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Abstract

The ability of the site-frequency spectrum (SFS) to re�ect the particularities of

gene genealogies exhibiting multiple mergers of ancestral lines as opposed to those

obtained in the presence of exponential population growth is our focus. An excess

of singletons is a well-known characteristic of both population growth and multiple

mergers. Other aspects of the SFS, in particular the weight of the right tail, are,

however, a�ected in speci�c ways by the two model classes. Using minimum-distance

statistics, and an approximate likelihood method, our estimates of statistical power

indicate that exponential growth can indeed be distinguished from multiple merger

coalescents, even for moderate sample size, if the number of segregating sites is high

enough. Additionally, we use a normalised version of the SFS as a summary statistic in

an approximate bayesian computation (ABC) approach to distinguish multiple mergers

from exponential population growth. The ABC approach gives further positive evidence

as to the general eligibility of the SFS to distinguish between the di�erent histories, but

also reveals that suitable weighing of parts of the SFS can improve the distinction ability.

The important issue of the di�erence in timescales between di�erent coalescent processes

(and their implications for the scaling of mutation parameters) is also discussed.
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Introduction

The site-frequency spectrum (SFS) at a given locus is one of the most important and popular

statistics based on genetic data sampled from a natural population. In combination with the

postulation of the assumptions of the in�nitely-many sites mutation model (Watterson,

1975) and a suitable underlying coalescent framework, the SFS allows one to draw infer-

ence about evolutionary parameters, such as coalescent parameters associated with multiple-

merger coalescents or population growth models.

The Kingman coalescent, developed by Kingman (1982a,b,c), Hudson (1983a,b) and

Tajima (1983), describing the random ancestral relations among DNA sequences drawn

from natural populations, is a prominent and widely-used coalescent model from which one

can make predictions about genetic diversity. Many quantities of interest, such as the ex-

pected values and covariances of the SFS, are easily computed (Fu, 1995) from the Kingman

coalescent. Its robustness is quite remarkable, and indeed a large number of models can be

shown to have the Kingman coalescent, or a variant thereof, as their limit process, cf. e.g.

Möhle (1998). A large volume of work is thus devoted to inference methods based on the

Kingman coalescent; see e.g. Donnelly and Tavaré (1995), Hudson (1990), Nordborg

(2001), Hein et al. (2005) or Wakeley (2007) for reviews.

However, many evolutionary histories can lead to signi�cant deviations from the Kingman

coalescent model. Such deviations can be detected using a variety of statistical tools, such as

Tajima's D (Tajima, 1989a), Fu and Li's D (Fu and Li, 1993) or Fay and Wu's H (Fay and

Wu, 2000), which are all functions of the SFS. However, they do not always allow to identify

the actual evolutionary mechanisms leading to such deviations. Developing statistical tools

that allow to distinguish between di�erent evolutionary histories is, therefore, of fundamental

importance.

The present work focuses on properties of the (folded and unfolded) SFS in the in�nitely-

many sites model for three population histories: (1) classical Kingman coalescent, (2) popu-

lation growth, in particular exponential population growth, and (3) high fecundity coupled

with skewed o�spring distributions (HFSOD), resulting in gene genealogies being described
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by so-called Lambda-coalescents (Sagitov, 1999; Pitman, 1999; Donnelly and Kurtz,

1999). Brie�y, multiple merger coalescents may be more appropriate for organisms exhibiting

HFSOD than the Kingman coalescent (cf. eg. Beckenbach, 1994; Árnason, 2004; Eldon

andWakeley, 2006; Sargsyan andWakeley, 2008; Hedgecock and Pudovkin, 2011),

see also a recent review by Tellier and Lemaire (2014).

Both recent population growth as well as multiple-merger coalescents may lead to an

excess of singletons in the SFS compared to the classical Kingman coalescent based SFS,

which e.g. contributes to shifting Tajima's D values to the negative. Indeed, Durrett and

Schweinsberg (2005) prove that Tajima (1989b)'s D will be negative, at least for large

sample size, under fairly general multiple-merger coalescents.

The associated genealogical trees are, however, qualitatively di�erent. While moderate

�uctuations in population size lead to a time-change of the Kingman coalescent (Kaj and

Krone, 2003), multiple merger coalescents by de�nition change the topology of the ge-

nealogical tree. There is thus hope that each demographic e�ect leaves speci�c signatures

in the resulting SFS, not only with respect to an excess of singletons, but for example also

with respect to its right tail.

Indeed, one observes that the Kingman coalescent will not be a good match to genetic

data containing many singleton polymorphisms due to a lack of free (coalescent) parameters,

as opposed to multiple merger and population growth models, which both can predict an

excess of singletons. Encouragingly, multiple merger and growth models exhibit noticeable

di�erences in the bulk of the site-frequency spectrum, in particular in the lumped tail (Fig-

ure 1). In Figure 1, the normalised expected spectrum ϕ
(n),Π
i (2) for a given coalescent Π, ie.

the expected spectrum scaled by the expected total tree length, is compared for a particular

multiple-merger coalescent (B; Schweinsberg, 2003), and exponential (E) growth models

for sample size (number of leaves) n as shown. The �rst �ve classes (representing relative

length of external branches, two-leaf branches, etc.) are shown, with classes from six on-

wards collected together (labelled as `6+'). In Figure 1, the relative external branch lengths

were matched between the di�erent coalescent processes. Even though the relative exter-
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nal branch lengths, and by implication the relative number of singletons, can be matched

between the di�erent processes, the lumped tail (group 6+ in Figure 1) di�ers between the

multiple-merger coalescent (B), and exponential growth (E).

Matching the relative external branch lengths ϕ
(n),Π
1 (2) and observing how the rest of

the normalised spectrum behaves, as illustrated in Figure 1, gives hope that multiple merger

processes may be distinguished from (at least) particular population growth models with

adequate statistical power. The quantity ϕ
(n),Π
1 varies as a function of n and the associated

coalescent parameter (Figure S1). In the limit of large n, for the Kingman coalescent,

ϕ
(n),K
1 = O(1/ log(n)).

Inference methods for distinguishing population growth from the usual Kingman coales-

cent have been extensively studied, see e.g. Tajima (1989a), Slatkin and Hudson (1991),

Rogers and Harpending (1992), Kaj and Krone (2003), Ramos-Onsins and Rozas

(2002), and Sano and Tachida (2005). Detecting multiple merger coalescents in popu-

lations deviating from the Kingman coalescent assumptions is a relatively new direction

of research. Indeed, deriving inference methods based on multiple merger coalescents has

only just begun (Eldon and Wakeley, 2006; Birkner and Blath, 2008; Eldon, 2011;

Birkner et al., 2011, 2013a,b; Steinrücken et al., 2013; Koskela et al., 2013). In par-

ticular, Birkner et al. (2013b) obtain recursions for the expected site-frequency spectrum

associated with Lambda-coalescents. In the present work we address the issue of detect-

ing multiple merger coalescents from exponential population growth, using methods based

on the SFS, by estimating statistical power for both point and interval hypotheses. As an

alternative approach, we also consider a simple implementation of approximate Bayesian

computation (ABC; Rubin, 1984; Tavaré et al., 1997; Pritchard et al., 1999; Cucala

and Marin, 2013; Baragatti and Pudlo, 2014).
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Figure 1: Matching ϕ
(n),Π
1 (2) for the di�erent coalescent processes Π ∈ {E, B, A} for β (b), α

(a), and γ (g) for algebraic growth (see Supporting Information) for comparison, and number
of leaves n as shown. Expected values were computed exactly.
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Theory and Methods

Basic properties of the site-frequency spectrum

Consider a sample of n DNA sequences taken at a given genetic locus and assume that

we can distinguish between derived (new mutations) and ancestral states. For n ∈ N let

[n] := {1, . . . , n}. We denote by ξ
(n)
i the total number of sites at which the mutant base

appears i ∈ [n− 1] times. Then,

ξ(n) :=
(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
is referred to as the unfolded site-frequency spectrum based on the n DNA sequences. If

mutant and wild-type cannot be distinguished, one often considers the folded spectrum

η(n) :=
(
η

(n)
1 , . . . , η

(n)
bn/2c

)
, where ancestral and derived states are not distinguished, and

hence

η
(n)
i :=

ξ
(n)
i + ξ

(n)
n−i

1 + δi,n−i
, 1 ≤ i ≤ bn/2c,

(Fu, 1995). In this study, we will mostly be concerned with the unfolded site-frequency

spectrum. De�ne ζ
(n)
i := ξ

(n)
i /|ξ(n)| where |ξ(n)| := ξ

(n)
1 + · · ·+ ξ

(n)
n−1 denotes the total number

of segregating sites. Thus, ζ(n) =
(
ζ

(n)
1 , . . . , ζ

(n)
n−1

)
is the `normalized' unfolded SFS, with

the convention that ζ(n) = 0 in the trivial case of complete absence of segregating sites

(|ξ(n)| = 0).

In order to compute expected values, variances and covariances of the SFS, an explicit

underlying probabilistic model is needed. In the following we assume that the genealogy of a

sample can be described by a coalescent process, more precisely by either (a timechange of)

the Kingman coalescent or a multiple-merger coalescent. In addition, the in�nitely-many-

sites mutation model (Watterson, 1975) is assumed, and mutations are modeled by a

Poisson-process on the coalescent branches with rate θ/2.

Closed-form expressions for the expected values and (co)variances of ξ(n) have been de-

termined in Fu (1995) when associated with the Kingman coalescent. One can represent the
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expected values of ξ(n) in a uni�ed way using the results of Griffiths and Tavaré (1998),

Kaj and Krone (2003) and Birkner et al. (2013b), that allow to treat the expected values

(and covariances) of the SFS for all coalescent models in questions.

Let Πn = (Πn
t , t ≥ 0) be a (partition-valued exchangeable) coalescent process started

from n leaves (partition blocks) corresponding to the random genealogy of a sample of size

n. By discussing `leaves' rather than DNA sequences we are emphasizing our viewpoint

of the genealogy as a random graph, where the leaves are a particular kind of vertices.

Our emphasis is on the topology of the genealogy, rather than the associated site-frequency

spectrum.

If the initial number of leaves is not speci�ed, we simply speak of Π. One may think of

Π as the Kingman coalescent, but the point is that the following result will stay true also

for externally time-changed Kingman coalescents as well as asynchronous multiple merger

coalescents (a.k.a. `Lambda'-coalescents in the mathematical literature), and even externally

time-changed multiple merger coalescents.

Given n and a coalescent model Π, let (Y
(n)
t )t≥0 be the block counting process of the

underlying coalescent Πn started from n lineages, i.e. Y
(n)
t gives the number of ancestral

lines (blocks) present/active at (backwards) time t. For 2 ≤ k < n, let T
(n)
k be the random

amount of time that Y (n) spends in state k. Given a coalescent Πn started from n (unlabelled)

lineages, denote by p(n),Π[k, i] the probability that, conditional on Y (n) taking value k, a given

one of the k blocks subtends exactly i ∈ [n− 1] leaves. A general representation of EΠ
[
ξ

(n)
i

]
is then

EΠ
[
ξ

(n)
i

]
=
θ

2

n−i+1∑
k=2

p(n),Π[k, i] · k · EΠ
[
T

(n)
k

]
, (1)

and for the normalized expected SFS ϕ
(n),Π
i

ϕ
(n),Π
i =

∑n−i+1
k=2 p(n),Π[k, i] · k · EΠ

[
T

(n)
k

]
∑n

`=2 `EΠ
[
T

(n)
`

] . (2)

One can interpret the quantity ϕ
(n),Π
i as the probability that a mutation, under the in�nitely
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many sites assumption and the coalescent model Π, with known ancestral types, appears

i times in a sample of size n. Importantly, ϕ
(n),Π
i is not a function of the mutation rate,

unlike EΠ
[
ξ

(n)
i

]
. One can also view ϕ

(n),Π
i as a �rst-order approximation of the expected

value EΠ
[
ζ

(n)
i

]
of the normalised SFS.

As examples for Π we will consider the classical Kingman coalescent (K), exponential

growth (E), and the Beta(2 − α, α) multiple-merger coalescent (B). These are recalled in

the Supporting Information. The quantity ϕ
(n),Π
i can be compared with ζ

(n)
i in a minimum-

distance statistic (see below). Simulations suggest that ϕ
(n),B
i is a decent approximation of

EB
[
ζ

(n)
i

]
when α is not too close to 1, and n not too small (Birkner et al., 2013b). Similar

conclusions hold in the case of exponential growth (Figure S2).

Recursive formulae for the covariances of the SFS can also be established; see e.g. (23)

in Fu (1995) for the Kingman case or Birkner et al. (2013b) for the Lambda-case. For

general models of changes in population size cf. section `The SFS under variable population

size' in the Supporting Information.

Comparing the observed ζ
(n)
i (instead of ξ

(n)
i ) to its expected value EΠ

[
ζ

(n)
i

]
� obtained

under a particular coalescent model Π � enables one to do inference without having to jointly

estimate the mutation rate θ using e.g. a minimum-distance statistic. Unfortunately, there

seems to be no explicit way of representing EΠ
[
ζ

(n)
i

]
as a simple function of the coalescent

parameters and sample size n. One may, instead, compare ζ
(n)
i to (2) (Birkner et al.,

2013b).

Timescales, segregating sites and mutation rates

The choice of a coalescent model (resp. demographic history) Π and its underlying parameters

strongly a�ects classical estimates for the coalescent mutation rate θ/2 (i.e. the Poisson rate

at which mutations appear on coalescent branches). Assume w.l.o.g. for all multiple merger

coalescents in question that the underlying coalescent measure Λ is always a probability

measure: This normalisation �xes the coalescent time unit as the expected time to the

most recent common ancestor of two individuals sampled uniformly from the population. In
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particular, θ can then be interpreted as the expected number of observed pairwise di�erences

in a sample of size two.

Given an observed number of segregating sites S in a sample of size n, a common estimate

θ̂Π of the scaled mutation rate θ is the Watterson estimate

θ̂Π :=
2S

EΠ
[
B(n)

] , (3)

where EΠ
[
B(n)

]
is the expected total tree length of the underlying coalescent model Π. One

can of course also estimate θ as a linear combination of the site-frequency spectrum (cf.

Achaz, 2009) in the case of the Kingman coalescent. Using the recursions for EΠ
[
ξ

(n)
i

]
obtained by Birkner et al. (2013b), one can now also estimate θ analogously in case of a

Lambda-coalescent.

The real-time embedding of genealogies can vary drastically between di�erent model

classes. Mathematically, coalescent processes can be obtained as the limits of genealogies

in Cannings models (Cannings, 1974, 1975) (resp. similar models) under a suitable time-

change. The real-time embedding is the expression of coalescent times on the time scale of the

underlying Cannings models. This important aspect of coalescent models is subtly hidden

in the actual resulting limiting models. For example, given a Cannings population model of

�xed size N , let cN be the probability that two gene copies, drawn uniformly at random and

without replacement from a population of sizeN , derive from a common parental gene copy in

the previous generation (see (S10) in the Supporting Information for an explicit formula and

further details). While for the usual Wright-Fisher haploid model cN = 1/N , in a population

model studied by Schweinsberg (2003), which leads to the Beta(2 − α, α)-coalescent, cN

is proportional to 1/Nα−1, for 1 < α ≤ 2. By a limit theorem for Cannings models of

Möhle and Sagitov (2001), one coalescent time unit corresponds to 1/cN generations in

the original model with population size N . In this framework, the expected total tree length

EB[B(n)] (measured in coalescent time units) decreases as a function of α ∈ (1, 2], while the

corresponding quantity (measured in generations) EB[B(n)]/cN increases (Figure S3).

Accordingly, the mutation rate µ at the locus under consideration per individual per
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generation must thus be scaled with 1/cN (as noted e.g. in Eldon and Wakeley (2006)),

and the relation between µ, the coalescent mutation rate θ/2 and cN is then given by the

(approximate) identity
θ

2
=

µ

cN
. (4)

This allows one to obtain an approximate real-time calibration of the coalescent time unit

1/cN , given external knowledge of the per-generation mutation rate µ, and an estimate for

θ, e.g. based on (3).

The time-scaling applied to a classical Wright-Fisher model with �uctuating population

size (as in Kaj and Krone (2003)) in order to obtain a (time-changed) Kingman coalescent

is recalled in the Supporting Information, see in particular Equation (S11). Again, the

estimate (3) of θ depends on the exponential growth parameter β.

Our aim is to construct a test resp. a decision rule to distinguish between the two model

classes E and B (which intersect exactly in K). Hence, our methods can also be used to dis-

tinguish growth from stationary models and multiple merger coalescents from the Kingman

coalescent model, thus complementing existing literature (cf. eg. Ramírez-Soriano et al.,

2008; Ramos-Onsins and Rozas, 2002). Our investigation can be applied to more general

Lambda-coalescents or other growth models. In the Supporting Information, we additionally

consider the case of algebraic (power law) population growth, which may be applicable when

the geometry of a habitat (say, a coastline) restricts the growth of a population.

Approximate likelihood ratio tests for the SFS

In order to distinguish, say, E from B based on an observed site-frequency spectrum, a natural

approach is to construct a (unnested) likelihood-ratio hypothesis test. Suppose our null-

hypothesis H0 is presence of recent exponential population growth E with some parameter

β ∈ [0,∞), and we wish to test it against the alternative H1 hypothesis of a multiple merger

coalescent, say, the Beta(2 − α, α)-coalescent (Schweinsberg, 2003) for some α ∈ [1, 2].
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To clarify our notation, de�ne the hypotheses we will work with;

Θ0 := {(exponential growth (β), θ) : β ∈ [0,∞), θ ∈ (0,∞)}

and

Θ1 := {(Beta(2− α, α)-coalescent, θ) : α ∈ [1, 2], θ ∈ (0,∞)}

where we interpret β = 0 and α = 2 as corresponding to the Kingman coalescent. Later,

we will �x the expected total number of segregating sites, which will make θ a function of β

(resp. α). As shorthand, we will use Θβ := [0,∞) and Θα = [1, 2] where the intervals refer

to β resp. α. Recall that ξ(n) is the observed site frequency spectrum for a sample of size n

and, given mutation rate θ/2 > 0, let ϕ(n),Π (2) be the normalized expected site frequency

spectrum.

Let H0 := {ϑ ∈ Θ0} denote the null-hypothesis and H1 = {ϑ ∈ Θ1} denote the alter-

native. Let L(ϑ, ξ(n)) be the likelihood function of the observed frequency spectrum under

model ϑ. Then, one can de�ne the likelihood-ratio function

%(ξ(n)) :=
sup{L(ϑ, ξ(n)), ϑ ∈ Θ0}
sup{L(ϑ, ξ(n)), ϑ ∈ Θ1}

. (5)

One would reject the null-hypothesis H0 if % is su�ciently small. More precisely, given a

signi�cance level a ∈ (0, 1) (say, a = 0.05), one needs to determine a constant %∗ such that

sup
ϑ∈Θ0

Pϑ
{
%(ξ(n)) ≤ %∗

}
≤ a. (6)

The corresponding power function G is then given by

G(ϑ) = Pϑ{%(ξ(n)) ≤ %∗}, ϑ ∈ Θ1. (7)

Exact likelihoods can be computed recursively or via simulation (see e.g. Eldon andWake-

ley (2006) and Sargsyan and Wakeley (2008)) from the representation (8) where B
(n)
i
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is the random length of branches subtending i ∈ [n − 1] leaves (DNA sequences) with

B(n) := B
(n)
1 + · · ·+B

(n)
n−1 being the total length of the tree (recall Eϑ[ξ

(n)
i ] = (θ/2)Eϑ[B

(n)
i ])

with expectation being taken relative to coalescent process Π with parameter ϑ (to ease

notation, write Bi ≡ B
(n)
i ),

Pϑ{ξ(n)
i = ki, i = 1, . . . , n− 1} =

(
θ

2

)k1+···+kn−1

Eϑ
[ n−1∏
i=1

e−Biθ/2
Bki
i

ki!

]
. (8)

For medium to large n, however, it is more practical to consider the approximate likeli-

hood function

L̃(ϑ, ξ(n)) =
n−1∏
i=1

e−sϕ
(n)
i

(ϕ
(n)
i s)ki

ki!
, (9)

(where s = θ
2
Eϑ[B(n)]) pretending that the classes are approximately independent and

Poisson-distributed (which is encouraged by the fact that the o�-diagonal entries of the

covariance matrix of ξ(n) are small compared to the diagonal terms, see Birkner et al.

(2013b)). The corresponding approximate likelihood-ratio will be denoted by %̃, and can

then be used to determine quantiles associated with signi�cance level a as in (6), and power

function G̃.

One often observes ξ
(n)
i = 0 for most i greater than some (small) number m in observed

data, in particular for large n. It thus seems natural to consider (approximate) likelihood

functions for �lumped spectra� (e.g. collapsing all entries in classes to the right of some

number m into one class m+).

Another natural type of lumping may be to collect together classes so that
∑

i ϕ
(n)
i ≥ x

for some x ∈ (0, 1/2]. This may not always be feasible, though, if the individual ϕ
(n)
i quickly

become quite small, and we will refrain from going into a more detailed theoretical discussion

of optimal lumpings.

Instead of (approximate) likelihoods, one can also consider rejection rules based on min-

imal distance statistics:

%(d) :=
inf{d(ϕ(n)(ϑ), ξ(n)), ϑ ∈ Θ0}
inf{d(ϕ(n)(ϑ), ξ(n)), ϑ ∈ Θ1}

, (10)
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for some suitable distance measure d (e.g. the `p distance with p = 2) with corresponding

power function G(d). If entries in the SFS become sparse and far apart, lumping the right tail

should increase its relative contribution to the `2 distance, and might thus be more adequate

for our purposes. In fact, we will observe such an e�ect in our subsequent analysis.

Additional information about the parameters in each model, for example reducing the

respective parameter ranges to one-point hypotheses of type H0 = {ϑ = β∗} vs. H1 = {ϑ =

α∗}, is expected to lead to substantially more powerful tests, in particular if both hypotheses

are well-separated from the Kingman coalescent.

Approximate Bayes factors and model selection

Using the previous notation, an analogous Bayesian approach is to choose a model class

based on a Bayes factor

%Bayes :=

∫
Θ0
L(ϑ, ζ(n)) dπ0(ϑ)∫

Θ1
L(ϑ, ζ(n)) dπ1(ϑ)

,

given a pair of priors π0, π1 on Θ0,Θ1 (given the same prior probability of each model

class, this is also the odds-ratio). We use the less informative normalized site frequency

spectrum (nSFS) of an n sample, denoted by ζ(n), since it is robust to changes in mutation

rates. Bayes factors based on (lumped) distances d and/or the folded nSFS may also be

considered. In line with classical Bayes factor philosophy (cf. e.g. Kass and Raftery

(1995)), one interprets an observed value of %B � 1 as evidence in favor of Θ0 over Θ1. As

exact likelihoods L(ϑ, ζ(n)) are often impractical, we employ approximate Bayesian methods

(see e.g. Beaumont (2010)).

For the ABC analyses, we again focus on exponential growth (E) versus Beta coalescents

(B) and denote the corresponding Bayes factor by %E/B. Recall that for �xed n, both model

classes can be parametrised by two parameters, mutation rate θ ∈ (0,∞) and exponential

growth rate β ∈ [0,∞) resp. the Beta coalescent parameter α ∈ [1, 2]. To choose prior

distributions on these two-dimensional parameter sets Θ0 and Θ1 we �rst record/assume the

number s of segregating sites in the data. Then, we set marginal prior distributions for the
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growth parameter β resp. the Beta coalescent parameter α. Finally, for each β resp. α, the

mutation rate is determined as the Watterson estimate θ̂Π (3), which of course depends on

β resp. α through the total branch length EΠ
[
B(n)

]
. We chose the mutation rate so that

the expected number of mutations under the chosen coalescent model equals the Watterson

estimate based on the (assumed) number of observed mutations.

For convenience, we employ a simple rejection-based ABC scheme to approximate the

Bayes factor for the model (class) comparison given an observed nSFS (resp. folded and/or

lumped versions, which can be treated analogously). First we simulate nreps independent

samples of the nSFS under each model class and record the distance to the observed nSFS

in question. We then �x a tolerance level x ∈ (0, 1) and count the number of simulations nE

from the growth model resp. nB from the Beta coalescent model class that are among the x%

best �ts with respect to the `2 distance to the observed nSFS (the `accepted' simulations).

Here, we use an additional scaling by dividing each class (lumped classes) in the nSFS by

the median (if non-zero) within this class observed in all simulations as implemented in the

R package abc (Csilléry et al., 2012). The Bayes factor can then be approximated by

%E/B ≈ nE
nB
.

To assess how well our ABC approach allows us to distinguish the model classes, we use

two approaches from the R package abc. Both are based on leave-one-out cross-validation.

More precisely, we pick ncv simulations at random from each model class, treat them as

the observed value of the nSFS and then run the ABC approach with the same parameters

and simulations as above. For each cross-validation iM ∈ {1, . . . , ncv}, with M denoting the

model class E resp. B, we record the counts of accepted simulations nE(iM) and nB(iM) from

each model class. As measures for the distinction ability of this approach, we record for

each model class the (estimated) mean posterior probabilities π given the observed nSFS,
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borrowing notation from Stoehr et al. (2014),

EB
[
π(E|ζ(n))

]
≈ 1

ncv

ncv∑
iB=1

nE(iB)

nE(iB) + nB(iB)

and

EE
[
π(B|ζ(n))

]
≈ 1

ncv

ncv∑
iE=1

nB(iE)

nE(iE) + nB(iE)

The mean misclassi�cation probabilities are estimated as

EB
[
π(%E/B > 1|ζ(n))

]
≈ 1

ncv

ncv∑
iB=1

1{nE(iB)>nB(iB)}

and

EE
[
π(%E/B < 1|ζ(n))

]
≈ 1

ncv

ncv∑
iE=1

1{nE(iE)<nB(iE)}.

To ease notation we will omit n in the formulae.

In practice, we need to e�ciently generate samples of the nSFS under the di�erent models

which can be achieved by backward-in-time coalescent simulations. For the exponential

growth models (E), we use Hudson's ms (Hudson (2002)) as implemented in the R (R

Core Team, 2012) package phyclust (Chen (2011)). For the Beta-coalescents (B), we

use custom R and C scripts to generate samples of the nSFS. To conduct the actual ABC

analysis including cross-validation techniques, we employed the R package abc (Csilléry

et al. (2012)).

Results

Power estimates

To assess the sensitivity of our approximate likelihood ratio test associated with the likelihood

ratio function (5), we consider its power G from (7) as a function of α with H0 = Θβ

and H1 = Θα. As shown in Figure 2, high power (at least 60%) to distinguish Beta(2 −
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α, α)-coalescent from exponential growth can be obtained, in particular in the presence of

su�ciently many segregating sites (Figure 2B). Similar conclusions hold for a smaller sample

size (n = 100; Figures S12, S11). The number 300 of segregating sites is nearly the total

number of polymorphisms (298) observed by Carr and Marshall (2008) who scanned

whole mitochondrial genomes (15, 655 bp) of the highly fecund Atlantic cod (Gadus morhua).

For comparison, Figure 3 shows power estimates for observed parameters ((n, s) = (30, 300))

resembling the data considered by Carr and Marshall (2008). Reversing the hypotheses

shows similarly promising power estimation results (Figure 4) for n = 200. We do not have

a clear explanation for why the power is not monotone as a function of β, in particular for

smaller Type I error.

When sample size is large, one will typically encounter many zeroes in a given observed

site-frequency spectrum, so that we will lump the right tail of the spectrum at some threshold

m+. Our power estimates suggest that keeping at least the �rst �ve classes intact, and

collecting the rest into one other class, has little e�ect on the power of the test (results not

shown). Keeping only the singleton (ξ
(n)
1 ) class intact, and collecting all the rest into one

class, however, signi�cantly diminishes power (results not shown).

C (cf. Kernighan and Ritchie, 1988) code written for estimating the power, where use

was made of the GNU Scienti�c Library (Galassi et al., 2013) and the GMP (Granlund

and the GMP development team, 2012) and MPFR (Fousse et al., 2007) multiple

precision libraries, applying Romberg Integration (Bauer, 1961), is available upon request.
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Figure 2: Estimate of power as a function of α when exponential growth is the null hypothesis,
and the test statistic is sup{`(ϑ, ξ(n)), ϑ ∈ Θ0} − sup{`(ϑ, ξ(n)), ϑ ∈ Θ1} (5), with `(ϑ, ξ(n))
the log of the Poisson likelihood function (9) (no lumping) with n = 200 and segregating sites
(s) as shown. The symbols denote the size of the test as shown in the legend. The interval
hypotheses are Θβ ≡ {β : β ∈ {0, 10, . . . , 1000}} and Θα ≡ {α : α ∈ {1, 1.05, . . . , 2}}.
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Figure 3: Estimate of power as a function of α when exponential growth is the null hypothesis,
and the test statistic is sup{`(ϑ, ξ(n)), ϑ ∈ Θ0} − sup{`(ϑ, ξ(n)), ϑ ∈ Θ1} (5), with `(ϑ, ξ(n))
the log of the Poisson likelihood function (9) (no lumping). The di�erent symbols denote
the size of the test as shown in the legend. The interval hypotheses are Θβ ≡ {β : β ∈
{0, 10, . . . , 1000}} and Θα ≡ {α : α ∈ {1, 1.05, . . . , 2}}.

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0.1
0.05
0.01

n = 30, s = 300

α

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2014. ; https://doi.org/10.1101/007690doi: bioRxiv preprint 

https://doi.org/10.1101/007690


Figure 4: Estimate of power as a function of log10 β when the Beta-coalescent is the null
hypothesis, and the test statistic is sup{`(ϑ, ξ(n)), ϑ ∈ Θ0} − sup{`(ϑ, ξ(n)), ϑ ∈ Θ1} (5),
with `(ϑ, ξ(n)) the log of the Poisson likelihood function (9) (no lumping); with n = 200
and number of segregating sites s as shown. The test sizes are 0.1 (solid line), 0.05 (dashed
line), 0.01 (dotted line). The interval hypotheses are Θβ ≡ {β : β ∈ {0, 10, . . . , 1000}}
and Θα ≡ {α : α ∈ {1, 1.05, . . . , 2}}. Values at log10 β = 0 correspond to the Kingman
coalescent.
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Given additional information about α or β could lead one to test the point hypotheses

H0 = {β = β∗} against H1 = {α = α∗} for some �xed β∗ ≥ 0 and α∗ ∈ [1, 2], or vice versa.

An example of power estimates for point hypotheses, as a function of sample size n, is shown

in Figure S5. High power can be obtained even for relatively small number of segregating

sites (s = 10). Even excluding the singletons (cf. eg. Achaz, 2008) yields high power for

some parameter values (Figures S6 and S7).

Considerations of statistical power for point hypotheses naturally lead to the following

question: how does the distance between expected site-frequency spectra behave as a function

of relevant coalescent parameters? Figure 5 is an e�ort to understand the relation between

the expected SFS for the two models (E and B) by graphing the distance between expected

normalised spectra ϕ
(n),E
i and ϕ

(n),B
i as a function of α and β. The normalised spectrum is of

course invariant with respect to mutation rate θ. Figure 5 shows a pattern one would expect

from predictions of relative lengths of external branches, and hence singleton polymorphisms

- increasing as β increases or α decreases. Similar conclusions can be reached from Figure S4,

which shows the distances for n = 1000. In particular, one observes that the minimum of

the curves for eg. β = 1000 in Figure S4 shifts as sample size n increases. The smallest `2

distance in Figure 5 is ≈ 0.02 - excluding 0 due to comparison of Kingman coalescent with

itself (β = 0 and α = 2). Naturally one would also want to compare the quantiles of ξ
(n)
i , or

ζ
(n)
i , associated with di�erent processes, since two very di�erent distributions can still have

the same mean.

Figures 5 and S4 indicate the presence of a region, essentially a curve in the two-

dimensional (α, β) parameter space, along which the lowest `2 distance is reached.

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2014. ; https://doi.org/10.1101/007690doi: bioRxiv preprint 

https://doi.org/10.1101/007690


Figure 5: The `2-distance

(∑
i

(
ϕ

(n),E
i − ϕ(n),B

i

)2
)1/2

of the expected normalized spectra

ϕ
(n),Π
i (2) as a function of α and β for n = 200. Expected values were computed exactly.

The gridpoints are α ∈ {1, 1.05, . . . , 2}, β ∈ {0, 10, 20, . . . , 1000}. The smallest distance for
the gridpoints chosen is ≈ 0.02 - excluding 0 due to comparison of Kingman coalescent with
itself (β = 0 and α = 2).
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Mean misclassi�cation probabilities & posterior probabilities for the

ABC approach

We analyse how well an ABC approach using the nSFS resp. the folded nSFS and their

lumped variants as summary statistic can distinguish between exponential growth and the

Beta(2− α, α)-coalescent. The distinction ability of the ABC model comparison is assessed

as described in the Methods section. We specify the following parameters

• The Beta(2 − α, α)-coalescent parameter α has the uniform distribution on [1, 2] as

prior distribution.

• The growth rate β has the uniform distribution on the set {0, 10, 20, . . . , βmax} of

subsequent multiples of 10 as prior distribution.

• We simulate the nSFS nreps = 2× 105 times for n = 200 in each model class.

See Tables 1 and S1-S3 for the estimates of posterior probabilities and misclassi�cation prob-

abilities (some with one replication).

Table 1: Approximations of the mean posterior probabilities and misclassi�cation proba-
bilities for the ABC model comparison for tolerance x = 0.01, assumed number s = 60 of
observed mutations and using either the nSFS or the nfSFS as summary statistics. ncv de-
notes the number of cross-validations `lumped' denotes which mutation classes are lumped
into one class. The maximal growth rate used in all model comparisons is βmax = 1000.

fold lump ncv EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%E/B > 1|ζ)

]
EE
[
π(%E/B < 1|ζ)

]
no 10+ 24000 0.301 0.246 0.258 0.128
no 50+ 12000 0.321 0.291 0.262 0.125
no 100+ 1200 0.332 0.293 0.282 0.17
yes 10+ 24000 0.319 0.253 0.281 0.125
yes 50+ 12000 0.34 0.287 0.284 0.155
yes no 12000 0.343 0.291 0.287 0.162

Appropriate lumping seems to decrease the error probabilities. For s = 60 observed

mutations, strong lumping is decreasing the error probabilities for most parameter choices,
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whereas for s = 300 (Table S1) moderate lumping seems to decrease them the most. Not

surprisingly growth rates closer to zero are harder to distinguish from the Beta(2 − α, α)-

coalescent models than higher growth rates (see Tables S1 and S3). Additionally, a lower

count of observed mutations leads to higher error probabilities, as does using the folded nSFS

as summary statistics.

Discussion

Distinguishing between multiple merger coalescents and population growth is an important

task, in particular since patterns of genetic variation produced by the two demographic

e�ects, and summarized in the site-frequency spectrum, is expected to be similar.

The unit of time of di�erent coalescent processes can vary considerably. As discussed

above, predictions about genetic variation can be compared in at least three di�erent ways.

One is with time computed in coalescent units, and employing the scaled mutation rate θ.

Another way is comparing normalised spectra ζ(n), whose comparison should be independent

of timescaling. The third option is to rescale time in generations, which is of course only

feasible when one can compute the coalescence probability cN . Once again, in an ideal

haploid Wright-Fisher population, cN = 1/N . In an ideal Schweinsberg population, cN is

proportional to N1−α, 1 < α < 2 (Schweinsberg, 2003). The di�erence between 1/N and

N1−α can clearly be substantial. Consequently, it becomes quite hard to compare estimates

of θ between di�erent processes, since θ/2 ≈ µ/cN for any coalescent process (where µ is

the per-generation mutation rate). Thus, our recommendation would be to compare scaled

spectra ζ(n).

A key result from our power estimates is that, even for moderate sample size, and based

on interval hypotheses, the two processes can be distinguished for signi�cant parts of the

parameter space of α and β. By using recent results (Birkner et al., 2013b) on computing

EΠ
[
ξ

(n)
i

]
associated with Lambda-coalescents, and recursions for computing EE

[
ξ

(n)
i

]
(Sup-

porting Information), allowing us to work within an approximate likelihood framework, we

obtain very promising results. Thus, given sample size (n) and observed number of segre-
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gating sites (s), our recommendation would be to always estimate power based on interval

hypotheses.

The construction of a formal statistical test to distinguish between a multiple merger

coalescent process and population growth is complicated in both the minimum-distance and

the likelihood framework. A suitable distance-metric would be (p ≥ 1)

Z(n),Π
p :=

n−1∑
i=1

∣∣∣ζ(n)
i − EΠ

[
ζ

(n)
i

]∣∣∣p(
VarΠ

[
ζ

(n)
i

])p/2


1/p

,

or a lumped version thereof, where VarΠ
[
ζ

(n)
i

]
denotes the variance of ζ

(n)
i associated with

coalescent process Π. However, we neither have a closed-form expression for the expected

value nor variance of ζ
(n)
i as a function of sample size or coalescence parameters, let alone

having any knowledge about the distribution of Z
(n),Π
p . In the likelihood framework, the

hypotheses are not nested, and thus it's not clear if convergence to a χ2-distribution holds.

One may instead apply an ABC approach.

Our analysis for sample size n = 200 suggests that an ABC method based on the `2

distance of simulated values to an observed nSFS is able to distinguish between Beta(2−α, α)-

coalescents or n-coalescents with growth with reasonably low error rates. This holds true

at least for a high enough number of observed mutations and models di�erent enough from

Kingman's n-coalescent (i.e., β not close to 0, α not close to 2). The nSFS is used because it

is more robust to changes in mutation rates than the SFS. We exploit this by estimating the

mutation rate from the (assumed) number of observed mutations in the sample instead of

drawing it independently from a prior distribution. This is done to reduce the dimensionality

of the inference problem.

It is intriguing that using the complete nSFS as summary statistics in the ABC approach

yields higher errors than using intermediate resp. strong lumpings of the nSFS. A possible

explanation for the positive e�ect of lumping lies in the relationship between the branch

lengths of the coalescent model, the mutation rate and the SFS. Consider the approximate
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likelihood function (9). Assume that the distribution of the SFS is approximately composed

of independent Poisson distributions with parameter θ
2
EΠ
[
B

(n)
i

]
for i ∈ [n − 1]. For a

Poisson-distributed random variable X with parameter κ, we have

√
Var(X)

E(X)
= 1√

κ
, thus

showing that smaller Poisson parameters yield a higher amount of variation relative to their

expected value. Thus, classes in the SFS with small underlying branch lengths (which tend

to be in the right tail of the SFS) and/or a low mutation rate show relatively more variation

compared to their contribution to the total number of mutations than those with longer

branches or if the mutation rate is higher. Lumping such classes together, under (9), yields

again a Poisson-distributed lumped class, but with Poisson parameter being the sum of

parameters from the classes lumped together. Thus, the variation within this class relative

to its contribution to the total number of mutations is reduced by lumping. If di�erent

coalescent models show di�erent mean behaviour of (lumped) classes, lumping reduces noise

and thus increases the chance to correctly identify the underlying model. Naturally, this

e�ect is weakened by higher mutation rates and/or higher sample size n (e.g., consider the

limit results for the SFS in Berestycki et al. (2013) and Kersting and Stanciu (2013)).

However, the inequalities EA
[
ξ

(n)
i

]
> EB

[
ξ

(n)
i

]
, and EA

[
ξ

(n)
j

]
< EB

[
ξ

(n)
j

]
for i 6= j and

two di�erent coalescent models A and B, would, if extreme lumping is applied, eg. collecting

together in one group all mutations other than singletons, reduce the signal of the di�erent

models. Extreme lumping would thus decrease the chance to correctly identify the model.

This heuristic could explain the pattern within the error probabilities. To check whether this

heuristic actually holds true, one would need to have better knowledge of the distribution of

the SFS resp. nSFS.

Thus, using an appropriate weighing of the variables in the nSFS resp. SFS should

improve the power to distinguish between model classes. It would also be a worthwile future

study to see whether a one-dimensional summary of the SFS similar to Tajima's D or Fay

and Wu's H, as described in Achaz (2009), could yield similar or even higher power to

distinguish between the model classes than the complete (possibly reweighted) nSFS. In

our ABC computations a simple rejection-based approach was applied. More sophisticated
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techniques are available (see Beaumont (2010) for an overview) that may improve the

prediction accuracy.

Marine organisms with external fertilization and Type III survivorship curves, such as

Paci�c oysters or Atlantic cod, and in which each gender produces a large number of gametes

(May, 1967; Strathmann, 1987), are prime candidates for natural populations exhibiting

high fecundity and skewed o�spring distributions (Beckenbach, 1994; Boom et al., 1994;

Árnason, 2004). Previous analysis of mtDNA of Atlantic cod (cf. eg. Birkner et al.,

2013b) and Paci�c oysters (Sargsyan and Wakeley, 2008) supports the hypothesis that

multiple merger coalescents may be more appropriate than the Kingman coalescent as base-

line models for high fecundity organisms with skewed o�spring distributions. Our ABC

analysis of the Atlantic cod data of Árnason (2004) (see Supporting Information) indicates

exponential growth is slightly favored over the Beta(2− α, α)-coalescent. Árnason (2004)

does exclude population growth in his analysis. Our results indicate that the SFS informa-

tion one obtains from the Árnason (2004) data may not have enough polymorphic sites to

distinguish between exponential population growth and the Beta(2− α, α)-coalescent.

The problem of distinguishing between multiple merger coalescents and population growth

was our motivation. We proceeded by analysing two natural models with clear biological

interpretation, the Beta(2−α, α)-coalescent and exponential growth using the site-frequency

spectrum. The power estimation results are very promising: for even moderate sample size

we can distinguish between the two models for large parts of the associated parameter spaces

with high power. Thus, we recommend, for a given sample size (n) and number of segre-

gating sites (s) to estimate power based on interval hypotheses. Approximate Bayesian

computation also yields convincing results, at least for a high level of polymorphism. The

SFS, in general, has enough information to distinguish between exponential growth and mul-

tiple merger coalescent processes. Comparing our single-locus methods and results to those

obtained for multiple loci remains an important future exercise.
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Figure S1: Relative expected length of external branches ϕΠ
1 (n) (2) for Π ∈ {B, E} as a

function of the coalescent parameters α resp. β; `2.0' and `−1' denote the Kingman coalescent;
number of leaves n as shown. Expected values were computed exactly.
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The SFS for multiple merger coalescents

Some basic theory of multiple merger coalescents, which are also known as Lambda-coalescents

in the mathematics literature will now be brie�y reviewed. The theory associated with si-

multaneous multiple mergers, or so-called Ξ-coalescents (Schweinsberg, 2000;Möhle and

Sagitov, 2001), could be treated by similar methods, but will not be discussed at this point.

The discussion of the relevance of Lambda-coalescents in population genetics started

with Eldon and Wakeley (2006). Recall that a Lambda-coalescent, formally introduced

by Pitman (1999); Sagitov (1999), and Donnelly and Kurtz (1999), is a partition-

valued exchangeable coalescent process determined by a �nite measure Λ on [0, 1]. When

Λ is associated with the beta-distribution with parameters 2 − α and α for 1 ≤ α < 2

(Schweinsberg, 2003), any particular subset of k ∈ {2, . . . , b} blocks merges into one

(ie. a particular set of k labelled ancestral lineages coalesce) at rate λb,k = B(k − α, n −

k + α)/B(2 − α, α), where B(·, ·) is the beta function. In contrast, λb,k = 1(k=2) for the

Kingman coalescent (Λ(dx) = δ0(dx)). The Beta(2−α, α)-coalescent introduces a coalescent

parameter α, which can be estimated from genetic data (Eldon, 2011; Birkner et al.,

2013b; Birkner and Blath, 2008; Steinrücken et al., 2013).

As before, for any Lambda-coalescent Π(Λ) and i ∈ [n − 1], the expected frequency

spectrum EΠ(Λ)
[ξ

(n)
i ] is given by (1). Denote by

(
Y

(n),Π
t , t ≥ 0

)
the block-counting process,

ie. Y
(n),Π
t gives the number of ancestral lineages active at time t; with P

(
Y

(n),Π
0 = n

)
= 1.

In contrast to the Kingman case, Y (n),Π(Λ)
might not hit all possible states between n and

2 when associated with a multiple merger coalescent. An additional implicit conditioning

must therefore be employed. Indeed, the term p(n),Π[k, i] = p(n),Π(Λ)
[k, i] in the corresponding

version of (1) denotes the probability that, in a Lambda-coalescent started from n unlabelled

lineages, conditional on hitting a state with k lineages, a given one of the k blocks subtends

exactly i ∈ [n− 1] leaves.

While the recursive approach underlying (1) can be generalized to compute variances and

covariances (Fu, 1995; Birkner et al., 2013b), and in fact to any mixed moment of any order

(however, at the cost of rapidly increasing complexity), the explicit distribution of the SFS is
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in general unknown. Berestycki et al. (2013) provide the large n almost sure asymptotic

behaviour of the SFS for Beta-coalescents (and, more generally, all coalescents with a suitable

polynomial singularity at 0). In Kersting and Stanciu (2013), the convergence of the joint

law of the internal branch lengths, as n grow large, to a multivariate Gaussian distribution

is established in the case of the Kingman coalescent, but the convergence appears to be

rather slow. The corresponding result for (subclasses of) Lambda-coalescents is desirable,

but currently still elusive. Again the rate of convergence into the scaling limit is expected

to be rather slow, and the result might therefore be more of theoretical value.

The SFS under variable population size

The e�ect of �uctuations in population size on the underlying ancestry has been investigated

in various articles, see in particular Griffiths and Tavaré (1998), who derive an analog

of (1), and Kaj and Krone (2003) who link the Wright-Fisher approximation (with �uctu-

ating population size) with the limiting genealogy. An important point is that (moderate)

exogenously determined �uctuations in population size do not a�ect the binary coalescence

structure of the genealogy, but enter only in the distribution of the relative length of the

internal branches, and hence the genealogy can be described by a time-change of a Kingman

coalescent. In contrast, large �uctuations, in particular very severe bottlenecks, can lead to

very di�erent coalescent models, see (Birkner et al., 2009).

Recursions for the expected values and covariances of the site-frequency spectrum asso-

ciated with moderate �uctuations in population size will now be obtained. The recursion

can be obtained following Polanski et al. (2003). We consider a time-inhomogeneous

Kingman coalescent, started in n lineages, where each pair of lines present at time t ≥ 0

merges at a rate ν(t) (instead of rate 1) (cf. Griffiths and Tavaré, 1998). Given the

exogeneously determined time-change ν = (ν(t), t ≥ 0), the expected frequency spectrum

E[ξ
(n),ν
i ], i ∈ [n − 1], is again of the form (1), and the time-change ν enters only in the dis-

tribution of the T
(n)
k = T

(n),ν
k , 2 ≤ k ≤ n, that is, the distribution of the lengths of the time

intervals of the block-counting process Y
(n),ν
t during which there are exactly k lineages.
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To evaluate E[ξ
(n),ν
i ] one needs information about E[T

(n),ν
k ]. De�ne

S
(n),ν
j := T (n),ν

n + T
(n),ν
n−1 + · · ·+ T

(n),ν
j , j = n, . . . , 2 (S1)

to be the time at which the block counting process Y (n),ν jumps from j to j − 1 lineages

(with the convention S
(n),ν
n+1 := 0). Further, abbreviate, for t ≥ 0 and j ∈ 2, . . . , n,

F (t) :=

∫ t

0

ν(u) du and aj :=

∫ ∞
0

e−(j2)F (s) ds, (S2)

assuming that the �rst integral in (S2) is �nite. It is possible to compute the marginal density

of S
(n),ν
m using the well-known fact that the density of a convolution of exponentials with dif-

ferent rates can be written as a linear combination of exponential densities (Polanski et al.,

2003). Indeed, this leads to the following recursive characterization for the expected values

of the S
(n),ν
k and T

(n),ν
k (see section `Deriving the expected SFS under variable population

size' below for a proof): For 2 ≤ m ≤ n and m ≤ j ≤ n let

c(j,n)
m :=

∏
m≤i≤n
i6=j

(
i
2

)(
i
2

)
−
(
j
2

) = (−1)j−m
(2j − 1)m

j(j − 1)

(
n
j

)(
j+m−2

j

)(
j
m

)(
n+j−1

j

) , (S3)

(put c
(j,n)
m = 0 for j < m). Then we have the representation

E
[
S(n),ν
m

]
=

n∑
j=m

c(j,n)
m aj , (S4)

and

E
[
T

(n),ν
k

]
= E

[
S

(n),ν
k − S(n),ν

k+1

]
= c

(k,n)
k ak +

n∑
j=k+1

(
c

(j,n)
k − c(j,n)

k+1

)
aj , (S5)
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which allows us to compute the expectation of ξ
(n)
i easily from (1):

E
[
ξ

(n),ν
i

]
=
θ

2

n∑
k=2

k · pn,k(i) ·

[
c

(k)
k ak +

n∑
j=k+1

(
c

(j)
k − c

(j)
k+1

)
aj

]
. (S6)

Again we emphasize that the pn,k(i) are not a�ected by population growth, and can be given

explicitly (exactly as in the Kingman-case, cf. Fu (1995)):

pn,k(i) := 1{k≤n−i+1}

(
n−i−1
k−2

)(
n−1
k−1

) .
We now specify the main ingredient aj (depending on F (t), t ≥ 0 and hence ν(t), t ≥ 0)

explicitly for two important special cases:

a) Exponential growth. In the case of an exponentially growing population with

growth parameter β, that is, ν(t) = eβt,

aj =
1

β
exp

(
β−1
(
j
2

))
E1

(
β−1
(
j
2

))
, (S7)

where

E1(t) :=

∫ ∞
t

e−x

x
dx =

∫ ∞
1

e−tx

x
dx (S8)

is an exponential integral function, c.f. e.g. (Abramowitz and Stegun, 1964, 5.1.1).

Two practical issues must be stated at this point. The coe�cients c
(j,n)
m (S3) involve

binomial coe�cients which become large for large sample sizes (number of leaves), which can

lead to numerical errors. Multiple precision packages such as GNU MPC (Enge et al., 2012)

or MPFR (Fousse et al., 2007) can be employed to compute the c
(j,n)
m coe�cients exactly.

In addition, one must evaluate numerically the integral E1(t) in (S8). The computing time

of E1(t) using multiple precision packages quickly increases with sample size. Hence, for

large sample sizes (n > 200), we applied simulations to estimate expected values associated

with exponential population growth using the results of Griffiths and Tavaré (1998),

speci�cally Equation (2.6), which gives a simple way of drawing values of the S
(n),ν
j , the
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successive coalescence times.

b) Algebraic (`power law') growth. In the case of algebraic growth of the form

ν(t) = tγ for some γ > 0,

aj =
Γ
(
1/(γ + 1)

)
γγ/(γ+1)

(
j

2

)−1/(γ+1)

. (S9)

While exponential growth is a natural model for a population described by a supercritical

branching mechanism, this appears less natural in the power-law case.

Based on Equation (23) in Fu (1995), it is also possible to compute the variance and the

covariances of the SFS based on expressions for Eν [T (n),ν
k T

(n),ν
l ], 2 ≤ k, l ≤ n, which in turn

can be obtained from

Eν [T (n),ν
k T

(n),ν
l ] = Eν [S(n),ν

k S
(n),ν
l ]− Eν [S(n),ν

k−1 S
(n),ν
l ]− Eν [S(n),ν

k S
(n),ν
l−1 ] + Eν [S(n),ν

k−1 S
(n),ν
l−1 ],

noting that, in the above notation,

E
[
(S(n),ν

m )2
]

=

∫ ∞
0

s2
m

n∑
j=m

c(j,n)
m ν(sm)

(
j

2

)
e−(j2)F (sm) dsm,

and

E[S(n),ν
m S

(n),ν
k ] = E

[
E[S(n),ν

m |S(n),ν
k ]S

(n),ν
k

]
,

where E[S
(n),ν
m |S(n),ν

k = sk] can be computed (it is the expectation under a regular condi-

tional probability) as in (S4) replacing ν by ν̃(·) := ν(·+ sk), c
(j,n)
m by c̃

(j)
m := c

(j,k)
m and F by

F̃ (·) = F (sk + ·)− F (sk).

Formula (S2) for the (aj) invites a question analogous to Myers et al. (2008), namely

whether di�erent choices of F can lead to the same sequence of coe�cients (aj), which is

however outside the scope of the present work. Besides such purely theoretical consider-
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ations, a rather large body of work has also been devoted to practical inference of popu-

lation growth from genetic data (see e.g. Tajima (1989a), Slatkin and Hudson (1991),

Rogers and Harpending (1992), and Ramos-Onsins and Rozas (2002)). Simulation-

based work include Ramírez-Soriano et al. (2008), who consider the statistical power of

several tests under population size increase and decrease, and the impact of recombination.

Ramos-Onsins and Rozas (2002) consider the statistical power of statistics based on the

site-frequency spectrum to distinguish deterministic population growth from the Kingman

coalescent.

Comparison of ϕ
(n),E
i and EE

[
Z

(n)
i

]
The agreement between ϕ

(n),E
i (2) and EE

[
Z

(n)
i

]
, where Z

(n)
i ≡ B

(n)
i /B(n) are the relative

branch lengths subtending i ∈ [n − 1] leaves (equivalent to DNA sequences), with B(n) ≡

B
(n)
1 + · · · + B

(n)
n−1 denoting the total tree length, is checked in Figure S2. In Figure S2, the

di�erence
(
ϕ

(n),E
i − Z(n)

i

)
relative to ϕ

(n),E
i is graphed for each class (i), where the Z

(n)

i were

estimated by simulation. Indeed, the agreement between ϕ
(n),E
i and the estimated values

Z
(n)

i is quite good for the large range of β considered, and improves as n increases. The

results clearly indicate that agreement between EE[ζ
(n)
i ] and ϕ

(n),E
i will also be good.
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Figure S2: Comparing ϕ
(n),E
i and simulated values Z

(n)

i ≡ B
(n)
i /B(n) for exponential growth

by graphing
(
ϕ

(n),E
i − Z(n)

i

)
/ϕ

(n),E
i against i for n and the exponential growth parameter β

as shown, where B
(n)
i is total length of branches subtending i ∈ [n − 1] leaves, and B(n) is

the total length. Values for Z
(n)

i were obtained from 106 replicates, and ϕ
(n),E
i was computed

exactly.
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Figure S3: Graphs of 1/EB
[
B(n)

]
, the estimated value of θ/2 per observed mutation when

using the Watterson estimator (3) as a function of α (A), compare with (3); and the estimated
value of µ per observed mutation (B), using (4) together with (3), and assuming the timescale
cN = N1−α. The number of leaves n are as shown. In B, time is converted into generations
by multiplying EB

[
B(n)

]
with Nα−1, when N = 105. One obtains 1/EK

[
B(n)

]
= 0.177,

0.097, and 0.067 coalescent units for n = 10, 100, and 1000, resp.
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Comparison of EE[ξ
(n)
i ] and EB[ξ

(n)
i ]

Exact computations of expected branch lengths EE[B
(n)
i ] associated with exponential growth

become ine�cient as sample size increases, due to numerical computation of (S8). One can,

however, estimate EE[B
(n)
i ] using simulations, applying results from Griffiths and Tavaré

(1998). Figure S4 shows the distance between EE[ξ
(n)
i ] and EB[ξ

(n)
i ] as measued by the X2

norm (S12), and the distance between the normalized spectrum ϕ
(n),E
i and ϕ

(n),B
i as measured

by the Y2 norm (S13). Figure S4 corresponds to certain `one-dimensional slices' through a

two-dimensional graph that would be the analogue of Figure 5 for n = 1000.
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Figure S4: Graphs of X2 (S12) and Y2 (S13) as a function of α when the `data' is EE
[
ξ

(n)
i

]
resp. ϕ

(n),E
i (+ for EK resp. ϕ

(n),K
i ) compared to EB

[
ξ

(n)
i

]
resp. ϕ

(n),G
i for β (= b) and sample

size n as shown. Estimates for EE were obtained from 105 replicates.
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Mean misclassi�cation probabilities and posterior probabilities for

ABC approach - alternative parameter choices

Table S1: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison for di�erent growth parameter ranges or tolerance rates.
The nSFS is used as summary statistics. βmax denotes the maximal growth rate used in the
growth model, ncv denotes the number of cross-validations; 'lump' denotes which mutation
classes are lumped into one class. An expected number s = 300 of mutations are assumed.

βmax lump ncv tolerance EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%E/B > 1|ζ)

]
EE
[
π(%E/B < 1|ζ)

]
103 10+ 24000 0.01 0.236 0.111 0.181 0.04
" " " " 0.24 0.11 0.181 0.039

103 50+ 12000 0.01 0.225 0.087 0.183 0.026
" " " " 0.227 0.088 0.188 0.028

103 100+ 1200 0.01 0.217 0.085 0.193 0.028
" " 12000 " 0.222 0.08 0.2 0.025

103 no 12000 0.01 0.301 0.142 0.232 0.042
" " " " 0.302 0.143 0.234 0.041
500 10+ 24000 0.01 0.264 0.132 0.2 0.054
500 50+ 12000 0.01 0.24 0.101 0.195 0.038
500 100+ 1200 0.01 0.257 0.09 0.222 0.028
100 10+ 24000 0.01 0.306 0.208 0.235 0.122
100 50+ 12000 0.01 0.274 0.176 0.205 0.101
103 10+ 24000 0.0025 0.2 0.108 0.149 0.045
103 50+ 12000 0.0025 0.187 0.08 0.146 0.027
103 100+ 1200 0.0025 0.182 0.081 0.16 0.03
103 no 1200 0.0025 0.246 0.134 0.19 0.049
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Table S2: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison (n = 200) for alternative tolerance x = 0.0025 and assumed
expected number s = 60 of mutations. The nSFS is used as summary statistics. ncv denotes
the number of cross-validations 'lumped' denotes which mutation classes are lumped into
one class. The maximal growth rate used in all model comparisons is βmax = 1000.

lump ncv EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%E/B > 1|ζ)

]
EE
[
π(%E/B < 1|ζ)

]
10 24000 0.278 0.245 0.228 0.14
50 12000 0.31 0.258 0.252 0.141
100 12000 0.328 0.265 0.277 0.152
no 12000 0.339 0.262 0.287 0.146

Table S3: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison (n = 200) for alternative tolerance x = 0.001, assumed
expected number s = 60 of mutations and alternative prior ranges and distributions. The
nSFS is used as summary statistics. ncv denotes the number of cross-validations 'lumped'
denotes which mutation classes are lumped into one class. For growth rate β, the prior is
uniformly distributed on {βmin, βmin + 10, . . . , βmax}. For coalescent parameter α, the prior
is uniformly distributed on [αmin, αmax]

lump ncv βmin, βmax αmin, αmax EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%E/B > 1|ζ)

]
EE
[
π(%E/B < 1|ζ)

]
10 24000 0,100 1.5,2 0.388 0.344 0.301 0.226
50 12000 0,100 1.5,2 0.377 0.310 0.305 0.181
10 24000 100,1000 1,1.5 0.33 0.28 0.288 0.145
50 12000 100,1000 1,1.5 0.362 0.324 0.312 0.181
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Di�erence in timescales

Coalescent models are usually obtained as approximations of real populations with �nite,

and often very di�erent, population size N . The di�erence in time-scale can thus be quite

signi�cant. This important aspect of coalescent models is subtly hidden in the actual re-

sulting limiting models. Indeed, the mutation rate µ at the locus under consideration per

individual per generation, as was noted by Eldon and Wakeley (2006), must be scaled

in proportion to 1/cN , where cN is the probability that two gene copies, drawn uniformly

at random and without replacement from a population of size N , derive from a common

parental gene copy in the previous generation. This follows from the famous limit theorem

for Cannings models of Möhle and Sagitov (2001). In the usual Wright-Fisher haploid

model, cN = 1/N and θ is proportional to µ ·N . In a general Cannings model,

cN =
E[ν1(ν1 − 1)]

N − 1
(S10)

where ν1 is the random number of o�spring of individual one (arbitrarily labelled) in any

given generation. Schweinsberg (2003) gives a timescale associated with the Beta(2 −

α, α)-coalescent, where 1/cN is proportional to Nα−1, 1 < α < 2. Thus, θ is proportional to

µ ·Nα−1 when associated with the Beta(2−α, α)-coalescent, as was also noted by Birkner

and Blath (2008). As emphasized by Eldon and Wakeley (2006), this discrepancy in

timescales between di�erent coalescent models complicates comparisons of predictions of

genetic diversity when only θ is used for mutation rate, since θ associated with the usual

Kingman coalescent is often not the same θ as the one associated with a multiple merger

coalescent.

Care must also be taken with models of �uctuating population size. In Kaj and Krone

(2003), a time-changed n-coalescent under a general model of variable population size is

derived. More precisely, the authors consider a haploid Wright-Fisher model with population

size N at generation r = 0 and consider a population size process MN(r), r ∈ Z of the form

MN(r) = NXN(r), r ∈ Z,
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that is, XN(r) describes the `relative population size' at generation r. Under the assumption

that XN(bNtc), t ∈ R converges to something non-degenerate (i=..e. bounded away from 0

and ∞), they get the well-known limiting result that a time-changed Kingman coalescent

describes the genealogy, where the in�nitesimal coalescence rates are given by 1/ν(s), with

ν(s) = lim
N→∞

XN(bNsc). (S11)

Our previously discussed exponential growth model corresponds to a growth rate of β/N per

generation in the pre-limiting model, and indeed we have

ν(t) = lim
N→∞

XN(bNtc) = lim
N→∞

(
1 +

β

N

)Nt
= eβt.

Thus, the size Nt generations ago is approximately Ne−βt. In practice, one needs to choose

a reference population size (say at present time 0, from data), and then choose a growth

function ν(s), normed in a way that it equals 1 at the current time 0 (one could also take a

reference population size at some other time-point, and then rescale the population size to

be 1 at that time-point for the computation of the coalescence rates). The chosen reference

population size, say N0, should then be used to convert time into generations. For example,

if S
(n),ν
j is the time, measured in coalescent units from the present, at which two out of

currently j ancestral lineages coalesce, started from n leaves,

G
(n),ν
j = S

(n),ν
j ·N0

is the corresponding time in generations at which the two ancestral lineages coalesce.

Minimum-distance statistics

To estimate power under point hypotheses we employed standard `p minimum-distances

measures. Minimal distance estimators are a popular tool to solve the problem of �tting

data with a reasonable, though simpli�ed model that cannot be absolutely exact. They
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satisfy useful optimality properties (Millar, 1984) and are sometimes preferred over a

maximum-likelihood approach (see e.g. Berkson (1980) for a discussion).

The minimum-distance statistics Xp and Yp we consider are de�ned by

Xp ≡

(
n−1∑
i=1

∣∣∣ξ(n)
i − EΠ

[
ξ

(n)
i

]∣∣∣p)1/p

(S12)

and

Yp ≡

(
n−1∑
i=1

∣∣∣ζ(n)
i − ϕ

(n),Π
i

∣∣∣p)1/p

, (S13)

where EΠ
[
ξ

(n)
i

]
resp. ϕ

(n),Π
i is obtained under the null hypothesis (Π). Figure S4 shows

graphs ofX2 and Y2 as functions of α when EE
[
ξ

(n)
i

]
(and EK

[
ξ

(n)
i

]
) is compared to EB

[
ξ

(n)
i

]
(Figure S4, left), or ϕ

(n),B
i compared to ϕ

(n),E
i (and ϕ

(n),K
i ; Figure S4, right) for di�erent values

of the exponential growth parameter β and sample size n as shown.

To account for the di�erence in variance of ξ
(n)
i resp. ζ

(n)
i one would standardise the

deviations
(
ξ

(n)
i − EΠ

[
ξ

(n)
i

])
resp.

(
ζ

(n)
i − ϕ

(n),Π
i

)
by the standard deviation of ξ

(n)
i resp.

ζ
(n)
i . However, one can only compute the variance VarΠ

(Λ)
(
ξ

(n)
i

)
by a recursion, which is

O(n5) (Birkner et al., 2013b), and thus only works for quite small n. In addition, we do

not have a way of computing VarΠ
(
ζ

(n)
i

)
.

Distributional convergence results, with knowledge of convergence speed, would allow the

application of the Millar (1984) machinery, leading to con�dence bounds on the minimal

distance estimators. Unfortunately, such results are elusive in most cases, and where known,

indicate very slow convergence speed.

Power computations

The power of a statistical test is the probability of rejecting a false null hypothesis. By the

Neyman-Pearson lemma, a likelihood-ratio test has the highest power of all tests of the same

size. However, since the distribution of the site-frequency spectrum is unknown, we consider

the minimum-distance statistics Xp (S12) and Yp (S13).
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To estimate the power, say, when the null hypothesis is of exponential growth (E) with

growth parameter β, and the alternative of a Beta(2 − α, α)-coalescent (B) with parameter

α, the expected values, EE
[
ξ

(n)
i

]
were estimated under population growth using simulations,

making use of the results of Griffiths and Tavaré (1998). The quantiles qx of the statistic

(Xp or Yp) corresponding to a given size 1 − x ∈ {0.01, 0.05, 0.1} of the test were then

estimated from 105 site-frequency spectra simulated under population growth. Since the

null hypothesis is assumed to be wrong, site-frequency spectra are now simulated under a

Beta(2−α, α)-coalescent with a given parameter α, and the power estimated as the fraction

of times the computed statistic equalled or exceeded the estimated quantile qx. In notation,

let ξ(n),B denote the site-frequency spectrum associated with the Beta(2 − α, α)-coalescent

resp. exponential population growth (ξ(n),E), ie. when ξ(n) is simulated under the model

indicated. We estimate the quantiles qx of the statistic

XE,E
p =

(∑
j

∣∣∣ξ(n),E
j − EE

[
ξ

(n)
j

]∣∣∣p)1/p

.

by simulating values of ξ
(n),E
j . De�ne the statistic XB,E

p by

XB,E
p =

(∑
j

∣∣∣ξ(n),B
j − EE

[
ξ

(n)
j

]∣∣∣p)1/p

.

which refers to population growth being the null hypothesis, and the Beta(2−α, α)-coalescent

being the alternative. The power P
(
X

(Λ,E)
p ≥ qx

)
of the statistic X

(Λ,E)
p is estimated by

P
(
X(Λ,E)
p ≥ qx

)
.
=

1

R

R∑
b=1

1(
X̂

(b,Λ,E)
p ≥qx

),

where X̂
(b,Λ,E)
p denotes the value of the statistic X

(Λ,E)
p computed for the b-th replicate and

R the number of replicates. In a similar way, of course, one can estimate power when the

null hypothesis is of a Beta(2− α, α)-coalescent with alternative being exponential growth.
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Figure S5: Estimation of P (Y2 ≥ qx) - the power for the Y2 norm (S13) for
x ∈ {0.9, 0.95, 0.99} as shown in the legend - as a function of sample size n ∈
{10, 25, 50, 75, 100, 150, 200, 250, 300, 500, 750, 1000}. The alternative is exponential growth
with β as shown, and the null of a Beta-coalescent with α ∈ {5/4, 3/2, 7/4} and total number
of segregating sites s as shown, with mutation rate µ per generation estimated from s each
time. Expected values, quantiles, and power estimates based on 105 iterations each.
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Figure S6: Estimation of P
(
X

(−1)
2 ≥ qx

)
- the power for the X2 norm (S12) exclud-

ing the singletons for x as shown in the legend - as a function of sample size n ∈
{10, 25, 50, 75, 100, 150, 200, 250, 300, 500, 750, 1000} and time computed in generations with
current population size N0 = 104. The alternative hypothesis is of an exponential growth
with β as shown, and the null of a Beta-coalescent with α and total number of segregating
sites s as shown, with µ estimated from s each time. Expected values, quantiles, and power
estimated based on 105 iterations each.
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Figure S7: Estimation of P
(
Y

(−1)
2 ≥ qx

)
- the power for the Y2 norm (S13) exclud-

ing the singletons for x as shown in the legend - as a function of sample size n ∈
{10, 25, 50, 75, 100, 150, 200, 250, 300, 500, 750, 1000} and time computed in generations with
current population size N0 = 104. The alternative hypothesis is of an exponential growth
with β as shown, and the null of a Beta-coalescent with α and total number of segregating
sites s as shown, with µ estimated from s each time. Expected values, quantiles, and power
estimated based on 105 iterations each.
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Deriving the expected SFS under variable population size

The computations outlined below for the reader's convenience are essentially contained in

Polanski et al. (2003).

For notational simplicity, we drop the index n for the sample size and the index Π resp. ν for

the underlying coalescent model resp. the demographic history. Consider a time-inhomogeneous

n-coalescent where each pair of lines present at time t merges at rate ν(t), and recall that Tk,

k = n, n− 1, . . . , 2 denote the length of the time interval while there are exactly k lineages, and let

Sj := Tn + Tn−1 + · · ·+ Tj , j = n, . . . , 2, the time point when the number of lines jumps from j to

j − 1, with and Sn+1 := 0. Then, from (Griffiths and Tavaré, 1998, (2.4)), we have

P(Tk ∈ (t, t+ dt)|Sk+1 = s) =

(
k

2

)
ν(s+ t) exp

(
−
(
k

2

)∫ s+t

s
ν(u) du

)
dt (S14)

so the joint density of Tm, . . . , Tn (2 ≤ m ≤ n) is

n∏
k=m

(
k

2

)
ν
( ∑
k≤j≤n

tj

)
× exp

(
−

n∑
k=m

(
k

2

)∫ ∑
k≤j≤n

tj∑
k+1≤j≤n

tj

ν(u) du

)
. (S15)

Hence, the joint density of the Sm, . . . , Sn is given by

n∏
k=m

(
k

2

)
ν(sk)× exp

(
−

n∑
k=m

(
k

2

)∫ sk

sk+1

ν(u) du

)

=

(
m

2

)
ν(sm)e−(m2 )F (sm) ×

n∏
k=m+1

(
k

2

)
ν(sk)e

−(k−1)F (sk), (S16)

(0 = sn+1 < sn < sn−1 < · · · < sm, 2 ≤ m ≤ n), with F (t) :=
∫ t

0 ν(u) du where we used that(
k
2

)
=
∑k

j=2(j − 1) to express

n∑
k=m

(
k

2

)∫ sk

sk+1

ν(u) du =

n∑
j=2

n∑
k=j∨m

(j − 1)

∫ sk

sk+1

ν(u) du

=

(
m

2

)∫ sm

0
ν(u) du+

n∑
j=m+1

(j − 1)

∫ sj

0
ν(u) du.

The marginal density of Sm at �xed sm can e.g. be found by integrating out over sn < sn−1 < · · · <
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sm+1 (< sm), it can be expressed as a �generalised mixture� of densities1, as follows:

fSm(sm) =
n∑

j=m

c(j,n)
m ν(sm)

(
j

2

)
e−(j2)F (sm) (S17)

where the coe�cients c
(`,n)
m can be computed (backwards) recursively: Let c

(n,n)
n = 1, and

c(j,n)
m = −c(j,n)

m+1

(
m
2

)(
j
2

)
−
(
m
2

) , j = m+ 1,m+ 2, . . . , n, 2 ≤ m ≤ n− 1, (S18)

c(m,n)
m =

n∑
j=m+1

c
(j,n)
m+1

(
j
2

)(
j
2

)
−
(
m
2

) = 1−
n∑

j=m+1

c(j,n)
m , 2 ≤ m ≤ n− 1, (S19)

(and c
(`,n)
m = 0 for ` < m). An explicit formula is

c(j,n)
m =

∏
m≤i≤n
i6=j

(
i
2

)(
i
2

)
−
(
j
2

) = (−1)j−m
(2j − 1)m

j(j − 1)

(
n
j

)(
j+m−2

j

)(
j
m

)(
n+j−1

j

) . (S20)

We check (S17) by induction: fSn(sn) =
(
n
2

)
ν(sn)e−(n2)F (sn), using the induction hypothesis we

�nd from (S14)

fSm(sm) =

∫ sm

0

(
m

2

)
ν(sm)e−(m2 )(F (sm)−F (sm+1)) × fSm+1(sm+1) dsm+1

=

(
m

2

)
ν(sm)e−(m2 )F (sm)

n∑
j=m+1

c
(j,n)
m+1

(
j

2

)∫ sm

0
ν(sm+1) exp

(
−
((
j
2

)
−
(
m
2

))
F (sm+1)

)
dsm+1

=

(
m

2

)
ν(sm)e−(m2 )F (sm)

n∑
j=m+1

c
(j,n)
m+1

(
j
2

)(
j
2

)
−
(
m
2

)(1− exp
(
−
((
j
2

)
−
(
m
2

))
F (sm)

))

= ν(sm)

(
m

2

)
e−(m2 )F (sm)

n∑
j=m+1

c
(j,n)
m+1

(
j
2

)(
j
2

)
−
(
m
2

)
−

n∑
j=m+1

c
(j,n)
m+1

(
m
2

)(
j
2

)
−
(
m
2

)ν(sm)

(
j

2

)
e−(j2)F (sm)

1(S17) is a generalisation of the well known fact that the density of a convolution of exponentials with
di�erent rates can be written as a linear combination of exponential densities (set ν(·) ≡ 1 and thus F (t) = t
in (S17)): X1, . . . , Xk indep., Xi ∼ Exp(λi) (and the λi pairwise di�erent, say λ1 > λ2 > · · · > λk), then

the density of X1 + · · ·+Xk is
∑k
i=1 aiλie

−λix with ai =
∏k
j 6=i λj/(λj −λi) which can also be easily checked

by considering the characteristic functions.
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noting that
d

ds

(
− a−1e−aF (s)

)
= ν(s)e−aF (s)

for a ∈ R. For the second equality in (S19) note (either inductively or from the fact that (S17) must

be a probability density) that

n∑
j=m

c(j,n)
m = 1 for 2 ≤ m ≤ n.

The explicit form (S3) can be checked by verifying inductively that the expression on the right

solves (S18)�(S19) (with the interpretation that the empty product = 1). While checking (S18) is

straightforward, for checking (S19) one observes that for pairwise di�erent λ1, . . . , λk 6= 0 and any

z ∈ C we have

k∏
`=1

λ`
λ` − z

=
k∑
j=1

λj
λj − z

∏
1≤i≤k
i6=j

λi
λi − λj

; put z = 0 to see that

k∑
j=1

∏
1≤i≤k
i6=j

λi
λi − λj

= 1 (S21)

(by partial fraction expansion, observe that both sides of the left equation are meromorphic functions

of z with k simple poles at λ1, . . . , λk whose Laurent coe�ents agree).

To check the second equality in (S3) write for �xed j ∈ {m, . . . , n}

∏
m≤i≤n
i6=j

(
i
2

)(
i
2

)
−
(
j
2

) =
∏

m≤i≤n
i6=j

i(i− 1)

(i− j)(i+ j − 1)

=
2j − 1

j(j − 1)

n∏
i=m

i(i− 1)

i+ j − 1
×
( j−1∏
i=m

(i− j)×
n∏

i=j+1

(i− j)
)−1

= (−1)j−m
2j − 1

j(j − 1)

n!

(m− 1)!

(n− 1)!

(m− 2)!

(m+ j − 2)!

(n+ j − 1)!

1

(j −m)! (n− j)!

= (−1)j−m
(2j − 1)m

j(j − 1)

n!

j!(n− j)!
(j +m− 2)!

(m− 2)!j!

j!

m!(j −m)!

j!(n− 1)!

(n+ j − 1)!

= (−1)j−m
(2j − 1)m

j(j − 1)

(
n
j

)(
j+m−2

j

)(
j
m

)(
n+j−1

j

) .
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The tail of Sm is given by (assuming F (∞) =∞ so that all Sm are a.s. �nite)

P(Sm > s) =

∫ ∞
s

fSm(u) du =
n∑

j=m

c(j)
m e−(j2)F (s).

Recalling

aj =

∫ ∞
0

e−(j2)F (s) ds,

(assuming that F grows su�ciently fast at ∞) then gives the desired result:

E[Sm] =

∫ ∞
0

P(Sm > s) ds =
n∑

j=m

c(j,n)
m aj ,

and

E[Tk] = E[Sk − Sk+1] = c
(k,n)
k ak +

n∑
j=k+1

(
c

(j,n)
k − c(j,n)

k+1

)
aj .

For the case of exponential growth, i.e. ν(t) = eβt and

F (t) =

∫ t

0
ν(u) du = β−1

(
eβt − 1

)
, (S22)

we get for c > 0

∫ ∞
0

e−cF (s) ds = ec/β
∫ ∞

0
exp

(
− c

β e
βs
)
ds =

1

β
ec/β

∫ ∞
c/β

e−u
du

u
=

1

β
ec/βE1(c/β) (S23)

where we substituted c
β e

βs = u and

E1(t) =

∫ ∞
t

e−x

x
dx =

∫ ∞
1

e−tx

x
dx

is an exponential integral function (e.g. (Abramowitz and Stegun, 1964, 5.1.1)). In particular,
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we get

aj =
1

β
exp

(
β−1

(
j
2

))
E1

(
β−1

(
j
2

))
.. (S24)

For the case of algebraic growth consider ν(t) = tγ for some γ > 0. Then

F (t) =

∫ t

0
sγ ds =

1

γ + 1
tγ+1

and for c > 0,

∫ ∞
0

e−cF (s) ds =

∫ ∞
0

e−c(γ+1)−1sγ+1
ds = c−1/(γ+1)γ−γ/(γ+1)

∫ ∞
0

e−uu−γ/(γ+1) du

= c−1/(γ+1)γ−γ/(γ+1)Γ
(
1/(γ + 1)

)
(S25)

where we substituted u = ctγ+1/(γ+1), hence du/dt = ctγ = c1/(γ+1)γγ/(γ+1)uγ/(γ+1). In particular,

we obtain

aj =
Γ
(
1/(γ + 1)

)
γγ/(γ+1)

(
j

2

)−1/(γ+1)

. (S26)

ABC analysis of the cytochrome b mtDNA data of Árnason (2004)

To investigate which model class �ts better to the data, we use the ABC model comparison

approach given the (lumped) nfSFS of the observed mitochondrial locus. The growth model

class is speci�ed by an uniform prior on {0, 10, 20, . . . , 1000} for the class of growth models

and the class of Beta n-coalescents by an uniform prior on {1, 1.05, . . . , 2}. Due to the

numeric di�culties of evaluating the exact expected tree length for the used models, we

approximate EΠ
[
B(n)

]
for the prior mutation rate 2s

EΠ[B(n)]
corresponding to a chosen α

or β by the mean value from 10,000 simulations. We use a tolerance level of 0.005 and

perform nreps = 200, 000 simulations for each model class. See Table S4 for the approximated

Bayes factors %E/B for the model comparison of the growth model and the Beta n-coalescent
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model using di�erent lumps of the nfSFS as summary statistics. The observed data �ts

slightly better to the growth model, but not so much better that we could discard the

Beta n-coalescents as possible genealogy models for this locus. Jeffreys (1961) suggested

Table S4: Approximated Bayes factors given the Atlantic cod mtDNA data
lumping number 10+ 50+ 100+ 200+ no

%E/B 6.435 1.74 2.378 3.264 3.175

interpreting Bayes factors according to the log10 scale. Lumping at 10 (Table S4) then gives

`substantial' (1/2 < log10(%E/B) < 1) evidence against the Beta(2− α, α)-coalescent in favor

of exponential growth. Using Kass and Raftery (1995) suggestion of considering Bayes

factors on 2 loge scale gives `positive' (2 < 2 loge(%
E/B) < 6) evidence in favor of exponential

growth, based on lumping at 10.

Additionally to the ABC model comparison, we also evaluate which parameters �t best

to the observed nfSFS at the mitochondrial locus. For each model class used, we record the

prior parameters from the 0.5% of the nreps = 200, 000 simulations that have the smallest `2

distance to the observed nfSFS (summary statistics). This gives an approximate sample of

the posterior distribution of π(α| observed ζ(n)) resp. π(β| observed ζ(n)). Analogously, we

also used the lumped nSFS as summary statistics. Figure S8 shows the posterior distributions

for di�erent lumping numbers.
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Figure S8: Approximate ABC sample from ABC �tting of the A growth and B Beta n-
coalescent model classes to the observed nfSFS in the Atlantic cod data. Denote by α the
Beta n-coalescent parameter, β the growth rate. Priors were uniform on both sets.
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ABC quality control for the Árnason (2004) data

We follow the recommendation from the R package abc (Csilléry et al., 2012) and perform

three checks of quality for the presented ABC approach. We focus on the lumping which

gives the clearest distinction, namely the lumping of all classes with mutation counts 10 or

higher (class 10+). All checks are performed using the R package abc

To assess the general ability to distinguish between the two model classes in the setting (i.e.,

number of observed mutations and sample size) given by the Atlantic cod mtDNA data from

Árnason (2004), we again employ a leave-one-out cross-validation as described in Methods.

See Table S5 for the results.

Table S5: Mean posterior probabilities and misclassi�cation probabilities for the ABC model
comparison for tolerance x = 0.005 and n = 1278. We use the number s = 39 of observed
mutations to estimate the mutation rate via Watterson's estimator and use the nfSFS (10+
lumped) as summary statistics. We use ncv = 12, 000 cross validations.

EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%E/B > 1|ζ)

]
EE
[
π(%E/B < 1|ζ)

]
0.283 0.238 0.232 0.13

To assess the quality to distinguish the parameters within one model class, we again use

leave-one-out cross-validations (ncv = 12, 000). The parameter of each simulation chosen

for cross-validation is estimated as the median of the 0.5% of simulations with the smallest

`2 distance to the chosen simulation. Figure S9 shows the resulting scatter plots of the

parameters of the chosen simulations and the corresponding estimations.

Figure S9: Scatter plots of estimated vs. true parameters of ncv = 12000 cross-validated
simulations in the A Beta coalescent model class B growth model class

A B
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To see whether the posterior distributions given the cod mtDNA data from Árnason

(2004) de�ne models under which the observed data is reproducible, we perfomed posterior

predictive checks by simulating the 10+ lumped nfSFS under the posterior distribution (i.e.,

simulating once from each parameter set of each of the 1,000 accepted simulations) for each

model class and compare these with the nfSFS observed. See Figure S10 for the results.

Figure S10: Posterior predictive checks with 1,000 simulations of the nfSFS under the ap-
proximate posterior distributions given the cod data from Árnason (2004) for the A Beta
coalescent model class B growth model class. Asterisks denote the observed values in the
data.

A B

The quality checks reveal that we can't distinguish well within each model class, but

moderately between model classes. The posterior predictive checks reveal that both model

classes can produce the observed values, thus including possible (though not necessarily

well-�tting) models for the data at hand.
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Estimation of power for n = 100

Figure S11: Estimate of power as a function of log10 β for β ∈ {0, 1, 2, . . . , 9, 10, 20, . . . , 1000}
when the Beta(2 − α, α)-coalescentis the null hypothesis, and the test statistic is
sup{`(ϑ, ξ(n)), ϑ ∈ Θ0} − sup{`(ϑ, ξ(n)), ϑ ∈ Θ1} (5) , with `(ϑ, ξ(n)) the log of the Pois-
son likelihood function (9) (no lumping). Values at log10 β = −1 correspond to the Kingman
coalescent (β = 0). In A, 105 replicates; in B, 106 replicates.
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Figure S12: Estimate of power as a function of α for α ∈ [1, 2] when the Beta(2 −
α, α)-coalescentis the null hypothesis, and the test statistic is sup{`(ϑ, ξ(n)), ϑ ∈ Θ0} −
sup{`(ϑ, ξ(n)), ϑ ∈ Θ1} (5) , with `(ϑ, ξ(n)) the log of the Poisson likelihood function (9) (no
lumping). Values at α = 2 correspond to the Kingman coalescent; 106 replicates for quantiles
and power estimates.
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