cells 

(undifferentiated state). (c-e) Two, three and four endpoints, respectively. (f) Time series of 

the entropy levels for the system in Figs. 2a to 2e. The entropy decreases as cells differentiate. 

 

Figure 3. Oscillating pathways in the epigenetic landscape generated by repressilator-

type networks. (a) A repressilator-type network with a strong negative feedback loop, n=3 

(this can be extended for any n). The strengths of repression in one loop (solid black bars) are 

stronger than the reverse loop (broken bars). The red bars represent inhibition of repression. 

Note that in our model, only three GRFs are needed to generate sustained oscillations. (b-c) 

Examples of oscillating pathways. There are no deep valleys only continuous zig-zag canals 

(see Supplementary Figs. 13-15 and 17 for the stochastic simulations and for the parameter 

values used). (b) n=5; X5 is initially silenced. (c) n=4; X4 is initially silenced. (d) Damped 

oscillations towards multipotency or pluripotency. The rates of decline of the timescale 

factors are all equal to 0.001. (e) Damped oscillations resulting in partial differentiation and 
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reversal of dominant GRF. The rates of decline of the timescale factors are not all equal. The 

initial dominant regulatory factor is GRF 5 but eventually becomes inferior as oscillations 

dampen.  

 

Supplementary Materials 

 Supplementary Figs. 1 to 20 
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Supplementary Figure 1. Example of phase portrait of the ordinary differential 
equation model (Box Eq. 1 in the main text) with more than one stable equilibrium 
point (multistable). The convergence to an equilibrium point depends on the initial 
condition. The coordinates of an equilibrium point (e.g., A1* and A2*) are the branch 
endpoints of the pathways.   
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      Zooming in: 

 
 
 
Supplementary Figure 2. The changes in the value of interaction coefficient γij drive 
the transformation of the epigenetic landscape affecting the fate of the differentiating 
cell. (a-b) The initial trajectory of the solution to the differential equation model (Box 
Eq. 1 in the main text) converges to a state with equal X1=X2. However, a slight 
modification in the topography of the landscape steers the trajectory towards a state 
with X1>X2, hence branching arises. (c) Zooming in the phase portrait in Fig. 2b to 
visualize the transformation of the landscape (horizontal axis is X1; vertical axis is 
X2). Parameters are a12= a21=1, ε1=0.001 and ε2=0.005.       
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Supplementary Figure 3. Sample stochastic paths of the system in main text’s Fig. 2a 
(five endpoints when deterministic). The initial condition is Xi=1 for all i. The 
parameter values are aij=1/8 for all i,j, ε1=0.0010, ε2=0.0060, ε3=0.0085, ε4=0.0090 and 
ε5=0.0095.   
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Supplementary Figure 4. Time evolution of ui for the deterministic system in main 
text’s Fig. 2a. Timescale factor decline rates are ε1=0.0010, ε2=0.0060, ε3=0.0085, 
ε4=0.0090 and ε5=0.0095.   
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Supplementary Figure 5. Sample stochastic paths of the system in main text’s Fig. 2b 
(one endpoint, undifferentiated state). The initial condition is Xi=1 for all i. The 
parameter values are aij=1/8 and uij does not evolve for all i,j.   
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Supplementary Figure 6. Sample stochastic paths of the system in main text’s Fig. 2c 
(two endpoints). The initial condition is Xi=1 for all i. The parameter values are 
aij=1/8 for all i,j, ε1=0.0010, ε2=0.0012, ε3=0.0013, ε4=0.0100 and ε5=0.0500.  
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2014. ; https://doi.org/10.1101/007831doi: bioRxiv preprint 

https://doi.org/10.1101/007831


 
 
Supplementary Figure 7. Time evolution of ui for the deterministic system in main 
text’s Fig. 2c. Timescale factor decline rates are ε1=0.0010, ε2=0.0012, ε3=0.0013, 
ε4=0.0100 and ε5=0.0500. 
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Supplementary Figure 8. Sample stochastic paths of the system in main text’s Fig. 2d 
(three endpoints). The initial condition is Xi=1 for all i. The parameter values are 
aij=1/8 for all i,j, ε1=0.0010, ε2=0.0015, ε3=0.0090, ε4=0.0200 and ε5=0.0600.  
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Supplementary Figure 9. Time evolution of ui for the deterministic system in main 
text’s Fig. 2d. Timescale factor decline rates are ε1=0.0010, ε2=0.0015, ε3=0.0090, 
ε4=0.0200 and ε5=0.0600. 
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Supplementary Figure 10. Sample stochastic paths of the system in main text’s Fig. 
2e (four endpoints when deterministic). The initial condition is Xi=1 for all i. The 
parameter values are aij=1/8 for all i,j, ε1=0.0010, ε2=0.0060, ε3=0.0090, ε4=0.0150 and 
ε5=0.0200. 
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Supplementary Figure 11. Time evolution of ui for the deterministic system in main 
text’s Fig. 2e. Timescale factor decline rates are ε1=0.0010, ε2=0.0060, ε3=0.0090, 
ε4=0.0150 and ε5=0.0200. 
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Supplementary Figure 12. Suppose the parameter values are a12=a23=a31=3, a13=a21=a32=γ, ε1=0.001, ε2=0.001 and ε3=0.001. The initial 
condition is X1= X2=0 and X3=5. Decreasing the value of γ creates a repressilator network such that one repression loop is stronger 
than the reverse loop. This results in an attracting oscillatory behavior that activates suppressed genes.   
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Supplementary Figure 13. Sample stochastic paths of the system in main text’s Fig. 
3b, n=5. The initial condition is Xi=0 for i=1,2,3,4 and X5=15. The parameter values 
are a12= a23= a34= a45= a51=5 and aij=0.01 for the other i,j. The parameter uij does not 
evolve for all i,j.   
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Supplementary Figure 14. Sample stochastic paths of the system in main text’s Fig. 
3c, n=4. The initial condition is Xi=0 for i=1,2,3 and X4=1. The parameter values are 
a12= a23= a34= a41=5, a13= a24= a31= a42=1 and aij=0.01 for the other i,j. The parameter uij 
does not evolve for all i,j.     
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Supplementary Figure 15. Sample stochastic paths of the system in main text’s Fig. 
3d. The initial condition is Xi=0 for i=1,2,3,4 and X5=15. The parameter values are 
a12= a23= a34= a45= a51=5, aij=0.01 for the other i,j, ε1=0.001, ε2=0. 0.001, ε3=0. 0.001, 
ε4=0.001 and ε5=0.001. 
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Supplementary Figure 16. Time evolution of ui for the system in main text’s Fig. 3d. 
Timescale factor decline rates are εij=0.001 for all i,j. 
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Supplementary Figure 17. Sample stochastic paths of the system in main text’s Fig. 
3e. The initial condition is Xi=0 for i=1,2,3,4 and X5=15. The parameter values are a12= 
a23= a34= a45= a51=5, aij=0.01 for the other i,j, ε1=0.001, ε2=0. 0.001, ε3=0. 0.001, ε4=0.010 
and ε5=0.005. 
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Supplementary Figure 18. Time evolution of ui for the system in main text’s Fig. 3e. 
Timescale factor decline rates are ε1=0.001, ε2=0. 0.001, ε3=0. 0.001, ε4=0.010 and 
ε5=0.005. 
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Supplementary Figure 19. Sample stochastic paths of the system with slow 
timescale factor decline rate, εi=0.0001 for all i. Here dampening of the oscillations is 
fast and the initial oscillations are unnoticeable; however, repressilator-type network 
is still able to activate suppressed genes. The initial condition is Xi=0 for i=1,2,3,4 and 
X5=15. The parameter values are a12= a23= a34= a45= a51=1 and aij=0.1 for the other i,j. 
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Supplementary Figure 20. Time series of entropy levels for the systems in the main 
text’s Fig. 3d and 3e.  
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