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ABSTRACT 18	  
 19	  
High-throughput sequencing of reduced representation libraries obtained through digestion with 20	  
restriction enzymes – generically known as restriction-site associated DNA sequencing (RAD-seq) – is a 21	  
common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical 22	  
design element of any RAD-seq study is a knowledge of the approximate number of genetic markers that 23	  
can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a 24	  
project, and ultimately defines its success. This number can only be directly determined if a reference 25	  
genome sequence is available, or it can be estimated if the genome size and restriction recognition 26	  
sequence probabilities are known. However, both scenarios are uncommon for non-model species. Here, 27	  
we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type 28	  
II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition-sequence 29	  
frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic 30	  
groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be 31	  
predicted from cleavage frequency data obtained with restriction enzymes targeting ‘neutral’ elements. 32	  
Models based on genomic compositions are also effective tools to accurately calculate probabilities of 33	  
recognition sequences across taxa, and can be applied to species for which reduced-representation data is 34	  
available (including transcriptomes and ‘neutral’ RAD-seq datasets). The analytical pipeline developed in 35	  
this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable 36	  
resources that will help guide the design of any study using RAD-seq or related methods. 37	  
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INTRODUCTION 44	  
 45	  

The use of type II restriction enzymes to obtain reduced representation libraries from nuclear 46	  
genomes, combined with the power of next-generation sequencing technologies, is rapidly becoming one 47	  
of the most-used commonly strategies to generate genome-wide genotypic and sequence data in both 48	  
model and non-model organisms (Baird et al. 2008; Andolfatto et al. 2011; Elshire et al. 2011; Peterson et 49	  
al. 2012). The single nucleotide polymorphisms (SNPs) embedded in the resulting restriction-site 50	  
associated DNA (RAD) sequence tags (M R Miller et al. 2007; Baird et al. 2008) have myriad uses in 51	  
biology, which range from genetic mapping (Wang et al. 2013; Weber et al. 2013) to population 52	  
genomics (Hohenlohe et al. 2010; Andersen et al. 2012; White et al. 2013), phylogeography (Emerson et 53	  
al. 2010; Reitzel et al. 2013), phylogenetics (Wagner et al. 2012; Eaton & Ree 2013; Herrera et al. 2015; 54	  
Herrera & Shank 2015), and SNP marker discovery (Scaglione et al. 2012; Toonen et al. 2013). 55	  
 56	  

The choice of appropriate type II restriction enzyme(s) is critical for the effective design and 57	  
application of RAD sequencing (RAD-seq) and a rapidly growing number of related methods such as 58	  
genotyping-by-sequencing (Elshire et al. 2011), multiplexed shotgun genotyping (Andolfatto et al. 2011), 59	  
double digest RAD-seq (Peterson et al. 2012), and ezRAD (Toonen et al. 2013). This choice determines 60	  
the number of RAD markers that can be obtained, which in turn dictates the amount of sequencing needed 61	  
for a desired coverage level, the number of samples that can be multiplexed, the monetary cost, and 62	  
ultimately the success of a project. The theoretical maximum number of RAD markers that can be 63	  
obtained for a given combination of restriction enzyme and biological species can be easily calculated as 64	  
twice the frequency (absolute number of occurrences) of the enzyme’s recognition sequence (which for 65	  
type II restriction enzymes is also the cleavage site) in the genome, but only when the fully sequenced 66	  
genome is available. For cases in which the whole genome sequence is not available, i.e. most cases, this 67	  
number can be approximated as twice the product of the genome size and the probability of the enzyme’s 68	  
recognition sequence in a given genome.  69	  
 70	  
Genome sizes 71	  
 Genome sizes can be approximated in non-model organisms through sequencing-independent 72	  
techniques such as Feulgen densitometry (Hardie et al. 2002) or flow cytometry (Vinogradov 1994; 73	  
Dolezel et al. 2007). However, these techniques have well known limitations: (1) flow cytometry often 74	  
requires the availability of fresh tissue material with accessible intact cells or nuclei, thus diminishing its 75	  
applicability to field-collected and fixed samples; and (2) both flow cytometry and Feulgen densitometry 76	  
can be affected by staining interference with cytosolic compounds and variability in DNA packaging 77	  
among cell types, which can significantly impact the accuracy and reproducibility of measurements (see 78	  
reviews by Hardie et al. (2002) and Dolezel & Bartos (2005), and references therein). Therefore, 79	  
alternative methods for genome-size estimation are desirable.  80	  
 81	  

Type II restriction enzymes, which are endonucleases chiefly produced by prokaryotic 82	  
microorganisms, cleave double stranded DNA (dsDNA) at specific unmethylated recognition sequences 83	  
that are 4 to 8 base pairs long and typically palindromic. These enzymes are thought to play an important 84	  
role as defense systems against foreign phage dsDNA during infection or as selfish parasitic elements, 85	  
and therefore have been the center of an evolutionary ‘arms race’ (Rambach & Tiollais 1974; Rocha et al. 86	  
2001; Karlin et al. 1992). Type II restriction enzymes are not known in eukaryotes and are not used as 87	  
virulence factors by bacteria to infect eukaryotic hosts. Therefore there are no a priori reasons to believe 88	  
that recognition sequences in eukaryotic genomes are subject to selective pressures, but rather they should 89	  
be evolutionarily neutral. A prediction from this neutrality hypothesis is that the frequency of restriction 90	  
recognition sequences in a genome will be linearly correlated with the size of that genome, unless the 91	  
particular restriction recognition-sequence is associated with non-neutral genomic elements. Hence, the 92	  
genome size of a species can in theory be estimated from the number of markers obtained from a RAD-93	  
seq experiment, given that the restriction enzyme used shows the aforementioned linearity. 94	  
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 95	  
Recognition-sequence probabilities 96	  

Flow cytometry has also been used as a sequencing-independent method to estimate the genomic 97	  
guanine-cytosine (GC) composition (Vinogradov 1998; Šmarda et al. 2011), a widely suggested 98	  
parameter for the estimation of the restriction enzyme’s recognition-sequence probability (Baird et al. 99	  
2008; Davey & Blaxter 2011). Nonetheless, preliminary evidence suggests that restriction recognition-100	  
sequence probability calculation, using GC composition as the only parameter, can yield predicted 101	  
cleavage site frequencies that deviate significantly from observations, for particular combinations of taxa 102	  
and restriction enzymes (Davey & Blaxter 2011; Davey et al. 2011). The extent and magnitude of these 103	  
deviations across the eukaryotic tree of life remains unknown. Better models to calculate restriction 104	  
recognition-sequence probabilities across taxonomic groups are needed to improve the accuracy of 105	  
predictions of cleavage site frequencies in species without sequenced genomes. These models could be 106	  
applied using non-genomic datasets (e.g., transcriptomes) to obtain recognition-sequence probability 107	  
estimates, thus aiding the applicability of RAD-seq methods in non-model organisms. 108	  
 109	  

Eukaryotic genomes have heterogeneous compositions with characteristic signatures at the level 110	  
of di- and trinucleotides that are largely independent of coding status or function (Karlin & Mrázek 1997; 111	  
Karlin et al. 1998; Gentles & Karlin 2001).  Thus, it is possible that genome composition at these levels 112	  
has a large influence on the abundance of short sequence patterns, such as recognition sequences of 113	  
restriction enzymes. Models incorporating the information from these genomic compositional signatures 114	  
should improve the accuracy of restriction recognition-sequence probability calculations.  115	  
 116	  

Here we performed systematic in silico genome-wide surveys of genome compositions and 117	  
recognition sequences, for diverse and commonly used type II restriction enzymes, in 434 eukaryotic 118	  
whole and draft genomes (Supplementary Table 1) to: (1) characterize restriction recognition-sequence 119	  
frequencies across the eukaryotic tree of life; (2) explore the potential for predicting genome sizes from 120	  
restriction recognition-sequence frequency data; (3) develop stochastic models based on genomic 121	  
compositions to calculate probabilities of recognition sequences across taxa; and (4) evaluate the 122	  
applicability of these models to species for which only non-genomic data is available (i.e., not whole or 123	  
draft genome assemblies), such as transcriptomes or restriction-site associated DNA sequence data. The 124	  
PredRAD analytical pipeline developed in this study (https://github.com/phrh/PredRAD), and the 125	  
resulting databases constitute a valuable reference resource that will help guide restriction enzyme choice 126	  
infuture studies using broadly applicable RAD-related methods. 127	  
  128	  
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RESULTS 129	  
 130	  
Frequencies of recognition sequences are highly variable across taxa 131	  

To characterize cleavage site frequencies across the Eukaryotic tree of life, we surveyed 132	  
restriction recognition-sequences for 18 commonly used palindromic type II restriction enzymes in 434 133	  
whole and draft genomes. Observed relative frequencies of recognition sequences were highly variable 134	  
among broad taxonomic groups for the set of restriction enzymes here examined (Table 1) – except for 135	  
FatI – with clear clustering patterns determined by phylogeny (Figure 1). For example, with NgoMIV we 136	  
observed 45.8 recognition sequences per megabase (RS/Mb) ±	  24.6 (mean ±	  SD) in core eudicot plants, 137	  
compared to 277.4 ±	  131.3 RS/Mb in commelinid plants (monocots). Among closely-related species the 138	  
relative frequency patterns were similar and variability generally small. Observed relative frequencies of 139	  
RS/Mb were inversely proportional to the length of the recognition sequence, with orders of magnitude 140	  
differences among the 4-, 6-, and 8- cutters when compared within the same species, e.g., in the starlet 141	  
anemone Nematostella vectensis there were 3917.6, 167.6, and 6.9 RS/Mb for the 4-cutter FatI, 6-cutter 142	  
PstI and 8-cutter SbfI, respectively. In contrast, nucleotide composition of the recognition sequence itself 143	  
did not show a clear correlation with the observed relative frequency of cleavage sites. For example, 83.6 144	  
RS/Mb ± 25.1 were observed in Neopterigii vertebrates for KpnI (GGTACC) and 622.6 RS/Mb ±119.1 145	  
were observed for PstI (CTGCAG), both recognition sequences with the same GC content (66.7%).  146	  
 147	  
Genome sizes can be predicted from particular recognition-sequence frequencies 148	  

To explore the potential for predicting genome sizes from restriction recognition-sequence 149	  
frequency data, we modeled their relationship using data from the 434 genomes and 18 restriction 150	  
enzymes through linear regression. A general positive correlation between recognition-sequence 151	  
frequency and genome size was observed for all restriction enzymes, being significantly strong 152	  
(Spearman’s correlation coefficient >0.95) for five of them: EcoRI, FatI, NsiI, NspI and PciI (Figure 2). 153	  
Predicted genome sizes, calculated using the linear models with estimated beta parameters for these five 154	  
enzymes (Table 2), matched actual observed genome size values extremely well (Supplementary Figure 155	  
1).  156	  
 157	  
Genome composition-based models outperform traditional GC content-based models 158	  

To generate better models for cleavage site frequency calculation in species without sequenced 159	  
genomes, we developed stochastic models based on the GC content of each genome, as well as the 160	  
mononucleotide, dinucleotide and trinucleotide compositions to predict the expected frequency of 161	  
recognition sequences for each restriction enzyme. We evaluated the fit of each model by comparing the 162	  
in silico observed frequencies of cleavage sites to the expected frequencies predicted by the models using 163	  
a similarity index (SI), defined as the quotient of the number of observed and expected cleavage sites, 164	  
minus one. A positive SI indicates that the number of observed cleavage sites is greater than the expected, 165	  
whereas a negative SI indicates a smaller number of observed sites than expected. If SI is equal to 0, then 166	  
the number of observed sites is equal to the expectation. For example, a SI = 1 indicates that the number 167	  
of observed cleavage sites for a particular enzyme in a given genome is twice the number of expected 168	  
sites predicted by a particular model. Trinucleotide composition models were in general a better predictor, 169	  
in terms of their accuracy and precision, of the expected number of cleavage sites than any of the other 170	  
models (Figures 3, 4 and 5). The mononucleotide and GC content models produced relatively poorer 171	  
predictions that were indistinguishable from one another (Figures 3, 4 and 5). In a few cases the other 172	  
models outperformed the trinucleotide model, e.g., EcoRI (Figures 3, 4 and 5).  The fit of the predictions 173	  
was highly variable among broad taxonomic groups but generally similar within, e.g., in Neopterigii 174	  
vertebrates an average SI of 0.14 ± 0.19 for AgeI with the dinucleotide model, compared to -0.31 ±	  0.19 175	  
in Sarcopterigii. 176	  
 177	  
Recognition-sequence probability can be calculated from non-genomic datasets  178	  
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Genomic resources (whole or draft genomes) are unavailable for most species (Dunn & Ryan 179	  
[https://bitbucket.org/caseywdunn/animal-genomes] estimate that ~0.015% of species have a published 180	  
genome to date). However, reduced representation datasets that capture a small fraction of a genome, such 181	  
as RNA-seq or RAD-seq datasets, can now be easily and economically developed. We investigated the 182	  
potential use of these datasets to estimate genome composition parameters for our predictive models and 183	  
calculate recognition-sequence probabilities of any given restriction enzyme. For this we selected a set of 184	  
27 species out of the 434 examined eukaryotic species with whole and draft genomes, which also have 185	  
publically available transcriptome data. The restriction-sequence probabilities calculated for the same 186	  
panel of 18 restriction enzymes, as above, were remarkably similar between those calculated using known 187	  
composition parameters from the whole and draft genomes and those calculated using estimated 188	  
composition parameters from transcriptome datasets (Figure 6). Interestingly, the overall similarity 189	  
between the two kinds of calculated probabilities (measured as the mean squared error – MSE – 190	  
calculated across all species) was greatest when probabilities were calculated using a mononucleotide 191	  
composition model (0.046; when MSE=0 the probabilities are identical; MSE value increases as 192	  
similarity decreases), and decreased when dinucleotide and trinucleotide models were used (0.06 and 193	  
0.07, respectively). As expected, the species’ specific MSE values were variable, and tended to decrease 194	  
as the propotion of genome represented by the transcriptome increased (Figure 6). 195	  
 196	  

We also calculated recognition-sequence probabilities using parameters estimated from the in 197	  
silico RAD sequence data for the same 27 species, finding great variability (Figure 7). The recognition-198	  
sequence probabilities calculated using parameters estimated from RAD-seq datasets obtained with 199	  
enzymes that showed strong correlations between recognition-sequence frequency and genome size 200	  
(Figure 2) were almost identical to the probabilities calculated using the known composition parameters 201	  
from the whole or draft genome datasets (Figure 7, Supplementary Figure 2). Contrastingly, the 202	  
probabilities calculated from RAD-seq datasets obtained with enzymes that showed weaker correlations 203	  
between recognition-sequence frequency and genome size (such as NotI, NgoMIV and SgrAI) were 204	  
substantially dissimilar (Figure 7, Supplementary Figure 2). Overall, as observed for the transcriptome 205	  
datasets, the similarity between the two kinds of calculated probabilities (measured by the MSE) was 206	  
greatest when probabilities were calculated using a mononucleotide composition model, and decreased 207	  
when dinucleotide and trinucleotide models were used. Similarly, the species-specific MSE values tended 208	  
to decrease as the proportion of genome represented by the RAD-seq datasets increased (Supplementary 209	  
Figure 2), although in some cases (e.g. PstI and SbfI) they showed a marked decrease followed by an 210	  
increase at higher representation proportions. 211	  
 212	  

Predicted frequencies of cleavage sites (absolute number of cleavage sites), obtained by 213	  
multiplying known genome sizes with the probabilities calculated using composition models, were 214	  
remarkably similar to the observed frequencies of cleavage sites in whole and draft genome datasets when 215	  
the model parameters were estimated from transcriptome datasets, or from RAD-seq datasets generated 216	  
with restriction enzymes showing strong correlations between recognition-sequence frequency and 217	  
genome size (Supplementary Figures 3, 4 and 5). 218	  
 219	  
  220	  
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DISCUSSION 221	  
 222	  
Genome-wide surveys of cleavage sites across the eukaryotic tree of life 223	  

Observed recognition-sequence frequencies for a given restriction enzyme are strikingly variable 224	  
across broad eukaryotic taxonomic groups, but are similar among closely-related species. This finding is 225	  
consistent with the hypothesis that the abundance of cleavage sites is largely determined by phylogenetic 226	  
relatedness. This pattern is most evident in groups that have a larger taxonomic representation, such as 227	  
mammals. As more genome assemblies become available, patterns within many other underrepresented 228	  
taxonomic groups will be clarified. Through the use of comparative methods in a robust phylogenetic 229	  
framework, it will be possible to establish taxon-specific divergence thresholds that could diagnostic of 230	  
significant evolutionary changes in genome architecture.   231	  
  232	  

As expected, observed relative frequencies of cleavage sites with shorter recognition sequences 233	  
are on average higher than the observed frequencies with longer recognition sequences. However, this 234	  
pattern in not universal. There are several instances in which the relative frequency of cleavage sites for a 235	  
high-denomination cutter is higher than that for a low-denomination cutter. For example, in primates the 236	  
relative frequency of the 8-cutter SbfI (24.6 ±	  1.7 RS/Mb) is significantly higher than the frequency of the 237	  
6-cutter AgeI (18.4 ±	  1.4 RS/Mb). These deviations from expectation are indicative of enzyme-specific 238	  
frequency biases for particular taxa, and, as illustrated in the results section, are not correlated with the 239	  
base composition of recognition sequences. These observations demonstrate that the expected relative 240	  
frequencies of recognition sequences cannot be naively extrapolated across enzyme types and divergent 241	  
taxa, but rather, specific knowledge of recognition sequence frequencies/probabilities and genome sizes is 242	  
needed. 243	  

 244	  
Predictability of genome sizes  245	  

For many of the examined type II restriction enzymes examined (e.g. EcoRI, FatI, NsilI, NspI, 246	  
PciI), the observed frequencies of recognition sequences in eukaryotic genomes are consistent with the 247	  
idea that they behave neutrally, evolutionary speaking, and therefore can be readily used as parameters in 248	  
linear models to estimate genome sizes (Figures 1 and 2). In contrast, the observed frequencies of 249	  
recognition sequences for some other type II restriction enzymes showed significant deviations from the 250	  
predictions of this evolutionary neutrality hypothesis (e.g. BsrFI, NgoMIV, NotI, SbfI, SgrAI). A closer 251	  
look at the genomic locations of the recognition sequences of these deviant cases reveals that, in 252	  
mammals, they are more likely to occur in conserved-element genomic regions than what would be 253	  
expected by chance (Figure 8). Conserved genomic elements (sensu Siepel et al. 2005) are widely 254	  
recognized as evidence of functional regions, mainly regulatory, under strong purifying (negative) 255	  
selection (Katzman et al. 2007; Bejerano et al. 2004). Thus, this observation suggests that the association 256	  
of some restriction recognition sequences with non-neutral genomic elements in particular taxa can 257	  
account for some of the observed biases and heterogeneity in the relative frequencies of cleavage site 258	  
across the eukaryotic tree of life. Further comparative genomic studies in underrepresented clades 259	  
promise to unravel additional potential mechanisms that can further explain observed deviations from 260	  
expected neutral behavior. 261	  
 262	  
Predictability of recognition sequence probabilites 263	  

Our analyses indicate that in most cases stochastic models based on trinucleotide compositions 264	  
are the best predictors, and the GC content and mononucleotide models are the worst predictors of the 265	  
expected relative number of cleavage sites in a eukaryotic genome. It is likely that the greater number of 266	  
parameters in the trinucleotide model (64, compared to 16, 4 and 2 of the dinucleotide, mononucleotide 267	  
and GC content model, respectively), combined with the greater k-mer length, is the cause of the better 268	  
fit. However, this trend is not universal. As illustrated in the results section, in a few cases the other 269	  
models outperformed the trinucleotide composition model. Neither the GC content nor length of the 270	  
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recognition sequence can confidently explain the observed discrepancies. Increasing the k-mer length 271	  
above trinucleotide in the composition models (i.e., tetranucleotide, pentanucleotide, etc.) could improve 272	  
their fit, however this will come at a cost of increasing probability calculation error in reduced-273	  
representation datasets (caused by sampling error in datasets composed by many short contigs) (Figures 6 274	  
and 7, Supplementary Figure 2). Future cost-benefit evaluations of the overall influence of these factors 275	  
(k-mer length and genome sampling error) will help elucidate their relative contributions to recognition 276	  
sequence probability calculations using parameters estimated from non-genomic reduced-representation 277	  
datasets. 278	  
 279	  

It is not surprising that the fit of the predictions made by the models is highly variable across 280	  
taxonomic groups, given the high heterogeneity observed in the genetic composition patterns across the 281	  
eukaryotic tree of life (Appendix I). We conclude that the predictability of cleavage site frequencies in 282	  
eukaryotic genomes needs to be treated on a case-specific basis, whereby the phylogenetic position of the 283	  
taxon of interest, its genome size, and the probability of the recognition sequence of the selected 284	  
restriction enzyme are the chief foci among the most determinant factors.  285	  
 286	  

The remarkable similarity between probabilities calculated using parameters estimated from non-287	  
genomic (transcriptome and ‘neutral’ RAD-seq datasets) and genomic datasets demonstrates the potential 288	  
of using extant reduced-representation datasets for planning further restriction site associated DNA 289	  
sequencing projects. Although transcriptome datasets by definition are enriched in functional genomic 290	  
regions (transcribed genes) that are known to be targets of natural selection at different levels (codons, 291	  
protein domains, etc.) we find no evidence of substantial differences in the underlying mononucleotide, 292	  
dinucleotide and trinucleotide compositions compared to the overall genome-wide compositions. This 293	  
observation is consistent with previous studies showing that genomic composition does not vary 294	  
significantly between non-coding and coding regions (Karlin & Mrázek 1997; Karlin et al. 1998; Gentles 295	  
& Karlin 2001). In the cases of RAD-seq datasets, there are a clear biases in the underlying 296	  
mononucleotide, dinucleotide and trinucleotide compositions for datasets generated with restriction 297	  
enzymes targeting ‘non-neutral’ recognition sequences (e.g., NotI, SgrAI, NgoMIV, SbfI, BsrFI) (Figures 298	  
7 and 8), compared to the overall genome-wide compositions, as evidenced by the calculated recognition 299	  
sequence probabilities. As discussed above, these biases are likely caused in part by associations with 300	  
conserved regions under strong selective pressures. RAD-seq datasets generated with restriction enzymes 301	  
that are known to target ‘non-neutral’ recognition sequences should not be utilized for genome size 302	  
estimation and restriction recognition-sequence probability calculation as these would likely yield biased 303	  
inferences. 304	  
 305	  
Applications to study design with RAD-seq and related methodologies 306	  

For the design of a study using RAD-seq, or a related methodology, there are two fundamental 307	  
questions that researchers commonly face: (1) what is the best restriction enzyme to use to obtain a 308	  
desired number of RAD tags in the organism of interest? and (2) how many markers can be obtained with 309	  
a particular enzyme in the organism of interest? The results from this study coupled with the developed 310	  
software pipeline PredRAD, will allow any researcher to obtain an approximate answer to these 311	  
questions. The flow diagram in Figure 9 illustrates a suggested workflow. 312	  
 313	  

In a best-case scenario for the practical design of a study using RAD-seq, or a related 314	  
methodology, the species of interest is already included in the database presented here. In this case, the 315	  
best proxy for the estimated number of RAD tags that could be obtained empirically would be twice the 316	  
number of in silico observed cleavage sites for each restriction enzyme (each cleavage site is expected to 317	  
produce two RAD tags, one in each direction from the cleavage site) minus the number of in silico tags 318	  
that align to multiple regions in the genome. For most of the 434 genomes examined in this study the 319	  
recovery of RAD-tags after in silico sequencing was notably high, with a median percentage of 320	  
suppressed alignments to the reference genome assembly of only 3% (Supplementary Figure 6). We 321	  
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observed no evident recovery bias by restriction enzyme, but rather bias was pronounced in a few 322	  
individual species, likely indicating an enrichment of repetitive regions or duplications. For library 323	  
preparation protocols in which a fragment size selection step is done without a prior shearing step, e.g., 324	  
ddRAD (Peterson et al. 2012) and ezRAD (Toonen et al. 2013), the size.select function of the software 325	  
package SimRAD (Lepais & Weir 2014) constitutes a valuable complementary study-design tool.  If a 326	  
new genome assembly becomes available for the target species and/or the researcher wishes to evaluate 327	  
an additional restriction enzyme, PredRAD can be utilized with these data to quantify the number of 328	  
cleavage sites and the recovery potential, as well as to estimate the probability of the new recognition 329	  
sequence based on genome composition models. 330	  
 331	  

In the scenario that the genome sequence of the species of interest is not available, the genome 332	  
size and restriction recognition-sequence probability for the enzyme(s) of interest can be estimated to 333	  
obtain an approximation of recognition-sequence frequencies (absolute numbers). Our observations 334	  
demonstrate that a genome-size range can be estimated by applying linear regression models to the 335	  
number of markers obtained in an empirical RAD-seq experiment using a restriction enzyme targeting a 336	  
‘neutral’ recognition sequence (e.g., EcoRI, NsilI, NspI, PciI; we advise caution using 4-cutter enzymes 337	  
as in some taxa they can have cleavage frequencies that may effectively lead to sequencing the whole 338	  
genome through RAD-seq [i.e., more than one cleavage site per 100bp]). Alternatively, genome size can 339	  
also be estimated via flow cytometry and/or Feulgen densitometry (Vinogradov 1994; Dolezel et al. 2007; 340	  
Hardie et al. 2002) for comparison. A range of restriction recognition-sequence probabilities can be 341	  
obtained through genome composition models using parameters estimated from non-genomic reduced-342	  
representation datasets, such as transcriptomes, ‘neutral’ RAD-seq datasets, or even partial genome 343	  
sequences, for the species of interest. Non-genomic datasets from closely related species could also be 344	  
used to estimate these parameters, although the effect of evolutionary divergence on compositional 345	  
differences warrants further exploration. Similarly, examination of other restriction enzymes with diverse 346	  
recognition sequences, in addition to the ones examined in this study, promises great potential to identify 347	  
‘gold standard’ sets of enzymes for groups of taxa, with the goal of obtaining ‘neutral’ RAD-seq datasets. 348	  
 349	  

Although genome size and the relative frequency (probability) of restriction recognition 350	  
sequences are arguably the main determinant factors influencing the number of RAD tag markers that can 351	  
be obtained experimentally, there are other factors that need to be considered during study design and 352	  
data analysis steps. These include: genome differences among individuals, level of heterozygosity, the 353	  
amount of methylation and other DNA modifications in the genome, the sensitivity of a particular 354	  
cleavage enzyme to methylation and other DNA modifications, the efficiency of the enzymatic digestion, 355	  
the number of repetitive regions and gene duplicates present in the target genome, the quality of library 356	  
preparation and sequencing, the amount of sequencing, sequencing and library preparation biases, and the 357	  
parameters used to clean, cluster and analyze the data, among others (see Davey et al. (2013), Catchen et 358	  
al. (2013),  DaCosta & Sorenson (2014), and Mastretta-Yanes et al. (2014) for further discussions). 359	  
 360	  
CONCLUSIONS 361	  
 362	  

In this study, we performed systematic in silico genome-wide surveys of genome compositions 363	  
and recognition sequences, for diverse and commonly used type II restriction enzymes across the 364	  
eukaryotic tree of life. Our observations reveal that recognition-sequence frequencies for a given 365	  
restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely 366	  
determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from 367	  
cleavage frequency data obtained with restriction enzymes targeting ‘neutral’ recognition sequences. 368	  
Stochastic models based on genomic compositions are also effective tools to accurately calculate 369	  
probabilities of recognition sequences across taxa, and can be applied to species for which reduced-370	  
representation genomic data is available (including transcriptomes and ‘neutral’ RAD-seq datasets). The 371	  
results from this study and the software developed from it will help guide the design of any study using 372	  
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RAD sequencing and related methods. As more genome assemblies become available in underrepresented 373	  
taxonomic groups, the patterns of compositional biases and restriction site frequencies across the 374	  
eukaryotic tree of life will become clearer and will improve our understanding of genome evolution. 375	  
 376	  
  377	  
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MATERIALS & METHODS 378	  
 379	  
Observed restriction recognition-sequence frequencies 380	  

Assemblies from eukaryotic whole genome shotgun (WGS) sequencing projects available as of 381	  
December 2012 were retrieved primarily from the U.S. National Center for Biotechnology Information 382	  
(NCBI) WGS database (Supplementary Table 1). Only one species per genus was included. Of the 434 383	  
genome assemblies included in this study, 42% corresponded to fungi, 21% to vertebrates, 16% 384	  
invertebrates, and 9% plants. Only unambiguous nucleotide calls were taken into account. Genome 385	  
sequence sizes were measured as the number of unambiguous nucleotides in the assembly. A set of 18 386	  
commonly used palindromic type II restriction enzymes with variable nucleotide compositions was 387	  
screened in each of the genome assemblies (Table 1). The number of cleavage sites present in each 388	  
genome was obtained by counting the number of unambiguous matches for each recognition sequence 389	  
pattern. Under optimal experimental conditions each cleavage site should produce two RAD tags, one in 390	  
each direction from the restriction site. Therefore, we define the number of observed RAD tags in each 391	  
genome assembly as twice the number of recognition sequence pattern matches. 392	  
 393	  
Recovery of restriction-site associated DNA tags 394	  

The number of cleavage sites in a genome is not the only factor that determines the number of 395	  
RAD loci that can be recovered experimentally. The architecture of each genome, and in particular the 396	  
number of repetitive elements and gene duplications, can significantly decrease the number of 397	  
unambiguous loci obtained via alignment to a reference genome or de novo assembly. To quantify this 398	  
contribution we assessed the proportion of restriction-site associated DNA tags that can potentially be 399	  
recovered unambiguously after empirical sequencing. We performed in silico sequencing experiments for 400	  
all genome assembly-restriction enzyme combinations. For each restriction site located in the genome 401	  
assemblies, 100 base pairs up- and down-stream of the restriction site were extracted. This sequence read 402	  
length is typical of sequencing experiments performed with current Hi-Seq platforms (Illumina Inc.). The 403	  
resulting RAD tags were aligned back to their original genome assemblies using BOWTIE v0.12.7 404	  
(Langmead et al. 2009). Only reads that produced a unique best alignment were retained.  405	  
 406	  
Genome size estimation 407	  

To explore the potential for predicting genome sizes from restriction recognition-sequence 408	  
frequency data, we modeled their relationship using data from the 434 genomes and 18 restriction 409	  
enzymes through linear regression. Genome sizes and restriction recognition-sequence frequencies were 410	  
log10 converted to handle the multiple orders of magnitude spanned within each variable. The non-411	  
parametric Spearman’s rank-order correlation coefficient (ρ) was calculated to measure the strength of 412	  
association between genome sizes and restriction recognition-sequence frequencies. Simple linear models 413	  
were fitted using least-squares estimation of β parameters with the lm function in R. The generalized 414	  
simple linear model (1) used to predict genome size y, in units of base pairs, is defined as: 415	  
 416	  
(1) 417	  

𝑦 = 10(!!!!!!"#!"!) 
 418	  
Where x is the number of restriction recognition-sequences in the genome, and β0 and β1 are the estimated 419	  
parameters. Table 2 provides the estimated values of β0 and β1 for each restriction enzyme. 420	  
 421	  
 Restriction recognition-sequence probability calculation 422	  

To test the hypothesis that compositional heterogeneity in eukaryotic genomes can determine the 423	  
frequency of cleavage sites of each genome, we characterized the GC content, as well as the 424	  
mononucleotide, dinucleotide and trinucleotide compositions of each genome and developed probability 425	  
models to predict the expected frequency of recognition sequences for each restriction enzyme. GC 426	  
content was calculated as the proportion of unambiguous nucleotides in the assembly that are either 427	  
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guanine or cytosine, assuming that the frequency of guanine is equal to the frequency of cytosine. 428	  
Mononucleotide composition was determined as the frequency of each one of the four nucleotides. 429	  
Dinucleotide and trinucleotide compositions were determined as the frequency of each one of the 16 or 64 430	  
possible nucleotide combinations, respectively.  431	  
 432	  

Mononucleotide and GC content sequence models were used to estimate the probability of a 433	  
particular recognition sequence assuming that each nucleotide is independent of the others and of its 434	  
position on the recognition sequence. The GC content model assumes that the relative frequencies of 435	  
guanine and cytosine in the genome sequence are equal. This model has only two parameters, the GC and 436	  
AT frequencies. In the mononucleotide model (2) there are four parameters, one for each of the four 437	  
possible nucleotides. 438	  
 439	  
(2) 440	  

𝑝 𝑠 =    𝑝(𝑠!)
!!!,…,!(!)

 

 441	  
Here, 𝑝(𝑠!) is the probability of nucleotide 𝑠! at the position 𝑖 of the recognition sequence. In the 442	  

GC content model 𝑝(𝑠!) can take the values of 𝑓!,!  or  𝑓!,!. In the mononucleotide model 𝑝(𝑠!) can take 443	  
the values of 𝑓!, 𝑓! , 𝑓! , or 𝑓!, where 𝑓! is the frequency of a given mononucleotide (X = A, G, C, or T). 444	  
 445	  

Dinucleotide and trinucleotide sequence models (3) were defined as first and second degree 446	  
Markov chain transition probability models with 16 or 64 parameters, respectively (Karlin et al. 1992; 447	  
Singh 2009). These models take into account the position of each nucleotide in the recognition sequence. 448	  
Nucleotides along the recognition sequence are not independent from nucleotides in neighboring 449	  
positions. The probability of a particular recognition sequence for these Markov chain models was 450	  
calculated as: 451	  
 452	  
(3) 453	  

𝑝 𝑠 =   𝑝 𝑠!    𝑝! 𝑠!|𝑠!!!,… , 𝑠!!!
!!!,…,!(!)

 

 454	  
Where 𝑝 𝑠!   is the probability at the first position on the recognition sequence and 𝑝! is the 455	  

conditional probability of a subsequent nucleotide on the recognition sequence depending on the previous 456	  
n nucleotides. In the dinucleotide sequence model 𝑛 = 1 and in the trinucleotide sequence models 𝑛 = 2. 457	  
 458	  

Genomic resources are unavailable for most species. However, reduced representation datasets 459	  
that capture a small fraction of a genome, such as RNA-seq or RAD-seq datasets, are more widely 460	  
available. We investigated the potential use of these datasets to estimate genome composition parameters 461	  
for our predictive models and calculate recognition-sequence probabilities for the selected set of 18 462	  
restriction enzymes. For this we selected a set of 27 species out of the 434 examined eukaryotic species 463	  
with whole and draft genomes, which also have publically available transcriptome data (Supplementary 464	  
Table 2). We also used the data from the in silico RAD sequencing experiments (described above) as 465	  
reduced representation datasets for these species. We estimated genome composition parameters from 466	  
transcriptome and RAD-seq datasets, and calculated recognition-sequence probabilities using the models. 467	  
 468	  
Expectations versus observations 469	  

To assess the effectiveness of the predictive recognition sequence models, we compared the 470	  
number of observed restriction sites (frequency) in the genome assemblies with the expected predicted 471	  
number according to each model, parameters estimated from whole and draft genome datasets. The 472	  
expected number of restriction sites in a given genome was calculated as the product of the probability of 473	  
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a recognition sequence multiplied by the genome sequence size. To quantify the departures from 474	  
expectation, we define a similarity index (SI) as 𝑆𝐼 =    (𝑂 − 𝐸) 𝐸, where O and E are the observed and 475	  
expected number of restriction sites, respectively. If SI = 0, then E = O. If SI < 0, then E > O, and vice 476	  
versa.  477	  
 478	  

To measure the overall similarity between the restriction recognition-sequence probabilities 479	  
calculated using known composition parameters from the genome and those calculated using estimated 480	  
composition parameters from reduced-representation transcriptome and genome datasets, we calculated 481	  
the mean squared error (MSE) per species. 482	  
 483	  
(4) 484	  

𝑀𝑆𝐸 =   
1
𝑛
   (𝑝!! 𝑠 ! − (𝑝!" 𝑠 !)!
!

!!!

 

 485	  
Where 𝑝!! 𝑠 ! is the probability of a restriction recognition-sequence (of an enzyme i) calculated 486	  

using composition parameters estimated from reduced-representation datasets, 𝑝!" 𝑠 ! is probability of a 487	  
restriction recognition-sequence calculated using known composition parameters from genome datasets. 488	  
Each enzyme was assigned an arbitrary number from 1 to 18 (n). When MSE=0 the probabilities are 489	  
identical. MSE value increases as similarity decreases. 490	  
 491	  
Location of recognition sequences in mammalian genomes 492	  

To evaluate the possibility that recognition-sequence frequency patterns inconsistent with 493	  
evolutionary neutrality occurred in genomic areas subject to natural selection, we investigated the 494	  
genomic locations of recognition sequences relative to well-annotated conserved-element genomic 495	  
regions. We obtained DNA sequences of genomic elements (sensu Siepel et al. 2005; Miller et al. 2007b) 496	  
strongly conserved across mammals from the human, dog and mouse genomes using the UCSC genome 497	  
table browser (http://genome.ucsc.edu/cgi-bin/hgTables). We counted the number of occurrences of 498	  
recognition sequences for each of the 18 restriction enzymes in these conserved genomic elements 499	  
(observed) and compared them, using the similarity index (SI) described above, to the expected number 500	  
of occurrences in a random genome sample of equal size (calculated as the relative frequency of 501	  
recognition sequences in the whole genome [total number of recognition sequences/genome size in base 502	  
pairs] multiplied by the size of each of the conserved-elements datasets in base pairs). 503	  
 504	  
The analytical software pipeline here described (PredRAD), visualization scripts, and output database 505	  
files are publicly available at https://github.com/phrh/PredRAD. 506	  
 507	  
SUPPLEMENTARY MATERIAL  508	  
 509	  
Supplementary figures 1-9, and tables 1 and 2 are available as supplementary material. 510	  
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APPENDIX I 531	  
 532	  
Genomic composition patterns across the eukaryotic tree of life 533	  
 534	  
The odds ratios proposed by Burge et al. (1992) were used to estimate compositional biases of 535	  
dinucleotides (5) and trinucleotides (6) across genomes. 536	  
 537	  
(5) 538	  

𝜌!"∗ =
𝑓!"∗

𝑓!∗𝑓!∗
 

 539	  
(6) 540	  

𝛾!"#∗ =
𝑓!"#∗ 𝑓!∗𝑓!∗𝑓!∗

𝑓!"∗ 𝑓!"∗ 𝑓!"#∗  

 541	  
Where 𝑓!∗  is the relative frequency of the mononucleotide X, 𝑓!"∗  is the relative frequency of the 542	  
dinucleotide XY, and 𝑓!"#∗  is the relative frequency of the trinucleotide XYZ. All frequencies take into 543	  
account the antiparallel structure of double stranded DNA. N represents any mononucleotide. Both 544	  
dinucleotides and trinucleotides are considered significantly underrepresented if the odds ratio is ≤ 0.78, 545	  
significantly overrepresented if ≥ 1.23, and equal to expectation if =1 (Karlin et al. 1998). 546	  
 547	  
Our surveys of whole and draft genome sequence assemblies indicate that there are significant 548	  
compositional biases for most dinucleotides and trinucleotides across the eukaryotes. Many of these 549	  
biases are significant only within individual species scattered throughout the eukaryotic tree of life. 550	  
However, there are several particular dinuclotides and trinucleotides that show significant biases across 551	  
the eukaryotic tree of life. The dinucleotides CG, GC, TA, and CA/TG, and the trinucleotides CTA/TAG, 552	  
AAA/TTT, TAA/TTA, CCA/TGG show the most conspicuous bias patterns. Our observation that these 553	  
biases are highly variable among broad taxonomic groups but generally similar within is congruent with 554	  
findings from previous studies (e.g., Gentles & Karlin 2001). The most obvious biases across taxa are 555	  
observed in the gnatostomate vertebrates; however, this is most likely due to rampant undersampling in 556	  
most other groups of eukaryotes (vertebrate genome assemblies represent 21% of all the taxa in this 557	  
study).  558	  
 559	  
Dinucleotide compositional biases 560	  
Dinucleotide odds ratios (𝜌!"∗ ) (Burge et al. 1992), a measurement of relative dinucleotide abundances 561	  
given observed component frequencies used to explore genomic compositional biases, revealed 562	  
significant compositional biases for all possible dinucleotides (Supplementary Figure 7). The dinucleotide 563	  
compositional biases were highly variable among broad taxonomic groups (e.g., core eudicot plants) but 564	  
generally similar within. Two dinucleotide complementary pairs, CG/GC and AT/TA, had highly 565	  
dissimilar relative frequencies between the members of each pair. The largest biases were for CG, being 566	  
significantly underrepresented in groups like core eudicot plants (𝜌!"∗ =0.68 ± 0.11), gnathostomate 567	  
vertebrates (𝜌!"∗ =0.32 ± 0.12), the Pucciniales rust fungi (𝜌!"∗ =0.66 ± 0.08), gastropod mollusks 568	  
(𝜌!"∗ =0.68, SD=0.01), the Trebouxiophyceae green algae (𝜌!"∗ =0.61 ± 0.19) and the Saccharomycetales 569	  
yeast (𝜌!"∗ =0.78 ± 0.17). CG was significantly overrepresented in groups like the Apocrita insects 570	  
(𝜌!"∗ =1.59 ± 0.18). The complementary dinucleotide GC was not particularly underrepresented in any 571	  
broad taxonomic group, but tended towards overrepresentation in ecdysozoan invertebrates (𝜌!"∗ =1.24 ± 572	  
0.12), being significant in several arthropod and nematode species. Other taxa that showed significant 573	  
overrepresentation of GC dinucleotides included the Trebouxiophyceae ( 𝜌!"∗ =1.39 ± 0.04) and 574	  
microsporidia fungi (𝜌!"∗ =1.28 ± 0.17). Relative abundances of the dinucleotide AT were within 575	  
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expectations for all eukaryotes, except for the fungus Sporobolomyces roseus (𝜌!"∗ =0.78). Contrastingly, 576	  
the TA dinucleotide tended towards underrepresentation throughout the eukaryotes (𝜌!"∗ =0.8 ± 0.13), 577	  
except in a few hypocreomycetid fungal species, for which it was significantly underrepresented. The TA 578	  
dinucleotide was significantly underrepresented in trypanosomatids (𝜌!"∗ =0.59 ± 0.03), choanoflagellids 579	  
(𝜌!"∗ =0.43 ± 0.09), chlorophytes (𝜌!"∗ =0.62 ± 0.15), stramenopiles (𝜌!"∗ =0.70 ± 0.07), and marginally 580	  
underrepresented in most euteleostei fish (𝜌!"∗ =0.77 ± 0.04), archosaurs (𝜌!"∗ =0.76 ± 0.03) and the 581	  
Basidiomycota (𝜌!"∗ =0.74 ± 0.09), among others.   582	  
 583	  
The remaining dinucleotides had identical relative frequencies between the members of each 584	  
complementary pair. The dinucleotide pair GG/CC was marginally underrepresented in most eukaryotes 585	  
(𝜌!"∗ =0.88 ± 0.15). In the Sarcopterygii vertebrates (𝜌!"∗ =1.02 ± 0.06) and embryophyte plants (𝜌!"∗ =1.03 586	  
± 0.07) GG/CC relative frequencies closely conformed to expectation, whereby GG/CC was significantly 587	  
overrepresented in handful of isolated ecdysozoan, microsporidia and alveolate species, and significantly 588	  
underrepresented in chlorophytes (𝜌!"∗ =0.72, SD=0.11), oomycetes (𝜌!"∗ =0.71 ± 0.05), and in several 589	  
species of the Basidiomycota and the Dothideomycetes. Only the choanoflagellate Salpingoeca and the 590	  
green alga Asterochloris presented a marginally significant bias for the dinucleotide pair AA/TT 591	  
(𝜌!"∗ =0.77 and 0.75 respectively). Similarly, Salpingoeca was the only taxon to show a significant bias 592	  
for AC/GT (𝜌!"∗ =1.42). Dinucleotide pair CA/TG was among the pairs with largest biases. Significant 593	  
overrepresentation of CA/TG was found in several groups with large CG underrepresentation such as 594	  
gnathostomates (𝜌!"∗ =1.31 ± 0.05), gastropods (𝜌!"∗ =1.29 ± 0.05), the Pucciniales (𝜌!"∗ =1.27 ± 0.02), the 595	  
Trebouxiophyceae ( 𝜌!"∗ =1.62 ± 0.14), as well as several species of core eudicots and the 596	  
Saccharomycetales. Other groups with significant CA/TG overrepresentation include onchocercid 597	  
nematodes (𝜌!"∗ =1.26 ± 0.01), the Ustilaginomycotina fungi (𝜌!"∗ =1.28 ± 0.05), trypanosomatids 598	  
(𝜌!"∗ =1.25 ± 0.04), and amoebozoans (𝜌!"∗ =1.33 ± 0.06). Overrepresentation biases for the AG/CT 599	  
dinucleotide pair were only present in amniotes (𝜌!"∗ =1.26 ± 0.02), the Sporidiobolales fungi (𝜌!"∗ =1.24 ± 600	  
0.01), and oxytrichid alveolates (𝜌!"∗ =1.24 ± 0.04), and other isolated species. Most of these taxa also had 601	  
large CG underrepresentation. Lastly, most eukaryotes had GA/TC relative frequencies that conformed to 602	  
expectations, except for few scattered species and small groups such as the Microbotryomycetes fungi 603	  
(𝜌!"∗ =1.45 ± 0.13), the Mamiellales green algae (𝜌!"∗ =1.40 ± 0.08), and the Eimeriorina alveolates 604	  
(𝜌!"∗ =1.26 ± 0.02). 605	  
 606	  
Biases in most of these dinucleotides are likely linked to important biological processes. Notably the 607	  
underrepresented dinucleotide CG is a widely known target for methylation related to transcriptional 608	  
regulation (Bird 1980) and retrotransposon inactivation (Yoder et al. 1997) in vertebrates and eudicots. 609	  
The corresponding overrepresentation of AG/CT fits the classic model of “methylation-deamination-610	  
mutation” by which a methylated cytosine in the CG pair tends to deaminate when unpaired and mutate 611	  
into a thymidine with a corresponding CA complement. Interestingly CG and GC dinucleotides are 612	  
significantly overrepresented in several groups of apocritic insects, as well as in some fungi and single-613	  
cell eukaryotes. CG is not a primary target for methylation in Drosophila (Lyko et al. 2000), instead CT, 614	  
and in lesser degree CA and CC, are methylated in higher proportion. None of these dinucleotide pairs is 615	  
significantly underrepresented in apocritic insects. The widespread TA underrepresentation has been 616	  
traditionally attributed to stop codon biases, thermodynamic instability and susceptibility of UA to 617	  
cleavage by RNAses in RNA transcripts (Beutler et al. 1989).  618	  
 619	  
Trinucleotide compositional biases 620	  
Trinucleotide odds ratios (𝛾!"#∗ ) (Burge et al. 1992) are another important measurement used to explore 621	  
genomic compositional biases. Among the examined taxa, these ratios revealed compositional biases for 622	  
most possible trinucleotides (Supplementary Figure 8). However, most of these biases were only 623	  
significant in scattered individual species (Supplementary Figure 9). Among the trinucleotide pairs with 624	  
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significant underrepresentation, CTA/TAG and CGA/TCG showed the most definite broad taxonomic 625	  
patterns. CTA/TAG was significantly underrepresented in most taxa, except for groups like commelinid 626	  
plants (monocots) (𝛾!"#∗ =0.87 ± 0.03), most core eudicots (𝛾!"#∗ =0.81 ± 0.02), eleutherozoans 627	  
(𝛾!"#∗ =0.82 ± 0.01), molluscs (𝛾!"#∗ =0.83 ± 0.01), and gnathostomates (𝛾!"#∗ =0.82 ± 0.02) – exclusive of 628	  
the chimaera Callorhinchus milii. Contrastingly, the trinucleotide CGA/TCG was only significantly 629	  
underrepresented in most tetrapod vertebrates (𝛾!"#∗ =0.82 ± 0.02) – exclusive of muroid rodents, bovid 630	  
ruminants and the Afrotheria – a group containing aarvdvarks, hyraxes, and elephants.  631	  
 632	  
The largest and more widespread overrepresentation biases were for the trinucleotide pair AAA/TTT, 633	  
being significant in most eukaryotes, except for the majority of the Dikarya fungi (𝛾!"#∗ =1.18 ± 0.07). 634	  
The trinucleotide pairs TAA/TTA and AAT/ATT were significantly overrepresented in many metazoan 635	  
taxa, particularly in the Neopterygii vertebrates (𝛾!"#∗ =1.3 ± 0.05, and 𝛾!"#∗ =1.26 ± 0.05 respectively). 636	  
AAG/CTT was significantly overrepresented in the Bacillariophyta diatoms (𝛾!"#∗ =1.24 ± 0.03), 637	  
oomycetes (𝛾!"#∗ =1.28 ± 0.02), and the Saccharomycetales (𝛾!"#∗ =1.26 ± 0.04). Lastly, CCA/TTG was 638	  
significantly overrepresented in several tetrapod groups, including the Laurasiatheria – exclusive of the 639	  
Chiroptera –  (𝛾!"#∗ =1.25 ± 0.02) and Hominoidea (𝛾!"#∗ =1.23 ± 0.004). 640	  
 641	  
The biases in CTA/TAG have been widely attributed to the stop codon nature of UAG. However, the 642	  
trinucleotides corresponding to the other stop codons (Burge et al. 1992), UAA and UGA, are 643	  
overrepresented or not biased across eukaryotes. The reasons behind other cases of trinucleotide biases 644	  
are less understood.  645	  
 646	  
  647	  
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FIGURES & TABLES 749	  
 750	  

 751	  
 752	  

Table 1. Restriction enzymes included in this study.

Core 
Sequence

Restriction 
Enzyme

Recognition 
Sequence

Recognition 
Sequence 
Length

GC Content of 
Recongition 
Sequence

GGCC
NotI GCGGCCGC 8 100.0

CCGG
SgrAI CRCCGGYG 8 87.5
BsrFI RCCGGY 6 83.3
NgoMIV GCCGGC 6 100.0
AgeI ACCGGT 6 66.7
MspI CCGG 4 100.0

TGCA
SbfI CCTGCAGG 8 75.0
PstI CTGCAG 6 66.7
NsiI ATGCAT 6 33.3

AATT
ApoI RAATTY 6 16.7
EcoRI GAATTC 6 33.3
MluCI AATT 4 0.0

TTAA
MseI TTAA 4 0.0

CATG
NspI RCATGY 6 50.0
NcoI CCATGG 6 66.7
PciI ACATGT 6 33.3
FatI CATG 4 50.0

GTAC
KpnI GGTACC 6 66.7
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 753	  

Table 2. Linear regresion parameter estimates and 95% confidence intervals.

Enzyme B0 B1 95% CI B0 95% CI B1
AgeI 3.791226 1.081123 (3.589084,3.993368) (1.030957,1.131288)
ApoI 3.909432 0.789828 (3.771043,4.047820) (0.764083,0.815571)
BsrFI 3.595150 0.972785 (3.336245,3.854053) (0.917377,1.028193)
EcoRI 3.915725 0.932289 (3.836952,3.994497) (0.914985,0.949591)
FatI 2.719837 0.947207 (2.639872,2.799802) (0.933248,0.961165)
KpnI 4.041810 0.984192 (3.931500,4.152119) (0.957826,1.010558)
MluCI 3.432945 0.796619 (3.281188,3.584701) (0.770985,0.822252)
MseI 3.963499 0.722786 (3.813020,4.113977) (0.696835,0.748737)
MspI 3.084383 0.957434 (2.846370,3.322395) (0.912357,1.002510)
NcoI 4.089533 0.910311 (3.975127,4.203937) (0.884724,0.935898)
NgoMIV 5.115077 0.738618 (4.881512,5.348642) (0.681804,0.795430)
NotI 6.432067 0.581703 (6.254678,6.609455) (0.522412,0.640993)
NsiI 3.948432 0.908376 (3.874564,4.022299) (0.892446,0.924304)
NspI 3.399772 0.930233 (3.316885,3.482657) (0.914012,0.946453)
PciI 4.092091 0.885098 (4.031567,4.152614) (0.871942,0.898254)
PstI 4.244698 0.850488 (4.114538,4.374857) (0.822215,0.878759)
SbfI 5.782031 0.726905 (5.671977,5.892083) (0.693729,0.760080)
SgrAI 5.500710 0.749462 (5.245991,5.755428) (0.677348,0.821576)
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Fig. 1. Observed restriction recognition-sequence frequencies. Left: phylogenetic tree of all eukaryotic 755	  
taxa analyzed in this study. The tree is based on the NCBI taxonomy tree retrieved on May 16, 2013 using 756	  
the iTOL tool http://itol.embl.de. Branch colors and labels indicate broad taxonomic groups. Organism 757	  
silhouettes and cartoons were created by the authors or obtained from http://phylopic.org/. Right: heatmap 758	  
of the observed frequency of restriction sites. Each row corresponds to a species from the tree on the left, 759	  
and each column corresponds to a different restriction enzyme. Gray line in the color-scale box shows the 760	  
distribution histogram of all values. 761	  
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Fig. 2. Linear correlations of restriction recognition-sequence frequencies and genome sizes. Scatter plots 763	  
show the observed numbers of recognition sequences in a genome for a given restriction enzyme (x-axis) 764	  
vs. the size of the genome in base pairs (y-axis). The data for all the 434 examined genomes are shown. 765	  
Each panel shows the data for a different restriction enzyme. Dot colors indicate broad taxonomic groups: 766	  
fungi (yellow), plants (green), invertebrates (blue), vertebrates (red), and others (black). Non-parametric 767	  
Spearman’s rank-order correlation coefficients (ρ) are shown for each restriction enzyme. Solid gray lines 768	  
represent the best-fit linear models with 95% confidence intervals (gray dotted lines). 769	  
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 770	  
Fig. 3. Overall fit of genome composition models per restriction enzyme. Vertical axes in the box and 771	  
whisker plots indicate the values of the similarity index (SI) for each species per enzyme (see Methods 772	  
section). Horizontal axes in the box and whisker plots indicate the genome composition model: GC 773	  
content (gc), mononucleotide (mono), dinucleotide (di), and trinucleotide (tri). Horizontal edges of range 774	  
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boxes indicate the first and third quartiles of the SI values under each composition model. The thick 775	  
horizontal black line represents the median. Whiskers indicate the value of 1.5 times the inter-quartile 776	  
range from the first and third quartiles. Outliers are defined as SI values outside the whiskers range and 777	  
are represented by dots. Outlier value of Entamoeba histoyitica for NotI was excluded. Red dotted lines 778	  
indicate SI=0. 779	  
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 780	  
Fig. 4. Similarity indexes for dinucleotide and trinucleotide genome composition models. Left: 781	  
phylogenetic tree as in Fig 1. Center: heatmap of the similarity indexes for the dinucleotide model Right: 782	  
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heatmap of the similarity indexes for the trinucleotide model. Each row corresponds to a species from the 783	  
tree on the left, and each column corresponds to a different restriction enzyme. Cyan indicates SI < 0 and 784	  
yellow indicates SI > 0. Red line in the color-scale box shows the distribution histogram of all values. 785	  
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 786	  
Fig. 5. Similarity indexes for GC content and mononucleotide genome composition models. Left: 787	  
phylogenetic tree as in Fig 1. Center: heatmap of the similarity indexes for the GC content model Right: 788	  
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heatmap of the similarity indexes for the mononucleotide model. Each row corresponds to a species from 789	  
the tree on the left, and each column corresponds to a different restriction enzyme. Cyan indicates SI < 0 790	  
and yellow indicates SI > 0. Red line in the color-scale box shows the distribution histogram of all values. 791	  
 792	  

 793	  
Fig. 6. Left: Scatter plot of the probability of restriction recognition-sequence (RS) probabilities 794	  
calculated using known composition parameters from the genome (x-axis) vs. those calculated using 795	  
estimated composition parameters from transcriptome datasets (y-axis). Each dot represents the 796	  
combination of one of the 18 examined restriction enzymes and one of the 27 species in the reduced-797	  
representation subset. Colors indicate the probabilities calculated by different models: mononucleotides 798	  
(yellow), dinucleotides (blue), trinucleotides (red). Average mean squared error (MSE) values for the 799	  
probabilities calculated with each model are shown. Solid black line represents the identity line, in which 800	  
x = y. Right: Scatter plot of the percentage of the genome represented by the transcriptome datasets (x-801	  
axis) vs. per-species mean squared error (MSE) values for the probabilities calculated with each model (y-802	  
axis). As before, colors indicate the probabilities calculated by different models: mononucleotides 803	  
(yellow), dinucleotides (blue), trinucleotides (red). 804	  
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Fig. 7. Scatter plots of the probability of restriction recognition-sequence (RS) probabilities calculated 806	  
using known composition parameters from the genome (x-axis) vs. those calculated using estimated 807	  
composition parameters from in silico RAD-seq datasets (y-axis). Each dot represents the combination of 808	  
one of the 18 examined restriction enzymes and one of the 27 species in the reduced-representation 809	  
subset. Colors indicate the probabilities calculated by different models: mononucleotides (yellow), 810	  
dinucleotides (blue), trinucleotides (red). Average mean squared error (MSE) values for the probabilities 811	  
calculated with each model are shown. Solid black lines represents the identity lines, in which x = y. 812	  
 813	  
 814	  

 815	  
Fig. 8. Scatter plot of the Spearman’s correlation coefficient (ρ) values between genome sizes and 816	  
restriction recognition-sequence frequencies (x-axis) vs. similarity index (SI) values of between observed 817	  
and expected numbers of restriction recognition-sequences in mammalian conserved-element genomic 818	  
regions (y-axis). Corresponding restriction enzyme names to each ρ value are shown. Colors and symbols 819	  
indicate different taxa: dog (blue triangles), mouse (red crosses), human (yellow circles). Dotted line 820	  
indicates SI = 0 (value at which expected and observed values are equal). 821	  
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 822	  
Fig. 9. Suggested workflow to obtain an approximation to the number of cleavage sites for a set of 823	  
restriction enzymes in a species of interest. Yellow boxes indicate question checkpoints, blue boxes 824	  
indicate experimental steps, and red boxes indicate computational steps that can be carried out with the 825	  
PredRAD analytical pipeline. 826	  
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