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Abstract 
 
Comprehensive genome-wide analyses of bacterial DNA methylation have not been 

possible until the recent advent of single molecule, real-time (SMRT) sequencing. 

This technology enables the direct detection of N6-methyladenine (6mA) and 4-

methylcytosine (4mC) at single nucleotide resolution on a genome-wide scale. The 

distributions of these two major types of DNA methylation, along with 5-

methylcytosine (5mC), comprise the bacterial methylome, some rare exceptions 

notwithstanding. SMRT sequencing has already revealed marked diversity in 

bacterial methylomes as well as the existence of heterogeneity of methylation in 

cells in single bacterial colonies, where such ‘epigenetic’ variation can enable 

bacterial populations to rapidly adapt to changing conditions. However, current 

methods for studying bacterial methylomes using SMRT sequencing mainly rely on 

population-level summaries that do not provide the single-cell resolution necessary 

for dissecting the epigenetic heterogeneity in bacterial populations. Here, we 

present a novel SMRT sequencing-based framework, consisting of two 

complementary methods, for single molecule-level detection of DNA methylation 

and assessment of methyltransferase activity through single molecule-level long 

read-based epigenetic phasing. Using seven bacterial strains and integrating data 

from SMRT and Illumina sequencing, we show that our method yields significantly 

improved resolution compared to existing population-level methods, and reveals 

several distinct types of epigenetic heterogeneity. Our approach enables new 

investigations of the complex architecture and dynamics of bacterial methylomes 

and provides a powerful new tool for the study of bacterial epigenetic control. 
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Introduction 
 
In the bacterial kingdom, DNA methylation is catalyzed by three families of DNA 

methyltransferases (MTases) that typically add methyl groups to DNA bases in a 

sequence-specific manner1-3 . One family of MTases attaches methyl groups to 

adenine residues, creating N6-methyladenine (6mA), whereas the other two 

families introduce methyl groups to cytosine residues to create either N4-

methylcytosine (4mC) or 5-methylcytosine (5mC). Many bacterial DNA MTases act 

in concert with and are encoded in close proximity to cognate restriction 

endonucleases (REs); the MTase protects DNA from digestion by the RE with which 

it forms a restriction-modification (RM) system2,4,5.  RM systems are generally 

believed to have an ‘immune’ function, protecting cells from invading foreign DNA. 

They are also studied as selfish elements that protect themselves against removal 

through the post-segregational killing of new progeny by pre-existing and stable RE 

molecules4,6,7. In addition, so-called ‘orphan’ MTases, which occur in the genome 

without an associated RE, have been found to play important regulatory roles in 

global gene expression and other biological processes2,3,8-10. Furthermore, the ability 

of such MTases to target their recognition motifs for methylation often depends on 

competitive binding at the target site between several DNA binding proteins2,3,11-15. 

These epigenetic regulators of gene expression, including both MTases and 

competing DNA binding proteins, are a source of phase variation2,3,16 that increases 

the robustness of the population and provides opportunities to adapt in response to 

changing environmental conditions17-19. 
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In some bacteria, the behavior and role of certain MTases can vary 

dramatically due to slippage events during DNA replication through homopolymer-

rich MTase coding sequence. This slippage can cause frameshift mutations that 

result in truncated and usually inactive MTases20-22 or in active MTases with altered 

target sequence specificity23,24. These mechanisms can yield heterogeneity in the 

methylomes present within descendants of a single population and can cause 

differential regulation of multiple genes, termed phase-variable regulon 

(phasevarion)20-22. It has been postulated that epigenetic control of gene expression 

mediated by phase variation (epigenetic control of a single gene) or phasevarions 

(multiple genes regulated simultaneously) allows a given essentially clonal 

population to adopt multiple distinct phenotypes. Such heterogeneity can facilitate 

adaptation to diverse environmental niches, including complex host environments 

and presence of antibiotics, as has been reported in several studies22,25-27.  

Genomic analyses suggest that some form of DNA methylation is present in 

nearly all bacteria, as putative DNA MTases were found in 94% of 3300+ sequenced 

bacterial genomes5.  Given the large number of MTase target sites in bacterial 

genomes and the growing evidence suggesting regulatory roles of methylation by 

both RM and orphan MTases28,29, the potential scope for exploring the diversity of 

bacterial methylation and methylation-mediated gene regulation is vast. Previous 

methods have been laborious, often lacking single nucleotide resolution and whole 

genome scalability, but have nevertheless demonstrated the critical roles that 

epigenetic variation plays in a great diversity of processes2,3,11,13-15.  However, the 

precise sequence targets and biological roles of most MTases, including their 
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dynamics and functions, remain virtually unknown. While recent progress in 

bisulfite sequencing facilitates the accurate detection of 5mC methylation and has 

been successful in studying 5mC sites in E. coli30, there has been a lack of a high 

throughput genome-wide sequencing methodology for efficiently detecting 6mA 

and 4mC methylation in bacteria. 

Single molecule, real-time (SMRT) DNA sequencing technology31 represents a 

major advance with respect to the detection of nearly twenty different types of 

chemical modifications to DNA, including all three major types of DNA methylation 

in bacteria (6mA, 4mC, and 5mC), although the reduced signal-to-noise ratio with 

5mC makes detection of such events with SMRT sequencing a challenge. Through 

SMRT sequencing, each DNA molecule, consisting of both strands of native DNA 

fragments circularized by ligating hairpin adapters to the ends, is sequenced by a 

DNA polymerase, where due to the circular topology a given fragment can be 

sequenced multiple times in the real-time DNA synthesis process. The SMRT 

sequencing instrument not only monitors the pulse fluorescence associated with 

each incorporated nucleotide, but also records the time between the incorporation 

events, termed the inter-pulse duration (IPD). Variation in IPDs (referred to as 

kinetic variation) is highly correlated with the presence of modifications within the 

DNA template32-34, including 6mA, 4mC, 8-Oxoguanine etc.  

SMRT sequencing has been applied to genome-wide characterization of 

several bacteria34-36. These genome-wide studies, using motif enrichment analyses, 

enabled the comprehensive de novo identification of specific recognition sites 

targeted by the MTases encoded in these genomes. The application of SMRT 
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sequencing to the characterization of a growing number of bacterial 

methylomes23,24,37,38 has revealed both numerous MTases with novel specificities 

and  great diversity in methylomes among bacterial species and strains15,27,28,44. 

However, while the accurate identification of methylation motifs has enabled these 

discoveries, the heterogeneity and dynamics of methylomes within cultured 

bacterial populations and under different conditions have not been thoroughly 

explored. This is in large part due to limitations of current SMRT sequencing-based 

bacterial methylome analysis protocols, which rely mainly on assessments of 

aggregate IPD values at each genomic position across populations of cells32-35,39. 

With this approach, the individual reads (corresponding to molecules) are aligned to 

the same genomic region and then statistically modeled as an ensemble (Fig. 1a, b). 

This approach enhances the statistical power for methylation detection at single 

nucleotide resolution and improves motif-level analysis, but fundamentally limits 

the ability to resolve the subtle dynamics and heterogeneity in bacterial 

methylomes. Although some progress in the investigation of dimensions beyond 

traditional population-level analysis have recently been reported37,40, new methods 

are needed to decipher the heterogeneity and dynamics of bacterial DNA 

methylation at single molecule resolution. 

Here, we present a novel and systematic framework for single molecule-level 

detection of bacterial DNA methylation and assessment of MTase activity using 

SMRT sequencing data. The foundation of this approach rests on two 

complementary methods that use molecule-specific IPD information to infer 

methylation states at single molecule resolution (Fig. 1c, e). We demonstrate the 
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framework’s effectiveness through comprehensive, quantitative characterization of 

seven bacterial methylomes and by identifying several types of heterogeneity in 

these methylomes. The enhanced resolution provided by our analytic framework 

broadens our knowledge of bacterial methylomes and enables deeper 

understanding of the diverse roles of methylation in modulating bacterial 

physiology.  

 

Results 

Methods for single molecule-level detection of methylation and epigenetic 

phasing 

We first present the rationale and description of the two complementary methods 

for (i) single molecule, single nucleotide, strand-specific detection of methylation 

events and (ii) single molecule-level epigenetic phasing analysis. Our strategy 

revolves around the interrogation of circular consensus sequence data generated 

from short-insert SMRT sequencing libraries and continuous long read data 

generated from long-insert SMRT sequencing libraries31,41.  For short insert 

libraries, DNA molecules are cleaved into ~250bp double-stranded fragments and 

hairpin adaptors are ligated to each end. The sequencing-by-synthesis occurs when 

the DNA polymerase begins synthesizing DNA using the short fragment as a 

template. Since the average read length in the SMRT sequencing system is 8,500bp, 

this same short DNA fragment can be sequenced repeatedly by the same DNA 

polymerase (each strand can be read > 15 times on average).  The multiple passes 

over the same molecule (Fig. 1a-c) allow the calculation of a single molecule, single 
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nucleotide (SMSN) score and provide statistical power to detect shifts in the kinetic 

variation at a specific nucleotide position on a given DNA molecule.  

Complementing the short insert libraries are the long insert libraries, which 

given the read length of the SMRT sequencing system, enables sequencing of long 

stretches of DNA. This long library sequencing has been successfully applied in de 

novo bacterial genome assembly for its unique ability to resolve genomic regions 

with complex repeated elements41-45. Here, we instead leverage the continuous long 

reads for methylation phasing at single molecule resolution.  For a particular 

methyltransferase of interest, its target sequence motif may be represented multiple 

times in a given long stretch of DNA.  For example, if the target motif is 4 nucleotides 

long, then that motif will be represented 33 times on average in a strand of DNA 

8,500bp long.  The kinetic variation statistics for each occurrence of a given motif on 

a single strand of DNA can then be pooled to increase statistical power to infer 

whether a given motif is being actively methylated in a particular bacterial cell (Fig. 

1d, e).  Since methyltransferases often methylate almost all occurrences of their 

target sequence, this single molecule pooled (SMP) score can provide strong 

evidence as to whether a given methyltransferase is active in a bacterial cell. 

Furthermore, the precise value of SMP can also be used to infer the processivity of a 

methyltransferase of interest, as is discussed later. At current average SMRTseq 

read lengths (~8,500bp), this estimation procedure will be limited to shorter 

methylation motifs for most of the molecules, as longer motifs (e.g., > 5mers) occur 

less frequently. However, the very longest reads (read lengths up to 60,000bp are 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2014. ; https://doi.org/10.1101/007823doi: bioRxiv preprint 

https://doi.org/10.1101/007823


 9 

now possible) provide an opportunity to estimate the SMP scores accurately for 

longer motifs. 

Therefore, the short-library based SMSN scores can be used to estimate the 

methylation state of a particular occurrence of a given motif on a single molecule, 

while the long-library based SMP scores enable the assessment of the activity of a 

methyltransferase targeting a given motif through single molecule-level epigenetic 

phasing. Details of the two methods can be found in Online Methods. Next, we 

evaluate the performance of the two methods, and demonstrate how SMSN and SMP 

scores can be used to characterize distinct types of epigenetic heterogeneity in 

different bacteria.  

 

Sensitivity and specificity of single-molecule, single nucleotide (SMSN) 

detections 

Confident estimation of the IPD ratio relies on an accurate mean IPD for each 

nucleotide in a single molecule. The accuracy of the mean IPDs increases as the 

number of subreads for each molecule increases32,33, since each subread provides an 

independent estimate of the IPD. With an average read length (currently ~8,500bp), 

the number of subreads (i.e. single molecule coverage, covSM) is negatively 

correlated with the insert size of the sequencing library. To quantify the sensitivity 

and specificity for single molecule, single nucleotide-level detection, we tested this 

framework on methylated 5’-CTGCAG-3’ sites in a native E. coli O104:H4 C227-

11strain34 (C227), and a matching whole genome amplified (WGA) sample in which 

the methylation sites were erased (Online Methods; Fig. 2a). As expected, the 
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sensitivity of the method increases as covSM increases. For the single molecule, 

single nucleotide approach, when covSM ≥ 15 (corresponding to an average library 

size of 280bp), 6mA can be detected with a sensitivity of 98.5% and a specificity of 

99.5%. This suggests that 6mA can be accurately detected at a single molecule 

resolution using a short insert library. Although a smaller library size can provide 

higher values of covSM, a minimum library size of 150-200bp is recommended to 

avoid loss of genomic DNA during library construction and to facilitate removal of 

adapter-dimer constructs during purification. 

We also estimated the sensitivity and specificity of detecting 6mA at single 

molecule resolution for other 6mA motifs and found the results to be comparable to 

CTGCAG (Supplementary Fig. 1a, b). Upon interrogating a 4mC motif, we found that 

4mC can also be accurately detected at single molecule resolution (Supplementary 

Fig. 1c). For 5mC, we did not attempt similar estimation at single molecule 

resolution because of a much lower signal-to-noise ratio, even after conversion of 

5mC to 5hmC with Tet enzymes46, consistent with other recent observations 23,37. 

The remainder of this study will focus solely on the characterization of 6mA, the 

most prevalent type of methylation in bacteria, although all of the analyses detailed 

are applicable to 4mC in addition to 6mA.   

 

Distribution of SMSN scores enhance quantification of global methylation 

heterogeneity  

The methylome of Chromohalobacter salexigens was characterized in a recent study 

and found to contain a substantial number of non-methylated 5’-RGATCY-3’ sites36. 
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Specifically, 23.5% of the motif sites were predicted to be non-methylated based on 

the standard population level analysis depicted in Figure 2b (Online Methods), 

consistent with the original study36. As shown, the distribution of molecule-

aggregated single nucleotide (AggSN) scores does not show clear separation between 

methylated and non-methylated RGATCY sites, indicating that the estimated 

percentage of methylation depends on a subjective, ad hoc threshold. In contrast, 

clear bimodality is observed in the distribution of SMSN scores, where the individual 

components centered near SMSN≈0 and SMSN≈2 represent the non-methylated and 

methylated fractions, respectively (Fig. 2b). Note that, a distribution of SMSN 

centered at zero correspond to motif sites that are not methylated because the IPDs 

do not differ between native and WGA DNAs; in contrast, a distribution of SMSN 

centered near 2 corresponds to motif sites that are methylated (SMSN≈2 

corresponds to an IPD ratio of ~7 in log scale, specific to the P4 sequencing 

chemistry and 6mA; Supplementary Figs. 3-8). This bimodality allows the 

percentage of methylated motif sites to be objectively estimated at 60.4% using a 

standard expectation maximization (EM) algorithm47 (Online Methods) without the 

need for a subjective input threshold.  

SMSN-based quantification is stable at low sequencing coverage: Next, we 

designed an in silico experiment to evaluate the reliability of the methylated 

percentage estimation based on the SMSN score distributions. To generate in silico 

methylated fractions, we mixed single sequencing molecules from the native E. coli 

C227 data and corresponding WGA molecules, starting at 5% native molecules and 

increasing the native fraction stepwise by 5% until we reached 100% native 
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molecules. The percentage of methylated and non-methylated sites in each in silico 

mixture was estimated using the distribution of SMSN scores for CTGCAG sites 

(covSM≥10). Because we expect most CTGCAG sites in the native molecules to be 

methylated, an accurate estimation is one in which the detected methylated fraction 

closely approximates the known native fraction in each mixture. Additionally, 

because the estimation of methylated fractions could provide added value into the 

characterization of in vivo isolates where sequencing coverage is often an issue, we 

evaluated the accuracy of our methylated fraction estimations at varying levels of 

genomic sequencing coverage. By down-sampling the data (Online Methods), we 

found that the methylated fraction estimations are highly stable even when global 

coverage is 1x (Fig. 2c).  This result supports the applicability of this approach to in 

vivo isolates from which very limited amounts of native DNA are available, leaving 

low coverage SMRTseq sequencing as the only option. We considered the possibility 

that the systematic downward shift from the diagonal in the estimated methylated 

fraction could be due to a bias in the EM algorithm or the assumption that SMSN 

follows a normal distribution, causing a skew in the fraction estimates. However, 

two independent tests using mixtures of simulated distributions did not support 

this hypothesis (Supplementary Fig. 2; Online Methods). This suggests that the 

downward shift likely reflects that a small number of the CTGCAG sites in the native 

molecules are non-methylated, causing a slight underestimation of the fraction of 

native molecules. 

Global methylation heterogeneity in six bacteria: We applied the SMSN 

based quantification analysis to six bacterial methylomes that were recently 
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sequenced34,36,37 or specifically sequenced for this study (Supplementary Table 1). 

We first detected methylation motifs based on existing methods23,34,36 and divided 

them into two groups, based on the global distribution of SMSN scores. In the first 

group, the majority of motif sites (> 95%) were methylated, while only a very small 

proportion were non-methylated, likely due to competitive binding between the 

MTases and other DNA binding proteins such as transcription factors 2,3,11,13,14. In 

the second group, a substantial percentage of motif sites were non-methylated (> 

5%), which may suggest the existence of alternative mechanisms that drive the 

heterogeneity of the methylome. Some representative bacterium-motif pairs 

belonging to each of the two groups were shown in Figures 3b and 3c, respectively. 

A complete SMSN score summary for each bacterium is shown in Supplementary 

Figures 3-8. While most motifs belong to the first group and do not show extensive 

non-methylation, the second group includes the RGATCY motif of C. salexigens and 

three motifs from Helicobacter pylori J99. Most intriguingly, the H. pylori motif 5’-

GWCAY -3’ shows an extremely high percentage of non-methylated sites (75.3%), 

which we will investigate in-depth using long library based phasing analysis. 

 

Distribution of SMSN scores can enhance interpretation of regional 

methylation dynamics  

The Caulobacter crescentus genome encodes a methyltransferase (CcrM) targeting 

5’-GANTC-3’ sites. The corresponding gene, ccrM, is only expressed at the late stage 

of the cell cycle48. Consequently, fully methylated GANTC sites transition to hemi-

methylated as the replication fork proceeds from the origin of replication (Cori) to 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2014. ; https://doi.org/10.1101/007823doi: bioRxiv preprint 

https://doi.org/10.1101/007823


 14 

the terminus (Ter)37. Recently, Kozdon et al.37 used SMRT sequencing to study such 

transitions at five time points over the cell cycle. This provides a good dataset for 

testing whether SMSN distributions can be used to quantitatively interpret 

methylation dynamics of specific genomic regions. We sampled the genome of C. 

crescentus at five distinct 200-kilobase regions at five different time points during a 

single synchronized round of cell division (Fig. 3c). As the replication fork proceeds 

from the Cori to the Ter in the five time points, the SMSN score distributions reveal 

an increasing fraction of the genome that has been converted from fully methylated 

to hemi-methylated GANTC sites. At the first time point, the fully methylated state of 

the swarmer cells (SW) is apparent by the single mode in SMSN scores at all five 

genomic regions. As the cells differentiate into the actively replicating stalked cells 

(ST), there are bimodal SMSN scores in regions (i) and (ii) that are closest to the Cori, 

reflecting the passage of the replication fork through those regions. The following 

two time points, early pre-divisional stages (EDP1 and EDP2, respectively), reveal 

the transition of the single-mode SMSN distributions in regions (iii) and (iv) to clear 

bimodal distributions, reflecting the passage of the replication fork through those 

regions. The unequal bimodal distribution in EDP2 in regions (iii) and (iv) indicates 

that the molecules from that region have not all been converted from fully- to hemi-

methylated, likely due to stochastic differences in the position of the replication fork 

80 minutes post-synchronization. The final time point, late pre-divisional (LPD), 

reveals a genome that has almost completely converted to a hemi-methylated state, 

with the exception of the region immediately surrounding the Ter (v), which only 

shows a small amount of hemi-methylation. In fact, regions (i)-(iv) at this final time 
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point indicate that these sites have already begun to transition from equal 

bimodality (universal hemi-methylation) back toward their starting single-mode 

distributions (universal full methylation). This is also likely due to imperfect 

synchronization, allowing some replication forks to progress past the ccrM gene at 

the LPD time point, thus activating transcription and beginning the process of re-

methylating all the GANTC sites that had been hemi-methylated by the passage of 

the replication fork.  

 

Distinct types of global epigenetic heterogeneity characterized by single 

molecule-level assessment of MTase activity  

We envisioned three potential alternative explanations for the heterogeneous 

methylation of motifs that were frequently non-methylated (Fig. 3b). In the first, we 

hypothesized that the methylation motif may be inaccurate and the observed 

heterogeneity arises from a mixture of truly highly methylated motifs and motifs 

falsely identified by the motif enrichment algorithm.  Alternatively, the MTase might 

stochastically methylate only a fraction of its recognition motif sites, in which case 

the fractions of methylation estimated based on global distribution of SMSN scores 

reflect a universally active MTase, albeit one without the ability to methylate all of 

its target motifs. Finally, sequence variation in the MTase may cause a phasevarion. 

In this third case, mutations in homopolymers or other simple sequence repeats 

present in coding or regulatory sequences can cause switching that either 

activates/deactivates the MTase or switches its target specificity20-24. Either of these 

two switching modes can induce cell-wide methylation patterns that might differ 
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within a single population. In this case, the fraction of methylation estimated by 

SMSN scores reflects the fraction of cells with an active MTase targeting the 

methylation motif.  

We can reject the first hypothesis because the SMSN score distributions of 

explicit specifications of each motif showed similar heterogeneity (Supplementary 

Fig. 9), suggesting that the heterogeneity is not due to the mixing of true and false 

motifs. We can differentiate between the other two hypotheses by pooling SMSN 

scores from distinct motif sites on an individual molecule as a way of phasing 

epigenetic information across the full length of the sequencing read (i.e. co-

occurrence on a single molecule). If some molecules within a sample are methylated 

at all sites, while others are completely non-methylated, this supports the existence 

of a phasevarion. Because the expected frequency of methylation motif occurrence 

is often low (e.g. 1 motif per 256bp expected for a 4-mer motif, 1 motif per 1024bp 

expected for a 5-mer motif, etc.), the SMRT sequencing data used in the above 

analyses with short library sizes (250~1000bp on average) provides limited 

statistical power to differentiate between the two hypotheses. The short library 

preparation generates molecules for sequencing that simply do not contain 

sufficient distinct motif sites to effectively determine whether or not a molecule is 

methylated via pooling its SMSN scores. This motivated the design of the long library 

based SMP analysis for more effectively epigenetic phasing as described earlier (Fig. 

1d, e).  

Direct observation of phasevarion and causal phase-variable MTases in 

H. pylori. Phase-variable genes, including several MTases, are well-described in H. 
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pylori22,24,49,50. In an effort to better understand the contributions made to the H. 

pylori methylome by phase-variable MTases, researchers have recently focused on 

identifying their targeted methylation motifs23. In that work, correction of 

inactivating frameshift mutations in several putative MTase genes was followed by 

SMRT sequencing of the resulting clonal populations. By generating modified and 

constitutively active versions of the putative phase-variable MTases, Krebes et al 

were able to assign methylation target motifs to the MTases using the existing, 

aggregation-based method for methylation detection. However, because most H. 

pylori isolates are likely not clonal and significant variation in homopolymer length 

has been observed between closely-related strains of H. pylori49, it is possible that 

active copies of the phase-variable MTases are already present in the isolates, just at 

levels too low to detect using the aggregation-based method. This provided an 

opportunity to evaluate the ability of the SMP-based method to detect minor 

subpopulations of active and inactive MTases. 

We first tested the SMP method on an H. pylori J99 isolate that was sequenced 

using libraries with long (~20kb) DNA inserts. We targeted the 4-mer GATC motif 

(>95% of these sites are estimated to be methylated (Fig. 3a)) and tested the MTase 

activity for each sequenced molecule containing at least 10 motif sites. The 

distribution of SMP scores, as well as a control distribution of SMP scores where the 

IPD values have been randomly shuffled in silico between molecules, is shown in 

Figure 4a. No bimodality is present in the SMP score distribution and it is nearly 

identical to the IPD-shuffled SMP score distribution, suggesting that the MTase 

responsible for targeting the GATC motif in H. pylori J99 (M.Hpy99VI) is 
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constitutively active. Through false discovery rate estimation (Methods), we found 

that only 0.07% of the molecules with at least 10 GATC sites from the H. pylori J99 

long library data had evidence of non-methylation (maximum FDR = 1%). This level 

of non-methylation is consistent with several other motifs for which we expect to 

observe near-universal methylation activity (CATG, GANTC, and GAGG), suggesting 

that the small number of non-methylated reads may have originated from 

transiently hemi-methylated regions directly behind the DNA replication fork. 

Furthermore, phase-variation of M.Hpy99VI was deemed unlikely following the 

finding of no significant sequence variation in its coding sequence (Supplementary 

Fig. 10). 

Next, we applied the same analysis to a motif, GWCAY, targeted by an MTase 

that is known to be phase-variable in H. pylori J99. The full-length transcription of 

the gene encoding the modification (M) subunit of this type-III R-M system 

Hpy99XXI depends on the length of a specific 10-12G homopolymer23. Modification 

of the GWCAY motif is normally undetectable in H. pylori J9923, suggesting that the 

status of the 10-12G homopolymer in the isolate results in mainly inactive 

M.Hpy99XXI proteins. However, as the SMP score distribution reveals (Fig. 4b), there 

is a subpopulation of molecules with SMP≈2, indicating the presence of a small 

fraction of cells containing the active form of M.Hpy99XXI in the H. pylori J99 

culture. MiSeq-based sequencing of the same DNA supported this mechanism, 

revealing significant variation in the length of the M.Hpy99XXI homopolymer with 

respect to our reference assembly (Supplementary Fig. 11).   
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Hpy99XXII is another R-M system in H. pylori J99 that is known to contain 

phase-variable components. Instead of being found in the M subunit, the 

homopolymer-driven phase-variation in this system is found in the specificity (S) 

subunit, which targets the TCAN6TRG/CYAN6TGA motif. The presence of a 14G 

homopolymer in S.Hpy99XXII has been shown to result in a full-length specificity 

protein and active methylation of TCAN6TRG/CYAN6TGA23. Although our reference 

assembly contains the 14G homopolymer, we observe a small subpopulation of 

molecules with SMP≈0 (Fig. 4c), indicating that there are cells within the H. pylori 

J99 culture in which methylation by the Hpy99XXII system is not occurring.  MiSeq 

sequencing confirmed the presence of significant length variation in this 

S.Hpy99XXII homopolymer in the culture (Supplementary Fig. 12).  

The accuracy of sequencing homopolymeric regions, especially C/G stretches, 

is reduced with most sequencing platforms. To ensure that the observed insertions 

and deletions were not simply due to sequencing errors, we searched for length 

variation in other C/G homopolymers from both the same H. pylori J99 and E. coli 

K12 genomes that are not known to undergo phase variation (Fig. 4d). The number 

of read-level deletions observed in the M.Hpy99XXI (GWCAY) and S.Hpy99XXII 

(TCAN6TRG/CYAN6TGA) genes are markedly higher (>15%) than those observed in 

the control C/G homopolymers (<3%) observed in the control homopolymers (9- 

and 10-mers, the longest in the same H. pylori strain and the E. coli K12 genome), 

which is unlikely just due to the difference in homopolymer lengths. This suggests 

the homopolymer length variation, rather than sequencing error, is driving the 

variation present in these two methylation motifs. Interestingly, although a similar 
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distribution of SMP scores was observed for both the TCAN6TRG/CYAN6TGA (Fig. 

4c) and TCNNGA (Fig. 4e) motifs, no sequence variation was observed in or around 

the coding region of the genes involved in the Hpy99XVIII R-M system responsible 

for the methylation of TCNNGA (Supplementary Fig. 13), suggesting that regulatory 

elements outside the coding region (genetic or epigenetic) may be responsible for 

the observed fraction of non-methylated molecules. 

Stochastic methylation in C. salexigens. In contrast to GWCAY, 

TCAN6TRG/CYAN6TGA, and TCNNGA in H. pylori J99, we found no evidence from the 

SMP scores supporting the existence of phase-variable MTase activity with the 

RGATCY motif of C. salexigens (Fig. 4f). Rather than showing a component of the SMP 

score distribution centered on SMP≈2, we see a primary component centered on 

SMP≈0.9, indicating that the motif-pooled IPD values used to calculate each 

molecule’s SMP score originated from a mixture of both non-methylated (IPD≈0) and 

methylated (IPD≈2) sites. This observation, combined with a lack of detected 

sequence variation in the coding sequence of the RGATCY-targeting M.CsaI gene 

(Supplementary Fig. 14) and the fact that M.CsaI is an orphan methyltransferase 

without corresponding RE36, indicates that stochastic methylation by M.CsaI is the 

likely mechanism driving the significant SMSN heterogeneity observed in Figure 3b. 

Therefore, it is plausible that M.CsaI in C. salexigens has a stochastic methylation 

activity (~60%) in each single cell, another type of global epigenetic heterogeneity 

in a bacterial population that differs from phase variation. 

Other motifs. We also applied the long library-based SMP analysis to the 

other motifs in the H. pylori J99 and C. salexigens methylomes, but did not observe 
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SMP score distributions suggesting additional phase-variable MTases 

(Supplementary Fig. 15). Generally, the power of long library-based SMP analysis 

increases with the number of unique motif sites in the sequencing molecule, as 

shown in an ROC summary (Supplementary Fig. 16). 4-mer and 5-mer motif sites 

are often present at sufficient density in genomes such that the current read length 

of SMRT sequencing (mean 8,500bp, 95% percentile 20,000bp) can cover enough 

distinct sites to accurately assess the active/inactive state of the MTase  Some long 

motifs have much higher frequencies than expected, such as the 

TCAN6TRG/CYAN6TGA motif in H. pylori J99, which has an average frequency of 10.8 

per 10 kilobases, over two-fold higher than the frequency expected by chance for a 

k-mer of equal size (Supplementary Fig. 17). Therefore, we suggest using the actual 

number of 6mA sites in each molecule as a threshold for SMP analysis instead of 

basing the threshold on motif length alone. 

 

Discussion 
 

Here, we present the first systematic framework for single molecule-level 

characterization of epigenetic heterogeneity in bacterial methylomes using SMRT 

sequencing. We demonstrate the enhanced resolving power of our approach in 

analyses of seven methylomes that show distinct types of epigenetic heterogeneity 

in bacterial populations. The short library-based SMSN method enables accurate 

estimation of the fractions of methylated and non-methylated motif sites without 

the use of subjective or ad hoc thresholds, even at low levels of genomic sequence 

coverage, such as sample-limited in vivo isolates. Furthermore, the robust 
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separation between methylated and non-methylated sites based on SMSN scores at 

low coverage also suggests the possibility of de novo discovery of methylation motifs 

from SMRT sequencing data at a coverage that is much lower than the current 

standard. The second SMP method leverages long library sequencing and single 

molecule motif pooling in order to phase methylation states and discriminate 

between different mechanisms that drive epigenetic heterogeneity in a bacterial 

population. By surveying phased MTase activity at a single molecule-level, the SMP 

scores are able to reveal small fractions of cells that contain active and inactive 

MTases in population.  

Together, the high resolution for surveying MTase activity provided by these 

complementary methods is not achievable using the existing, population-based 

analysis approaches. We therefore expect their application to improve the analysis 

and interpretation of bacterial methylomes. Furthermore, integration of this 

framework with other single molecule- or single cell-level data, such as RNA and 

protein expression, will enable a more detailed understanding of the functions of 

DNA methylations in bacterial physiology. 

SMRT sequencing provides a unique opportunity to de novo detect more than 

twenty different types of DNA modifications32,46,51, including all the three major 

types of methylations in the bacterial kingdom, but also poses special challenges 

that previous second-generation sequencing techniques have not been forced to 

address. Specifically, for most second-generation sequencing techniques, the fidelity 

of single molecule-level analysis is often taken for granted because of the high 

sequencing accuracy during a single pass over the template. However, for SMRT 
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sequencing, the accuracy of base calling and detection of DNA modifications 

fundamentally depends on the number of repeated observations for each single 

molecule (circular consensus). Therefore, given a fixed average read length in SMRT 

sequencing, there is a tradeoff between library size and accuracy in both base calling 

and methylation detection. The methods proposed here provide an example of how 

to effectively leverage the unique features of SMRT sequencing using a combination 

of library designs. Shorter libraries have higher accuracy in detecting methylation at 

the level of single molecules and individual nucleotides, but are less informative 

when trying to determine the activity states of MTases along the full length of a 

single read. The short library-based method provides a highly accurate estimation of 

the global fraction of methylated and non-methylated sites, as well as detection of 

non-methylated sites at single molecule resolution. Alternatively, longer libraries 

enable the assessment methylation states along long templates, thereby facilitating 

inferences regarding MTase activity states, but do not provide reliable single 

molecule, single nucleotide-level methylation calls. The hybrid approach, using the 

two methods, can yield unprecedented insight into bacterial methylomes. 

Furthermore, the general methodology used in the design of these two methods can 

be used as a template to design analytic approaches for forthcoming third-

generation real-time sequencing techniques41,52. 

Collectively, the methods presented here will facilitate new studies and 

insights into the heterogeneity and significance of methylation within bacterial 

populations and mechanisms that underlie it.  Finally, although the current study 

focused on cultures of single bacterial strains, the single molecule resolution 
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methods proposed here can also be applied to mixed populations of bacteria. Such 

samples could include diverse clinical isolates, including samples that contain a 

pathogen in low abundance or even diverse microbiome samples. The methods are 

also applicable outside the bacterial kingdom, such as in the analysis of DNA from 

human mitochondria or viruses, both of which present significant genetic and 

epigenetic heterogeneity.  
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Figure Captions 
 

Figure 1. Schematic illustrating the general approaches of both the existing and two proposed 
methods for detecting DNA methylation in SMRT sequencing reads. (a) Illustration of an 
individual SMRT sequencing molecule (short DNA insert + adapters) used for the single molecule, 
single nucleotide (SMSN) detection method and the subreads that are produced during the 
sequencing process. (b) The existing methylation detection method relies on an aggregated 
treatment of individually sequenced molecules. For a given strand at each genomic position, the 
IPD values from all the subreads aligning to that strand and position are aggregated together to 
infer the presence of a methylated base. (c) The proposed SMSN method for detecting DNA 
methylation. Instead of aggregating molecules together to infer a single methylation call for each 
genomic position and strand, the methylation calls for each genomic position and strand are made 
at the level of each molecule using only the IPD values from its own subreads to make a molecule-
specific determination. (d) Illustration of an individual SMRT sequencing molecule (long DNA 
insert + adapters) used for the single molecule pooled (SMP) and a typical long subread that is 
produced during the sequencing process. (e) The proposed SMP approach for measuring MTase 
activity and detecting possible phasevarions. This approach retains the single molecule resolution, 
but instead of generating methylation scores for each individual motif site on the molecule, it pools 
together IPD values from multiple distinct motif sites along the length of the long read to assess 
MTase activity on the sequenced molecule.  
 
Figure 2. Multiple metrics showing the performance of the proposed single molecule, single 
nucleotide detection method. (a) Performance of the approach for detecting 6mA modifications in 
the 5’-CTGCAG-3’ motif of E. coli C227 using three thresholds for minimum single-molecule 
coverage (covSM). (b) Probability density illustrating the aggregate, single nucleotide (AggSN) and 
single molecule, single nucleotide (SMSN) methylation scores for 5’-RGATCY-3’ in C. salexigens, 
a motif which is known to have a large non-methylated fraction. The bimodal distribution provided 
by the SMSN scores enables the accurate and objective estimation of this fraction. (c) Accuracy of 
SMSN-enabled estimations of the methylated fraction (using covSM≥10) for the 5’-CTGCAG-3’ 
motif of E. coli C227 at various levels of genomic sequencing coverage. 
 
Figure 3.  Examples of various levels of heterogeneity in multiple bacterial methylomes as 
observed using single molecule, single nucleotide detection. (a) SMSN score distributions for 
multiple bacterium-motif pairs that exhibit near complete methylation, along with a non-
methylated motif for comparison. These examples show little or no bimodality, but are rather 
almost entirely distributed around SMSN ≈ 2, indicating that the vast majority of motif sites are 
methylated. (b) SMSN score distributions for multiple bacterium-motif pairs that display significant 
non-methylated fractions. The bimodality of each distribution enables an accurate estimation of the 
methylated and non-methylated fractions. The H. pylori J99 motifs show minor variation in the 
SMSN associated with each peak due to subtle differences in the chemistry version used for SMRT 
sequencing of their native and WGA samples. (c) Single molecule, single nucleotide level 
interrogation of GANTC methylation at five genomic positions (columns) in synchronized C. 
crescentus during a single round of DNA replication. Five time points (rows) provide snapshots of 
the bidirectional progression of the replication forks as they proceed in both directions away from 
the origin of replication (Cori) to the terminus (Ter) on the C. crescentus chromosome. Gray 
wedges in the chromosome schematics show the 200-kilobase genomic windows that are 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2014. ; https://doi.org/10.1101/007823doi: bioRxiv preprint 

https://doi.org/10.1101/007823


 31 

interrogated. Two regions are on either side of the Cori: (i) Cori - 0.1 megabase and (ii) Cori + 0.1 
megabase. Another two are halfway between Cori and Ter: (iii) Cori - 1 megabase and (iv) Cori + 
1 megabase. The final region covers the terminus: (v) Ter. For each time point, light 
(hemimethylated) to dark (fully methylated) color shading in the schematic and PDF curves 
illustrate the approximate position of the replication fork. Progressive hemi-methylation of 
GANTC sites follows the replication fork and is apparent by the bimodal distribution of the 
approximate SMSN scores (approximate due to lack of WGA sequencing, see Online Methods). 
Hemimethylated sites cannot transition back to full methylation until transcription of the gene 
encoding the proper methyltransferase, CcrM, which does not occur until very late in the 
replication process. The late pre-divisional (LPD) time point captures some of this transition, as 
stochastic variation in the replication speed means that some of the replication rounds have likely 
finished and are transcribing CcrM.  

 
Figure 4. Single molecule, motif-pooled (SMP) approach for measuring MTase activity and 
detecting possible phasevarions. (a) SMP distribution for H. pylori J99 motif GATC and its 
corresponding IPD-shuffled control. The identical unimodal distributions suggest a fully active 
MTase (as expected). (b) SMP distribution for H. pylori J99 motif GWCAY and its corresponding 
WGA control SMP distribution. The major peak around SMP = 0 and small bump around SMP ≈ 2 
suggests that responsible MTase, M.Hpy99XXI, is mostly inactive, except for a small number that 
actively methylate GWCAY. Actively methylated molecules with SMP scores > 2 have an FDR < 
0.2%. (c) SMP distribution of TCAN6TRG/CYAN6TGA (targeted by Hpy99XXII) in H. pylori 
J99, as well as its corresponding IPD-shuffled control SMP distribution. SMP analysis implicated 
this motif as having a potential role similar to that of GWCAY (i.e. small bimodality). In contrast 
to GWCAY, however, this SMP distribution suggests the normally active MTase is sporadically 
inactivated in some cells. Non-methylated molecules with SMP scores < 0 have an FDR < 1.3%. 
(d) High-accuracy sequencing with Illumina MiSeq and read-level analysis of insertion/deletion 
calls revealed the presence of significant variation in the lengths of two specific homopolymers in 
the coding sequences of M.Hpy99XXI and Hpy99XXII. The high percentage of deletions in these 
two genes stands apart from the deletion rates found in other C/G homopolymers from H. pylori 
J99 and E. coli K12, suggesting that this is not simply due to a higher rate of sequencing errors in 
homopolymer regions. (e) SMP distribution of TCNNGA (targeted by M.Hpy99XVIII) in H. pylori 
J99, as well as its corresponding IPD-shuffled control SMP distribution. This distribution of SMP 
scores suggests a MTases behavior similar to that of TCAN6TRG/CYAN6TGA. Non-methylated 
molecules with SMP scores < 0 have an FDR < 1.6%. (f) SMP distribution for the C. salexigens 
motif RGATCY. The major peak near SMP≈0.9 indicates that the IPDs sampled for each molecule 
reflect a mixture of both non-methylated (IPD≈0) and methylated (IPD≈2) motif sites, suggesting 
stochastic methylation as the primary source of epigenetic heterogeneity for this motif. 
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Online Methods 
 
 

 
Bacterial strains and culture conditions 
 
The Escherichia coli C227 sample was isolated from a 64-year-old woman from 
Hamburg, Germany, who was hospitalized in Copenhagen, Denmark after presenting 
with bloody diarrhea. A full description of the DNA extraction and sequencing 
procedures is provided in Rasko et al1. 
 
Helicobacter pylori J99 was originally isolated by Blaser lab from an American patient 
with duodenal ulcer2 and sequenced in 1999 3. H. pylori cells (50 µl) of J99 frozen stock 
from Blaser lab were first spotted on trypticase soy agar (TSA) plates with 5% sheep 
blood (TSA, BBL Microbiology Systems, Cockeysville, MD) at 37ºC with 5% CO2 for 
48-hour incubation, and then spread on new TSA plates in the same conditions4. After 
24-h incubation, H. pylori cells were collected in 1.0 mL phosphate-buffered saline (PBS, 
pH 7.4), and centrifuged at 800 g for 5 min. Bacterial genomic DNA was prepared using 
the Wizard Genomic DNA purification kit as following manufacturer’s instructions 
(Promega, Madison WI.). DNA concentration was measured by Nanadrop 1000 
spectrophotometer (Thermo Scientific, Rockford, IL). 
 
DNA for Chromohalobacter salexigens strain 1H11 is ordered from DSM 
(http://www.dsmz.de/catalogues/details/culture/DSM-3043.html).  
 
The procedures for culturing, synchronizing, and isolating genomic DNA from 
Caulobacter crescentus are described by Kozdon et al5. The DNA isolation procedures 
for Geobacter metallireducens, Campylobacter jejuni 81-176, & C.  jejuni NCTC 11168 
are described in Murray et al6. 
 
 
Whole genome amplification (WGA) 
 
The Qiagen REPLI-g amplification kit was used to perform whole-genome amplification 
to exclude epigenetically modified bases. The method produced micrograms of DNA 
from 50 ng of input genomic DNA, following the manufacturer’s guidelines and 10 hours 
of amplification time at 30oC followed by deactivation at 65oC for 3 minutes.   
 
 
SMRT sequencing 
 
Long (20,000bp) insert DNA library preparation and sequencing was performed 
according to the manufacturer’s instructions and reflects the P5-C3 sequencing enzyme 
and chemistry, respectively. Upon completion of library construction, samples were 
validated as ~20,000bp using an Agilent DNA 12000 gel chip. All isolate libraries were 
sufficient for additional size selection to remove any SMRTbells < 7,000 bp. This step 
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was conducted using Sage Science Blue Pippin 0.75% agarose cassettes to select library 
in the range of 7,000 bp – 50,000 bp. This selection is necessary to narrow the library 
distribution and maximize the SMRTbell sub-readlength. 11-23% of the input libraries 
eluted from the agarose cassette and was available for sequencing.  For all cases, this 
yield was sufficient to proceed to primer annealing and DNA sequencing on the PacBio 
RSII machine. Primer was then annealed to the size-selected SMRTbell with the full-
length libraries (80ºC for 2 minute 30 followed by decreasing the temperature by 0.1º/s to 
25ºC).  The polymerase-template complex was then bound to the P5 enzyme using a ratio 
of 10:1 polymerase to SMRTbell at 0.5 nM for 4 hours at 30ºC and then held at 4ºC until 
ready for magbead loading, prior to sequencing.  The magnetic bead-loading step was 
conducted at 4ºC for 60-minutes per manufacturer’s guidelines.  The magbead-loaded, 
polymerase-bound, SMRTbell libraries were placed onto the RSII machine at a 
sequencing concentration of 75 pM and configured for a 180-minute continuous 
sequencing run. 
 
For all short (250bp) insert library preparations, similar methodology was used, except 
shearing was done using a Covaris microtube ultrasonication and all AMPure XP 
purification steps were done using a 1.8X volume ratio. Libraries were completed without 
the size selection step used for the long insert libraries. Similar procedures were followed 
for sequencing, except that diffusion-based loading was used instead of magbead loading. 
 
 
Illumina MiSeq sequencing and analysis (C. salexigens, H. pylori) 
 
Illumina-based MiSeq whole-genome libraries were prepared with an insert size of 600 
bp as assessed by Agilent Bioanalysis using standard Illumina adapters and 8 PCR cycles.  
2 x 350 bp paired-end sequencing was then conducted using version 3 commercial kits to 
assure the longest readlength possible.   
 
The E. coli K12 MiSeq reads used for analysis of homopolymer indel rates (Figure 4d) 
was downloaded from http://www.illumina.com/systems/miseq/scientific_data.ilmn. The 
sequencing reads from the E. coli K12, C. salexigens, and H. pylori J99 MiSeq runs were 
aligned to their respective references using bwa mem13 with its default parameters. The 
resulting alignments were processed with the samtools package14 to obtain pileups for 
each genomic position. Read-level mismatch and insertion/deletion calls were obtained 
from the pileups by counting the number of occurrences of each type of variant at each 
genomic position. 
 
 
Bioinformatics analysis 
 
The details of the bioinformatics analysis are described below. The methods were 
implemented in a stand-alone software package and will be released at Bitbucket upon 
publication of the manuscript, or upon request to the corresponding authors. 
 
Filtering subreads and preprocessing 
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An initial filtering step removes all subreads with ambiguous alignments (MapQV<240), 
low accuracy (<80%), or short aligned length (<100 bases). Next, because sequencing 
errors in the subreads are likely to introduce noise into the IPD distribution that are being 
used to infer methylation status, an additional filtering step removes from further analysis 
the subread IPD values from the positions +1:-1 on either side of any errors with respect 
to the reference sequence. This removes a substantial number of IPD values from 
consideration, but those that remain are minimally impacted by sequencing errors. 
Furthermore, the first ten and last fifteen bases from each subread are removed from 
analysis due to the potential for bias in the IPD values near the transition between 
template and adapter sequences. Finally, subread normalization was used to account for 
potential slowing of polymerase kinetics over the course of an entire read (consisting of 
many subreads) as was done in previous studies7. 
 
Population-level detection of methylation states (AggSN) 
 
In accordance with the method described by Flusberg et al8, the IPD values from all 
native molecules were aggregated according to their strand and mapped genomic 
position. Similarly, the IPD values from all the whole-genome amplified (WGA) 
molecules were aggregated according to their strand and mapped genomic position. The 
AggSN score per strand/position represents the log ratio of the native IPD mean to the 
WGA IPD mean. 
 
Single-molecule single-nucleotide detection of methylation states (SMSN) 
 
Considering each native molecule separately, the IPD values for a given motif that 
remain after the initial filtering are grouped by their strand and mapped genomic position. 
Following natural log conversion of the set of IPD values for the 
molecule/strand/position, the mean value is calculated. Contrary to the treatment of 
native IPD values, the WGA IPD values are aggregated across all molecules covering 
each strand and mapped genomic position. This aggregation is done because all 
molecules are expected to be free of any DNA methylations due to the amplification 
process7,8. The SMSN is calculated by subtracting the WGA strand/position-matched 
mean IPD value from this native molecule/strand/position-specific mean IPD value. This 
is essentially a log scale IPD ratio8, which approximately follows a normal distribution9. 
 
Estimating sensitivity and specificity of SMSN based detection of DNA methylations 
 
To quantify the sensitivity and specificity for single molecule, single nucleotide-level 
detection, we tested this framework on methylated 5’-CTGCAG-3’ sites in a native E. 
coli O104:H4 C227-11strain7 (C227), and a matching whole genome amplified (WGA) 
sample in which the methylation sites were erased. In the analysis, we assumed 100% of 
the CTGCAG sites were methylated in the native DNA to leverage the large number of 
motif sites in the native bacterial genome. This is expected to provide a more robust 
estimation of sensitivity and specificity compared to the use of short DNA oligos with the 
more limited diversity of expanded local sequence contexts flanking any given 
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methylation motif site9,10. Generally speaking, given that CTGCAG sites are part of an 
active type-II RM system, it is reasonable to assume the vast majority of sites are 
methylated to prevent restriction of the host DNA. However, as shown in recent 
studies5,7,11, a small number of motif sites (even those that are part of RM systems) are 
found to be non-methylated, likely due to competitive binding between the MTase and 
other DNA binding proteins or to the transient non-methylated window that  is just prior 
to the replication fork. Therefore, the sensitivity estimated in the above analysis 
represents the lower bound of the actual sensitivity of our method. 
 
Approximate SMSN scores for C. crescentus 
 
WGA sequencing was unavailable for analysis in this study, so the approximate SMSN 
score shown in Figure 3c is simply the native molecule/strand/position mean IPD value 
(without subtracting the strand/position-matched WGA mean IPD value). This 
approximate SMSN score is susceptible to IPD biases introduced by local sequence 
contexts, but provides a sufficient ability to resolve the modified and non-modified 
components in the bimodal distributions as shown in Figure 3c. 
 
Single-molecule, motif-pooled detection (SMP) 
 
First, considering each molecule separately, the native IPD values for a given motif that 
survive filtering are grouped by their strand only, irrespective of their mapped genomic 
positions. The natural log is taken for all values in this group and the mean calculated. 
Second, the strand/position-matched WGA IPD values are aggregated across all 
molecules as with the SMSN method. However, in this case the WGA IPD values are 
additionally aggregated across each motif site covered by the native molecule in question. 
Then, these WGA strand- and motif site-matched IPD values are natural log-converted 
and their mean value is subtracted from the native molecule/strand-specific mean, 
resulting in the SMP score. 
 
False discovery rate (FDR) estimation for identifying active/inactive molecules 
 
To assess the significance of observed modified and non-modified fractions based on 
SMP scores, we established negative control SMP distributions in order to assess the FDR 
associated with a particular SMP threshold. When assessing the significance of actively 
methylated molecule calls (e.g. for the GWCAY motif in H. pylori J99), the negative 
control SMP distribution is generated by running the SMP pipeline on WGA sequencing 
data. Alternatively, when assessing the significance of non-methylated molecule calls 
(e.g. for the TCAN6TRG/CYAN6TGA and TCNNGA motifs in H. pylori J99), the 
negative control SMP distribution is created by randomly shuffling IPD values among 
molecules to disperse the non-modified IPD values for the motif of interest. Given that 
the number of non-modified IPD values is relatively low, this creates a control 
distribution of SMP scores reflecting molecules that are mostly modified at the motif of 
interest. 
 
Estimation of modified fraction using Gaussian mixture modeling 
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The mixture module of the Python package PyMix was used to run the expectation 
maximization (EM) algorithm12 for Gaussian mixture estimation.  
 
To evaluate the ability of EM with a Gaussian mixture model to estimate the modified 
fraction, we applied the algorithm to distributions of SMSN scores that were generated 
from in silico mixing of WGA and native SMRT sequencing molecules. 100,000 total 
molecules sequenced from E. coli C227 were used for each specific mixture fraction, 
with the native fraction of molecules ranging from 5000 (5%) to 100,000 (100%), and the 
SMSN score distributions for the motif CTGCAG was analyzed with the EM algorithm. 
To assess the stability of EM-mediated estimation of modified fraction at lower levels of 
genomic coverage (i.e. the number of total sequenced bases in relation to the genome 
size), we downsampled the SMSN pipeline output for the in silico mixtures of WGA and 
native molecules. The EM algorithm was then applied to these downsampled mixed 
distributions. 
 
The EM algorithm slightly, yet consistently, underestimates the native fraction in this 
mixture. In order determine whether any non-normality in the modified and non-modified 
SMSN score distributions might be causing the EM algorithm to underestimate the size of 
the modified fraction, we created Gaussian mixtures consisting of two entirely simulated 
normal distributions. To represent the non-modified and modified SMSN scores, the 
distributions were simulated with α=2 and α=0, respectively (σ=0.5 for each). For 
comparison, we also created mixtures using SMSN values exclusively from WGA 
molecules where +2 was added to a subset of the SMSN scores in order to get between 5% 
and 100% “modified” SMSN values, the distributions of which will retain any non-
normality found in the WGA SMSN distribution. The EM estimations of modified 
fraction for these two types of simulated mixtures were both very similar and very 
accurate (Supplementary Figure 2), indicating that non-normality of SMSN score 
distributions is not the reason for the observed slight underestimation of native fraction. 
Instead, this evidence suggests that stably non-modified CTGCAG sites in E. coli C227 
are the reason for this phenomenon. 
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Supplemental Figures 
 

 
 
Supplementary Figure 1: Sensitivity and specificity of the SMSN method for detecting 
DNA modifications using three thresholds for minimum single-molecule coverage 
(covSM): (a) 6mA modifications in the 5’-ACCACC-3’ motif in E. coli C227, (b) 6mA 
modifications in the 5’-GATC-3’ motif in E. coli C227, and (c) 4mC modifications in the 
5’-CGWCG-3’ motif in H. pylori J99. 
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Supplementary Figure 2: Two alternative approaches for generating simulated modified 
and non-modified distributions used to test the ability of the SMSN scores to estimate the 
size of the modified fraction. Instead of mixing varying proportions of WGA and native 
molecules, we instead (a) simulated two normal distributions centered around the mean 
SMSN scores for modified (SMSN=0) and non-modified (SMSN=2) adenine residues and 
varied their relative proportions, and (b) exclusively used WGA molecules, but simulated 
the presence of a modification by adding 2 to the WGA SMSN scores in a varying number 
of WGA molecules. 
 

 
 
Supplementary Figure 3: SMSN score distributions (covSM≥10) for all five 6mA motifs 
in E. coli C227. 
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Supplementary Figure 4: SMSN score distributions (covSM≥10) for all three 6mA motifs 
in G. metallireducens. 
 

 
Supplementary Figure 5: SMSN score distributions (covSM≥10) for all three 6mA motifs 
in C. salexigens. 
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Supplementary Figure 6: SMSN score distributions (covSM≥5) for all seven 6mA motifs 
in C. jejuni 81-176. 
 

 
 
Supplementary Figure 7: SMSN score distributions (covSM≥5) for all six 6mA motifs in 
C. jejuni NCTC 11168. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2014. ; https://doi.org/10.1101/007823doi: bioRxiv preprint 

https://doi.org/10.1101/007823


 
 
Supplementary Figure 8: SMSN score distributions (covSM≥5) in H. pylori J99 for (a) 
all 4mer 6mA motifs, (b) all 5mer 6mA motifs, (c) all 6mer 6mA motifs, and (d) all 8mer 
6mA motifs. 
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Supplementary Figure 9: The SMSN score distributions (covSM≥10) for each 
specification of the degenerate 5’-RGATCY-3’ 6mA motif show similar levels of global 
heterogeneity. 
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Supplementary Figure 10: Read-level MiSeq mismatch and insertion/deletion calls in 
the coding region (+/-200bp) of the GATC-targeting M.Hpy99VI gene in H. pylori J99. 
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Supplementary Figure 11: Read-level MiSeq mismatch and insertion/deletion calls in 
the coding region (+/-200bp) of the GWCAY-targeting M.Hpy99XXI gene in H. pylori 
J99. 
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Supplementary Figure 12: Read-level MiSeq mismatch and insertion/deletion calls in 
the coding region (+/-200bp) of the TCAN6TRG-targeting Hpy99XXII and S.Hpy99XXII 
genes in H. pylori J99. 
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Supplementary Figure 13: Read-level MiSeq mismatch and insertion/deletion calls in 
the coding region (+/-200bp) of the TCNNGA-targeting M.Hpy99XVIII gene in H. pylori 
J99. 
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Supplementary Figure 14: Read-level MiSeq mismatch and insertion/deletion calls in 
the coding region (+/-200bp) of the RGATCY-targeting M.CsaI gene in C. salexigens. 
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Supplementary Figure 15: SMP score distributions (at least 10 motif sites per molecule) 
for all 6mA motifs in H. pylori J99 (excluding GWCAY, TCAN6TRG, and TCNNGA) 
that contained at least ten distinct motif sites on at least 500 molecules. 
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Supplementary Figure 16: Sensitivity and specificity of the SMP method for detecting 
molecules that are methylated at the GATC motif in H. pylori J99. 
 
 
 

 
Supplementary Figure 17: Count of expected vs. observed motif occurrences in the H. 
pylori J99 genome based on k-mer size.  
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Organism Sample type Library
Mean insert 

length Coverage
Escherichia coli O104:H4 C227 Native Short 202 402.46

WGA Short 197 97.33
Chromohalobacter salexigens Native Short 183 78.57

Long 3357 49.13
WGA Short 180 184.76

Helicobacter pylori J99 Native Short 171 71.31
Long 7304 1093.73

WGA Short 195 215.19
Long 3978 390.35
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Mean read 
length

Mean subread 
length

5609 172
6091 167
8119 183
5233 3357
9023 180
4735 168
7965 6871
6873 167
4957 3978
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