1 Induced sensitivity of *Bacillus subtilis* colony morphology to mechanical

- 2 media compression
- 3

4 Jessica K. Polka^{1,2} and Pamela A. Silver^{1,2} *

- 5
- 6 1. Systems Biology Department, Harvard Medical School
- 7 2. Wyss Institute for Biologically Inspired Engineering, Harvard University
- 8 * To whom correspondence should be addressed
- 9

10 ABSTRACT

- 11 Bacterial from several taxa, including *Kurthia zopfii*, *Myxococcus xanthus*, and *Bacillus mycoides*, have
- 12 been reported to align growth of their colonies to small features on the surface of solid media, including
- 13 anisotropies created by compression. While the function of this phenomenon is unclear, it may help
- organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be
- 15 biological (that is, dependent on components that sense the environment and regulate growth
- 16 accordingly) or merely physical.
- 17 Here we show that *B. subtilis*, an organism that typically does not respond to media compression, can be
- 18 induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the
- 19 swarming (chained) state, and the addition of EDTA to the growth media, which further increases chain
- 20 length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment
- 21 has only marginal effects on the length of individual cells.
- 22 These results lead us to three conclusions. First, the wealth of genetic tools available to *B. subtilis* will
- 23 provide a new, tractable chassis for engineering compression sensitive organisms. Second, the
- 24 sensitivity of colony morphology to media compression in *Bacillus* is a physical rather than biological
- 25 phenomenon dependent on a simple physical property of rod-shaped cells. And third, colony
- 26 morphology under compression holds promise as a rapid, simple, and low-cost way to screen for
- 27 changes in the length of rod-shaped cells or chains thereof.

28 INTRODUCTION

- 29 Response of bacterial colony morphology (ie, orientation of growth) to small mechanical perturbations
- 30 of growth media was first noted in *Kurthia*, a gram-positive genus notable for its striking feather-like
- 31 morphology on gelatin slant cultures. (Sergent, 1906, 1907; Jacobsen, 1907; Stackebrandt, Keddie &
- Jones, 2006) A similar compression response has been reported in *Myxococcus xanthus*, where the
- 33 phenomenon is dependent on adventurous motility, a flagellum- and pili-independent movement
- 34 system.(Stanier, 1942; Fontes & Kaiser, 1999; Nan et al., 2014) Recently, the soil bacterium *Bacillus*
- 35 *mycoides* was also shown to be sensitive to media perturbations.(Stratford, Woodley & Park, 2013)
- 36 Interestingly, this compression response seems to occur by two different mechanisms: whereas
- 37 individual *Myxococcus xanthus* dynamically reorients individual cells along lines of
- 38 compression, (Dworkin, 1983) *Bacillus mycoides* instead gradually reorients the tips of chained cells as it
- 39 grows.(Stratford et al., 2013)
- 40 The function of compression response is not known, but it has been suggested to aid navigation in
- 41 natural environments on solid phases, like soil.(Dworkin, 1983) It has also been proposed as a potential
- 42 tool for engineering applications in sensing environmental forces or generating patterns for
- 43 nanofabrication.(Stratford et al., 2013)
- 44 Here we investigate whether increasing the length of chains of cells can induce compression sensitivity
- 45 in an otherwise compression-insensitive species, *B. subtilis*. We employ a mutant of *B. subtilis* that forms
- 46 long chains of cells (much like *B. mycoides*) and also deplete divalent cations in the media with EDTA;
- 47 Mg²⁺ is thought be important for cell wall integrity. *B. subtilis* deprived of magnesium accumulates cell
- 48 wall precursors, (Garrett, 1969) and magnesium is known to bind to components of the cell
- 49 wall.(Heckels, Lambert & Baddiley, 1977) Notably, high magnesium concentrations can restore rod
- 50 shape to cells with mutations in MreB, MreD, and PonA all genes involved in cell wall
- 51 synthesis.(Rogers, Thurman & Buxton, 1976; Rogers & Thurman, 1978; Murray, Popham & Setlow, 1998;
- 52 Formstone & Errington, 2005)
- 53

54 MATERIALS AND METHODS

55 Table 2. Strains used in this study

Designation	Description	Reference
B. subtilis PY79	Lab strain	Bacillus Genetic Stock Center
		1A747
<i>B. subtilis</i> σ ^D ::tet	RL4169, DS323	Kearns and Losick, 2005 (Kearns
		& Losick, 2005)
B. mycoides		ATCC 6462

56

57 Time lapse microscopy

- 58 2% LB agar was cut into approximately 10mm x 10mm squares and inoculated with 1µl of liquid culture.
- 59 The pad was then wedged, in a glass-bottomed dish (P35G-1.5-20-C, MatTek Corp.), between two plastic
- 60 coverslips (Rinzl Plastic Coverslips, Size 22x22mm, Electron Microscopy Science) manually bent in half at
- a 90° angle. Thus, half of each plastic coverslip made contact with the bottom of the dish, while the
- 62 other half made contact with the agar pad. After placing a drop of approximately 50μl of water on top of

- 63 each plastic coverslip to maintain humidity in the dish, the MatTek dish was sealed with parafilm (this
- 64 setup is illustrated in Fig. 1A). Cells were grown for approximately 6 hours at room temperature
- 65 (approximately 23°) during a timelapse acquisition on a Nikon TE 2000 microscope equipped with an
- 66 Orca ER camera, a 20x phase contrast objective, and Perfect Focus. A large area of the sample was
- 67 composited with automatic image stitching by Nikon Elements AR. Areas toward the center of the pad
- 68 were selected for imaging.

69 Plate compression

- 70 Microtiter format plates were prepared with LB + 2% agar. 24 hours after plates were poured, sterilized
- polystyrene spacers (each 0.080" thick, for a total compression of 0.16" or 4.1mm, equivalent to 4.8%
- 72 compression) were inserted along the long dimension. Plates were stored at 37° for 24 hours, then
- 73 inoculated from colonies grown on LB agar. Plates were incubated for 2-3 days at 30°, as the time
- required to reach colony dimensions >8mm varied with EDTA concentration. After incubation, plates
- 75 were imaged with a gel imager and colony dimensions measured with FIJI.(Schindelin et al., 2012)

76 Cellular morphology

- 77 Colonies were grown on LB + 2% agar containing either 0 or 125μM EDTA. After 24 hours of incubation
- at 30°, cells from the edges of colonies were transferred directly to LB + 2% agar pads for imaging with
- the rounded bottoms of 0.6μl centrifuge tubes. To each pad, 1μl of an aqueous solution containing
- 10μg/ml FM4-64 (Invitrogen) was added. Cells were imaged with a 100X phase contrast objective, and
- cell and chain lengths were measured manually with spline-fitted segmented lines in FIJI. Two-sample KS
- 82 tests were performed.(Kirkman, 1996)
- 83

84 RESULTS

- 85 We first noted weak compression response of *B. subtilis* under the microscope. Unlike *B. mycoides*, *B.*
- 86 *subtilis* colonies remain circular under compression under normal conditions. However, our microscopy
- 87 assay (Fig. 1A) revealed that at small length scales (<100μm), B. subtilis cells display short-range
- 88 alignment perpendicular to the direction of compression (marked with black arrows in Fig. 1A-C). Noting
- that the alignment is disrupted over longer length scales, we sought conditions under which *B. subtilis*
- 90 cells might behave more similarly to *B. mycoides*. We noted that the chains of *B. subtilis* PY79 appeared
- shorter than that of *B. mycoides,* with the former reaching a maximum of approximately 300µm (Fig.
- 92 1C), while the can extend for millimeters(Stratford et al., 2013).
- 93 To increase chain length, we used *B. subtilis* σ^{D} ::tet, a mutant that does not switch from swimming to
- swarming motility, and thus grows in long chains of cells (Kearns & Losick, 2005). To further perturb cell
- 95 separation, we added EDTA to the growth medium.
- 96 To study colony morphology of *B. subtilis* under compression at the macroscopic scale with reproducible
- 97 compression conditions, we prepared microtiter plates with LB + 2% agar and wedged polystyrene
- 98 spacers between the agar and an edge of the plates (Fig. 2A). We inoculated the agar with colonies of *B*.
- 99 *mycoides, B. subtilis* PY79, and *B. subtilis* σ^{D} ::tet. Under 4.8% compression, *B. mycoides* forms elongated
- 100 colonies as reported, (Stratford et al., 2013) while, without EDTA, *B. subtilis* colonies are round (Fig. 2A).
- 101 With the addition of EDTA to the media, both *B. subtilis* PY79 and σ^{D} ::tet display a compression response

(Fig. 2B). This is dependent on the degree of compression; at 2.4% compression, both *B. subtilis* strainsformed round colonies (data not shown).

- 104 We next quantified this effect over several colonies under each EDTA condition at 4.8% compression.
- 105 Bacillus mycoides forms colonies 4-4.5x larger in the dimension perpendicular to the direction of
- 106 compression than parallel to it regardless of EDTA concentration (Fig. 2C). In comparison, the effect in B.
- 107 *subtilis* is relatively small. *Bacillus subtilis* colonies were a maximum of approximately 1.5x larger in the
- direction perpendicular to compression, and this effect scaled with EDTA concentration (Fig. 2C). The
- 109 EDTA effect was stronger for the σ^{D} ::tet strain; at 125uM EDTA, compressed σ^{D} ::tet colonies were 1.64x
- 110 larger in the direction of compression (n=17, standard deviation 0.21), while PY79 colonies were 1.23x
- 111 larger (n=16, standard deviation 0.20).
- 112 To understand how EDTA could affect compression response, we imaged cells taken directly from the
- edges of colonies on solid media containing either 0µM (Fig. 3A-C) or 125µM EDTA (Fig. 3D-F). The
- 114 chains of *B. subtilis* cells, both PY79 and σ^{D} ::tet, are longer on 125µM EDTA, but cell lengths, as
- delineated by the membrane dye FM4-64, are only marginally different. Quantification of ~300 chain
- and cell lengths for each strain under each condition (Fig. 4) reveals that *B. subtilis* chain lengths
- 117 increase dramatically with the presence of EDTA, while *B. mycoides* chain lengths decrease slightly,
- 118 suggesting that the EDTA effect on cell separation is specific to *B. subtilis* (Table 1).

119 Table 1. Properties of cell and chain length measurement distributions

	Cell length		Chain length			
	0μM EDTA	125µM	KS test	0μM EDTA	125µM	KS test
	mean (µm)	EDTA mean	maximum	mean (µm)	EDTA mean	maximum
		(µm)	difference		(µm)	difference
B. mycoides	4.01 (st dev	4.33 (st dev	D = 0.1044,	9.19 (st dev	6.60 (st dev	D = 0.2959,
-	1.54)	2.04)	P = 0.051	4.81)	3.09)	P = 0.000
					-	
B. subtilis	3.18 (st dev	4.18 (st dev	D = 0.2866,	3.94 (st dev	13.71 (st dev	D = 0.8505,
PY79	1.03)	1.93)	P = 0.000	1.38)	7.23)	P = 0.000
B. subtilis	4.23 (st dev	4.12 (st dev	D = 0.2413,	7.50 (st dev	21.99 (st dev	D = 0.5633,
σ ^D ::tet	3.20)	2.18)	P = 0.000	3.36)	18.1)	P = 0.000

120

121 DISCUSSION

122 These results suggest that the phenomenon of colony orientation under compression can be induced in

123 the model organism *B. subtilis*. In contrast to *Bacillus mycoides*, the genetic tractability of *B. subtilis* will

- 124 facilitate engineering of compression sensitive bacteria for use as environmental sensors or guides for
- 125 nanofabrication.(Stratford et al., 2013)
- 126 Furthermore, the fact that that colony orientation on compressed media is generalizable indicates that it
- is likely to be a physical phenomenon. Rather than requiring biological components specific to *B*.
- 128 *mycoides*, it is probably based on factors like rod length, stiffness, and tip vs. isotropic growth pattern.

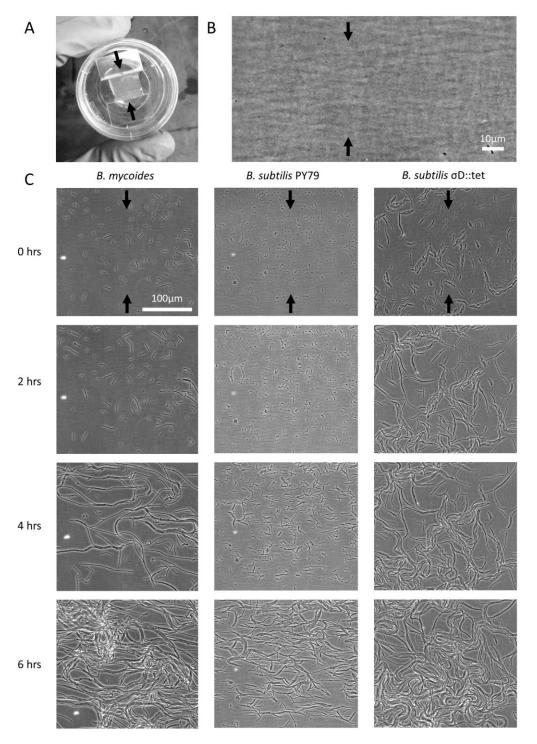
129 Long rod length is a common feature of two prototypical compression responders, Bacillus mycoides and

- 130 *Kurthia sp.,* which both grow as long chains of cells.(Di Franco et al., 2002; Stackebrandt et al., 2006) As
- 131 seen in microscopy of *B. mycoides*, the absence of cell separation allows the bacteria to find and
- 132 maintain a direction of compression. This same chaining property is responsible for the baroque colony
- 133 morphology of *B. mycoides*: mutants that do not display this colony morphology have shorter chain
- 134 lengths.(Di Franco et al., 2002) Thus, compression response may be driven by the same mechanisms that
- influence colony morphology under normal conditions; these mechanisms influence the manner in
- 136 which cells explore and colonize their environment, and may be of critical importance in soil
- 137 environments.
- 138 In the case of *B. subtilis*, the increase in compression sensitivity is based on chain length (as a σ^{D} mutant
- responds more than PY79, and both respond more strongly in the presence of EDTA, which also
- 140 increases rod length). Though EDTA likely affects multiple cellular processes, the role of Mg²⁺ in cell wall
- 141 formation is clear. (Formstone & Errington, 2005) In particular, peptidoglycan hydrolases called
- 142 autolysins are implicated in separation of cells after septation. Some of these autolysins, such as LytC, D,
- and F, are under the control of σ^{D} . (Chen et al., 2009) However, LytC expression can also be driven by
- 144 σ^{A} , (Lazarevic et al., 1992) and this 50kDa amidase is activated by addition of Mg2+ *in vitro*. (Foster, 1992)
- 145 This magnesium dependence of LytC and its regulation by a second sigma factor may explain why EDTA
- 146 treatment further increases chain length in σ^{D} ::tet cells. In addition to LytC, EDTA may be acting on other
- autolysins not regulated by σ^{D} (such as LytE or YwbG).(Smith, Blackman & Foster, 2000) The insensitivity
- 148 of *B. mycoides* chain length to EDTA (Fig. 4, table 1) may be explained by species-specific differences in 149 autolysins.
- 150 Inhibition of cell separation may not be the only relevant effect of EDTA, however. For example, perhaps
- depletion of Mg²⁺ changes the rigidity of cells such that they more readily align with the isotropic agar
- surface (Fig. 1B). An exhaustive understanding of EDTA's effects on the mechanical properties of *B*.
- 153 *subtilis* walls remains to be attained.
- 154 The relatively weak maximal compression response we achieved with *B. subtilis* compared to *B.*
- 155 mycoides suggests that other factors limit the compression response of *B. subtilis*. We suggest that one
- 156 contributing factor is the growth pattern of this organism. Whereas *B. mycoides* elongates from its
- 157 tips, (Turchi et al., 2012) B. subtilis inserts cell wall isotropically along its length. (Tiyanont et al., 2006) In
- 158 micrographs of *B. subtilis* under compression, the chains of cells appear more buckled than those of *B.*
- 159 *mycoides* (Fig. 1C); perhaps friction prevents the distal ends of the chain from sliding along to
- accommodate new growth from the middle of the chain. This buckling disrupts adjacent chains and is
- 161 likely to lead to a more disorganized colony morphology. In the future, further modifications, perhaps
- 162 increasing surfactin production, may increase the magnitude of this response.
- 163 Finally, because *B. subtilis* compression response depends on chain length, we propose that under some
- 164 circumstances, colony morphology under compression could serve as a simple, high-throughput assay
- 165 for perturbations to bacterial cell length and chain formation.

166

167 ACKNOWLEDGEMENTS

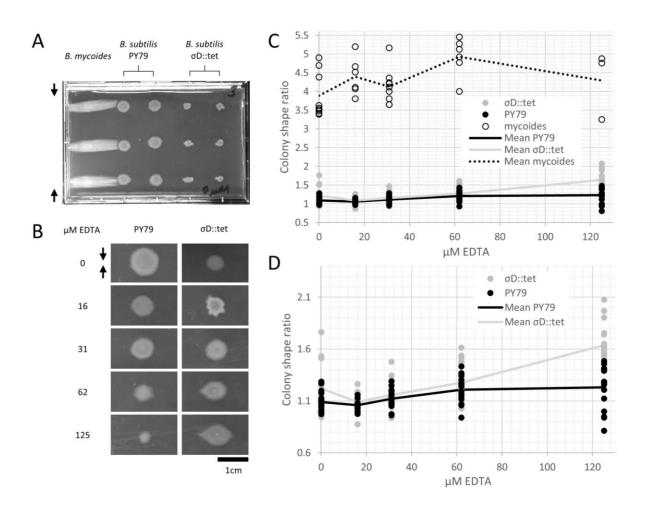
168 We thank Ethan Garner (Harvard University), Michael Baym (Harvard Medical School) and Ariel Amir


- 169 (Harvard University) for helpful discussions. We are grateful to Stephanie Hays (Harvard Medical School)
- 170 for critical reading of the manuscript.
- 171
- 172 REFERENCES
- 173
- 174 Chen R, Guttenplan SB, Blair KM, Kearns DB. 2009. Role of the σD-Dependent Autolysins in Bacillus
- subtilis Population Heterogeneity. *Journal of Bacteriology* 191:5775–5784.
- 176 Dworkin M. 1983. Tactic behavior of Myxococcus xanthus. *Journal of Bacteriology* 154:452–459.
- 177 Fontes M, Kaiser D. 1999. Myxococcus cells respond to elastic forces in their substrate. *Proceedings of*
- 178 *the National Academy of Sciences* 96:8052–8057.
- 179 Formstone A, Errington J. 2005. A magnesium-dependent mreB null mutant: implications for the role of
- 180 mreB in Bacillus subtilis. *Molecular Microbiology* 55:1646–1657.
- 181 Foster SJ. 1992. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and
- 182 differentiation by using renaturing polyacrylamide gel electrophoresis. *Journal of Bacteriology*
- 183 174:464–470.
- 184 Di Franco C, Beccari E, Santini T, Pisaneschi G, Tecce G. 2002. Colony shape as a genetic trait in the
- 185 pattern-forming Bacillus mycoides. *BMC Microbiology* 2:33.
- 186 Garrett AJ. 1969. The effect of magnesium ion deprivation on the synthesis of mucopeptide and its
- 187 precursors in Bacillus subtilis. *The Biochemical Journal* 115:419–430.
- 188 Heckels JE, Lambert PA, Baddiley J. 1977. Binding of magnesium ions to cell walls of Bacillus subtilis W23
- 189 containing teichoic acid or teichuronic acid. *Biochemical Journal* 162:359–365.
- 190 Jacobsen H. 1907. Ueber einen richtenden Einfluss beim Wachstum gewisser Bakterien in Gelatine.
- 191 Zentr. Bakt. Parasitenk. II:53–64.

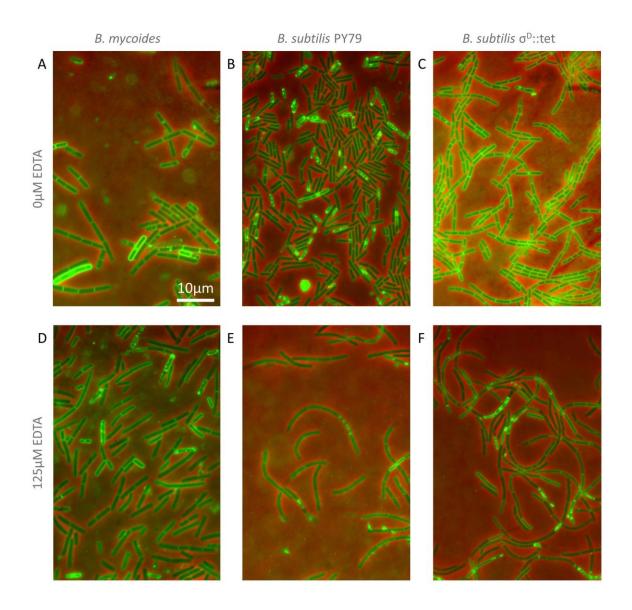
- 192 Kearns DB, Losick R. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes &
- 193 *Development* 19:3083–3094.
- 194 Kirkman T. 1996. Statistics to use.
- 195 Lazarevic V, Margot P, Soldo B, Karamata D. 1992. Sequencing and analysis of the Bacillus subtilis
- 196 lytRABC divergon: A regulatory unit encompassing the structural genes of the N-
- acetylmuramoyl-L-alanine amidase and its modifier. *Journal of General Microbiology* 138:1949–
 198 1961.
- 199 Murray T, Popham DL, Setlow P. 1998. Bacillus subtilis cells lacking penicillin-binding protein 1 require
- increased levels of divalent cations for growth. *Journal of Bacteriology* 180:4555–4563.
- Nan B, McBride MJ, Chen J, Zusman DR, Oster G. 2014. Bacteria that Glide with Helical Tracks. *Current Biology* 24:R169–R173.
- 203 Rogers HJ, Thurman PF. 1978. Temperature-sensitive nature of the rodB maturation in Bacillus subtilis.
- 204 *Journal of Bacteriology* 133:298–305.
- Rogers HJ, Thurman PF, Buxton RS. 1976. Magnesium and anion requirements of rodB mutants of
 Bacillus subtilis. *Journal of Bacteriology* 125:556–564.
- 207 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld
- S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. *Nature Methods* 9:676–682.
- Sergent E. 1906. Des tropismes du "Bacterium zopfii" Kurth. Premiere note. *Ann. inst. Pasteur*:1005–
 1017.
- Sergent E. 1907. Des tropismes du "Bacterium zopfii" Kurth. Deuxieme note. *Ann. inst. Pasteur*:842–850.
- 213 Smith TJ, Blackman SA, Foster SJ. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple
- functions. *Microbiology* 146:249–262.

- 215 Stackebrandt E, Keddie RM, Jones D. 2006. The Genus Kurthia. In: Dr MDP, Falkow S, Rosenberg E,
- 216 Schleifer K-H, Stackebrandt E eds. *The Prokaryotes*. Springer US, 519–529.
- 217 Stanier RY. 1942. A Note on Elasticotaxis in Myxobacteria. *Journal of Bacteriology* 44:405–412.
- 218 Stratford JP, Woodley MA, Park S. 2013. Variation in the Morphology of Bacillus mycoides Due to
- 219 Applied Force and Substrate Structure. *PLoS ONE* 8:e81549.
- 220 Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S. 2006. Imaging peptidoglycan biosynthesis
- in Bacillus subtilis with fluorescent antibiotics. *Proceedings of the National Academy of Sciences*
- of the United States of America 103:11033–11038.
- 223 Turchi L, Santini T, Beccari E, Di Franco C. 2012. Localization of new peptidoglycan at poles in Bacillus
- mycoides, a member of the Bacillus cereus group. *Archives of Microbiology* 194:887–892.

225


226

228 Figure 1. Microscopic morphology of *B. mycoides* and *B. subtilis* under compression. A) Cells from


- liquid culture were applied to the bottom of an agarose pad compressed between plastic coverslips in a
- 230 MatTek dish. Black arrows indicate direction of compression throughout. B) Striations visible in agar
- surfaces. C) Montages of timelapses of *B. mycoides*, *B. subtilis* PY79, and *B. subtilis* σ^{D} ::tet. Note the
- striations visible in the agarose running perpendicular to the direction of compression.

233

234 Figure 2. B. mycoides and B. subtilis colony morphology under compression. A) A microtiter plate 235 inoculated with B. mycoides and B. subtilis. The two white bars at the top of the image of the plate are 236 polystyrene spacers, totaling 4.8% of the plate height. Black arrows indicate direction of compression 237 throughout. B) Representative images of *B. subtilis* PY79 and σ D::tet colonies grown on compressed agar with varying EDTA concentrations. Scale bar, 1cm. C) Plot of colony shape ratio (ie, colony measurement 238 239 perpendicular to the dimension of compression/colony measurement parallel to the dimension of compression) as it varies with EDTA concentration. D) Same as in C but with axes scaled to emphasize 240 relative effect of PY79 and σ D::tet. 241

242

243

Figure 3. Cellular morphology with and without EDTA. A-C) *B. mycoides, B. subtilis* PY79, and *B. subtilis* σD::tet, respectively, growing on LB agar containing 0µM EDTA. D-F) As above on 125µM EDTA. In all
 images, phase contrast channel is in red, and FM4-64 is in green. Scale bar, 10µm.

247

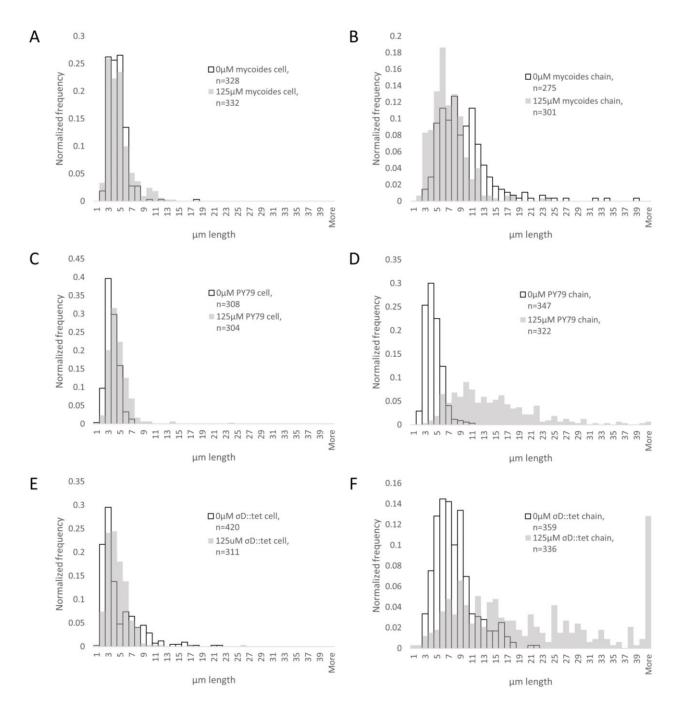


Figure 4. Quantification of chain and cell lengths with and without EDTA. A) Cell lengths of *B. mycoides* on 0μM (hollow bars) and 125μM EDTA (grey bars). B) Chain lengths of *B. mycoides*. C) Cell lengths of *B.*

subtilis PY79. D) Chain lengths of *B. subtilis* PY79. E) Cell lengths of *B. subtilis* σD::tet. F) Chain lengths of

252 *B. subtilis* σD::tet.