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Summary 15 

1. Understanding how landscape features affect functional connectivity among populations 16 

is a cornerstone of landscape genetic analyses. However, parameterization of resistance 17 

surfaces that best describe connectivity is largely a subjective process that explores a 18 

limited parameter space. 19 

2. ResistanceGA is a new R package that utilizes a genetic algorithm to optimize 20 

resistance surfaces based on pairwise genetic distances and either CIRCUITSCAPE 21 

resistance distances or cost distances calculated along least cost paths. Functions in this 22 

package allow for the optimization of both categorical and continuous resistance surfaces, 23 

as well as the simultaneous optimization of multiple resistance surfaces. 24 

3. There is considerable controversy concerning the use of Mantel tests to accurately relate 25 

pairwise genetic distances with resistance distances. Optimization in ResistanceGA 26 

uses linear mixed effects models with the maximum likelihood population effects 27 

parameterization to determine AICc, which is the fitness function for the genetic 28 

algorithm. 29 

4. ResistanceGA fills a void in the landscape genetic toolbox, allowing for unbiased 30 

optimization of resistance surfaces and for the simultaneous optimization of multiple 31 

resistance surfaces to create a novel composite resistance surface. 32 

 33 

Key-words: CIRCUITSCAPE, circuit theory, cost distance, gene flow, genetic algorithm, 34 

landscape genetics, least cost path, resistance distance, resistance optimization, resistance surface 35 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2014. ; https://doi.org/10.1101/007575doi: bioRxiv preprint 

https://doi.org/10.1101/007575
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

Introduction 36 

First coined in 2003, landscape genetics has experienced rapid growth in both the number of 37 

studies and range of analytical methods utilized (Manel et al. 2003; Storfer et al. 2010). This 38 

integrative field draws on landscape ecology, spatial statistics, and population genetics to address 39 

a wide range of questions. One of the primary goals of landscape genetic studies has been to 40 

understand how landscape features affect spatial genetic structure (Manel et al. 2003; Storfer et 41 

al. 2007). Rather than simply assessing isolation-by-distance, many landscape genetic studies 42 

quantify the effective distance (i.e. resistance distance) between spatially distinct sample 43 

locations as a function of the landscape matrix (Spear et al. 2005; McRae 2006). In the absence 44 

of direct observation of movement or dispersal across the landscape, resistance distances are 45 

often interpreted as functional connectivity (e.g., Cushman et al. 2006). Critically, to infer 46 

functional connectivity and resistance distance, an appropriate resistance surface must be 47 

parameterized. As defined by Spear et al. (2010), a resistance surface is a spatial layer that 48 

assigns a value to each landscape or environmental feature, with values representing the extent to 49 

which that feature impedes or facilitates connectivity for an organism.  50 

Resistance values of surfaces have been determined using a variety of methods, 51 

including: habitat suitability models (e.g., Wang et al. 2008), telemetry (e.g., Driezen et al. 52 

2007), and most commonly expert opinion (Murray et al. 2009). Less often, parameterization is 53 

informed by empirical movement studies (e.g., Stevens et al. 2006) or spatial prediction of 54 

ecological processes (Peterman et al. 2014). All of these are acceptable approaches, but each 55 

comes with its own caveats. Of particular concern is the fact that expert opinion often fails to 56 

accurately describe the biological or ecological process(es) being modeled (Shirk et al. 2010; 57 

Charney 2012). Even when biological or ecological processes are known and explicitly modeled, 58 
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there is no guarantee that these processes will relate meaningfully to the movement of genes 59 

across the landscape (Peterman et al. 2014).  60 

Ultimately, the assignment and evaluation of resistance values generally covers only a 61 

limited parameter space and remains a trial and error process to determine the best resistance 62 

parameters. Graves, Beier and Royle (2013) attempted to alleviate the subjectivity of resistance 63 

surface parameterization by using a search algorithm to maximize Mantel r correlation between 64 

inter-individual genetic distance and least cost path distance. While their optimization procedures 65 

recovered the maximum Mantel r when it existed, they found that resistance estimates were often 66 

imprecise and much smaller than simulated resistance values. They also found that response 67 

surfaces were quite flat, making identification of a global optimum difficult. In contrast, 68 

Peterman et al. (2014) found well-defined global optima when using Ricker and monomolecular 69 

data transformations in combination with optimization algorithms. However, the optimization 70 

procedure utilized by Peterman et al. (2014) is limited to continuous resistance surfaces (e.g., 71 

temperature, moisture, percent canopy cover) and requires an inefficient search of all possible 72 

data transformations.  73 

There are numerous challenges to optimizing resistance surfaces based on pairwise 74 

(genetic) distance data. Among these challenges is the fact that resistance surfaces can have a 75 

high dimensionality, as in land use, land cover surfaces. Another issue is that there currently is 76 

no closed-form expression to determine the landscape resistance values that describe pairwise 77 

distances, potentially making optimization intractable with gradient-based algorithms. Finally, 78 

landscape features and environmental gradients do not exist in isolation. Therefore, an ideal 79 

solution to resistance surface optimization will be to simultaneously optimize multiple resistance 80 

surfaces to create a composite resistance surface. The ResistanceGA package for the R 81 
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programming environment (R Core Team 2014) has been developed to address these issues, and 82 

to fill a void in the landscape genetic toolbox. While the initial impetus for this package was 83 

landscape genetic analyses, but any pairwise measures across the landscape (e.g., movement 84 

rates) could be utilized to optimize resistance surfaces. 85 

 86 

Description  87 

 Genetic algorithms 88 

Genetic algorithms (GAs) represent a powerful and flexible stochastic optimization framework 89 

for finding solutions to both discrete and continuous optimization problems (Holland 1975). 90 

Inspired by biological principles, genetic algorithms create a population of individuals 91 

(offspring) with traits (parameters to be optimized) encoded on “chromosomes”. The genotypes 92 

(parameter combinations) of each individual solve the fitness function, and the fittest individuals 93 

from each generation survive to reproduce (Sivanandam & Deepa 2007). The GA evolution 94 

process is facilitated by exploration and exploitation (Scrucca 2013). Exploration of parameter 95 

space occurs through random generation of new parameter values resulting from mutation, as 96 

well as exchange of genetic information through crossover. Exploitation ultimately reduces 97 

diversity in the population by selecting the fittest individuals each generation. The population 98 

continues to evolve until a sufficient number of generations have passed without an improvement 99 

in fitness (Scrucca 2013). 100 

 Resistance optimization 101 

ResistanceGA utilizes the general-purpose genetic algorithm from the GA R package (ga 102 

function; Scrucca 2013). Briefly, the optimization proceeds as follows: 103 
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1) The original raster surface is imported into R. If the surface is continuous, it is rescaled to 104 

range of 0–10, preserving the relative spacing between all levels. 105 

2) The evolution process starts by generating a random initial population of size n.  If a 106 

continuous surface, the selected parameters determine (a) which of eight transformations 107 

will be applied (Fig. 1); (b) the shape of the transformation; (c) the maximum value of the 108 

transformation. If a categorical surface, each level of the resistance surface is reclassified 109 

to the values of the parameters.  110 

3) Using the spatial locations where genetic samples have been collected, either 111 

CIRCUITSCAPE (McRae et al. 2008; McRae & Shah 2009) is called from R to calculate 112 

pairwise resistance distances across the landscape created in step 2 above, or cost 113 

distances are calculated from least cost paths using the R package gdistance (van 114 

Etten 2014). 115 

4) A linear mixed effects model with a maximum likelihood population effects 116 

parameterization (MLPE) is fit to the data. Pairwise genetic distance is the response and 117 

the scaled and centered pairwise resistance distance is the predictor. The MLPE mixed 118 

effects parameterization is used to account for the non-independence among the pairwise 119 

data (Clarke, Rothery & Raybould 2002).  120 

5) The Akaike information criterion (AIC) is obtained from the fitted MLPE model. AICc is 121 

then calculated by penalizing the model for the number of parameters used during 122 

transformation/reclassification. AICc is the fitness measure that the genetic algorithm 123 

seeks to maximize. Because the ga function works through maximization, the sign of 124 

AICc is reversed. 125 
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6) Steps 2–5 are repeated until the specified number of n individuals have been created. The 126 

genetic algorithm then conducts selection on the population, and the individuals with the 127 

best AICc are carried over to the next generation to form the reproducing population. A 128 

new population is then formed through mutation and crossover.  129 

7) Steps 2–6 are repeated until the specified number of generations have passed without 130 

improvement to the AICc.  131 

 132 

Continuous surfaces 133 

There are eight transformations that can be applied to continuous surfaces (Fig. 1). Each 134 

transformation relies on either the Ricker or monomolecular functions (Bolker 2008), as well as 135 

rescaling functions to keep values in positive parameter space . The shape and magnitude of each 136 

transformation are controlled by two parameters, which are adjusted during optimization 137 

(Peterman et al. 2014). During optimization, the genetic algorithm searches different 138 

combinations of transformations, scale parameters, and shape parameters. Linear transformations 139 

are not explicitly included, but all of the monomolecular functions become linear as the shape 140 

parameter increases in value. In this way, linear responses can effectively be modeled without 141 

increasing the number of transformations for the genetic algorithm to test. 142 

Categorical surfaces 143 

Categorical or feature surfaces, such as land cover or roads, can also be optimized using 144 

ResistanceGA. A surface is considered categorical in ResistanceGA if it contains 15 or fewer 145 

levels. To make this process tractable, it is necessary to hold the value of one level constant 146 

throughout optimization. Because pairwise resistance values are relative, failing to hold one level 147 
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constant can result in multiple equivalent solutions, and the algorithm may fail to reach an 148 

optimal solution (e.g., relative resistance values of 1, 5, and 10 are equivalent to 2, 10, and 20). 149 

 Combining resistance surfaces 150 

Resistance surfaces are simultaneously optimized by sequentially modifying each surface to be 151 

optimized. Continuous and categorical surfaces are each modified as described above, then all 152 

modified surfaces are summed together to create a single, composite resistance surface, which is 153 

then used to calculate pairwise resistance distances or cost distances. 154 

 155 

Overview of ResistanceGA functions 156 

The optimization functions passed to ga rely heavily on the R package raster (Hijmans 2014) 157 

to import, export and manipulate spatial raster (.asc) files, as well as lme4 (Bates et al. 2014) to 158 

fit mixed effects models. To visualize continuous surface transformations, ResistanceGA uses 159 

the graphing features of ggplot2 (Wickham 2009). The functions available in ResistanceGA 160 

are summarized in Table 1. 161 

 162 

Implementation 163 

Resistance surfaces can be optimized using cost distances (least cost path) or using circuit-based 164 

resistance distances. Cost distances are calculated using the R package gdistance (van Etten 165 

2014), while electrical current resistances are calculated using the free, open-source software 166 

CIRCUITSCAPE (v4.0 or greater; McRae & Shah 2009). If using CIRCUITSCAPE, input data 167 

formats must conform to those of CIRCUITSCAPE (McRae & Shah 2009). Currently, 168 

CIRCUITSCAPE can only be executed from R through ResistanceGA on computers using 169 

Windows operating systems. Prior to running any of the optimization functions (MS_optim, 170 
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SS_optim, Resistance.Opt_multi or Resistance.Opt_single) the 171 

CS.prep/gdist.prep, and GA.prep preparation functions must be run. These functions create 172 

and format the inputs and data objects necessary to run CIRCUITSCAPE/gdistance, 173 

parameterize the genetic algorithm, and fit MLPE mixed effects models. These functions have 174 

been developed to require a minimum input from the user. For instance, at minimum, all that 175 

needs to be specified to run GA.prep is the directory where the .asc files to be optimized reside. 176 

However, all available arguments of the ga function can be set by the user to modify the genetic 177 

algorithm. The arguments and default settings of the preparation functions are described in Table 178 

2.  179 

 There is no established framework for optimization of resistance surfaces, but an 180 

envisioned work flow is detailed in Figure 2. Genetic algorithms are stochastic optimization 181 

procedures; therefore it is highly advised to run all optimizations at least twice to confirm 182 

convergence and parameter estimates. Also, because boundaries are placed on the parameter 183 

space searched, if the optimized resistance values are at or near the limits set, the optimization 184 

should be rerun after expanding the search space. It is important to note that simultaneous 185 

optimization of multiple surfaces often results in parameter values that differ from truth. 186 

However, the relative resistance values of the resultant resistance surface are highly or perfectly 187 

correlated with truth (see worked example), and the resistance surfaces are identical once they 188 

are rescaled to a minimum resistance of one. Users of ResistanceGA should be aware of this 189 

fact, and interpret results accordingly. 190 

 Genetic algorithms are effective at finding an optimal solution, but the can be 191 

computationally intensive. To ensure that parameter space is adequately searched, the population 192 

of individuals produced each generation must be of sufficient size. In ResistanceGA the default 193 
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setting is to produce a population that is 15 times the number of parameters being optimized, up 194 

to a maximum population size of 100 individuals. For example, when a continuous surface is 195 

being optimized, 45 individuals (3 parameters x 15) will be produced each generation, and a 196 

typical optimization takes 50–300 generations. This results in the creation of 2 250–13 500 197 

resistance surfaces and CIRCUITSCAPE/gdistance runs. Therefore, the greatest impediment 198 

to optimizing resistance surfaces is time. Both the spatial extent and the number of sample 199 

locations in the analysis affect the time necessary to calculate pairwise resistance or cost 200 

distances. On a computer with an Intel i7 3.4 GHz processor, 25 sample locations distributed 201 

across a 250 x 250 cell resistance surface takes ~5 seconds to complete an iteration with 202 

CIRCUITSCAPE. The same surface with 100 sample locations takes ~14 seconds. Finally, 25 203 

sample locations on and a 1 000 x 1 000 cell surface can take up to 90 seconds to complete. 204 

Because CIRCUITSCAPE calculates resistance over all possible pathways, it is more 205 

computationally intensive than calculating least cost paths. On average, optimization with 206 

gdistance is about three times faster than calculating resistance distances with 207 

CIRCUITSCAPE. To further reduce the optimization time when using least cost paths, the 208 

optimization can be run in parallel by setting parallel = TRUE in GA.prep. Additional 209 

strategies to reduce the runtime of CIRCUITSCAPE/gdistance include modifying the 210 

connection scheme (Neighbor.Connect/directions) from the default setting of 8 to 4, and 211 

reducing the resolution of the resistance surfaces (i.e. increase cell size). The latter will reduce 212 

the total number of cells on the surface, and generally has limited effect on the quantification of 213 

relative resistances across the landscape (McRae et al. 2008). 214 

 215 

Worked examples 216 
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The examples below use simulated data provided with ResistanceGA. Code to generate the 217 

example resistance surfaces and spatial point data can be found in Appendix S1. More extensive 218 

examples and further descriptions of the functions included in ResistanceGA can be found in 219 

the vignette included with the package. 220 

 221 

Example 1: Single surface optimization 222 

This example optimizes a single resistance surface using CIRCUITSCAPE. 223 

# Get data 224 

# Install 'devtools' package, if needed 225 

if(!("devtools" %in% list.files(.libPaths()))) { 226 

    install.packages("devtools")  227 

} 228 

 229 

library(devtools)  230 

install_github("wpeterman/ResistanceGA") # Download package 231 

library(ResistanceGA) # Load package 232 

rm(list = ls()) 233 

 234 

# Create directory for reading/writing CIRCUITSCAPE files and results 235 

if("ResistanceGA_Examples"%in%dir("C:/")==FALSE)  236 

  dir.create(file.path("C:/", "ResistanceGA_Examples"))  237 

 238 

# Create a subdirectory for the first example 239 

dir.create(file.path("C:/ ResistanceGA_Examples/","SingleSurface"))  240 

 241 

# Directory to write .asc files and results 242 

write.dir <- "C:/ ResistanceGA_Examples/SingleSurface/"       243 

 244 

# Load example data, write continuous surface as `.asc` file 245 

data(resistance_surfaces) 246 
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continuous <- resistance_surfaces[[2]] 247 

writeRaster(continuous,filename=paste0(write.dir,"cont.asc"),overwrite=TRUE) 248 

 249 

# Load sample location data 250 

data(samples) 251 

write.table(samples, 252 

file=paste0(write.dir,"samples.txt"), 253 

sep="\t",col.names=F,row.names=F) 254 

 255 

# Create a spatial points object for plotting 256 

sample.locales <- SpatialPoints(samples[,c(2,3)]) 257 

 258 

# Run preparation functions 259 

GA.inputs <- GA.prep(ASCII.dir=write.dir, 260 

                     max.cat=500, 261 

                     max.cont=500, 262 

                     seed=555, 263 

                     quiet=TRUE)  264 

 265 

CS.inputs <- CS.prep(n.POPS=length(sample.locales), 266 

                     CS_Point.File=paste0(write.dir,"samples.txt"), 267 

                     CS.program='"C:/Program Files/Circuitscape/cs_run.exe"') 268 

 269 

# Transform the continuous surface 270 

r.tran <- Resistance.tran(transformation="Monomolecular", 271 

  shape=2, 272 

  max=275, 273 

  r=continuous)  274 

 275 

# Visualize the transformation (Fig. 3) 276 

plot.t <- Plot.trans(PARM=c(2,275), 277 

   Resistance=continuous, 278 
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   transformation="Monomolecular") 279 

 280 

# Calculate pairwise resistance values to use as the response 281 

CS.response <- Run_CS(CS.inputs=CS.inputs, 282 

    GA.inputs=GA.inputs, 283 

    r=r.tran) 284 

 285 

# Rerun `CS.prep` to include response 286 

CS.inputs <- CS.prep(n.POPS=length(sample.locales), 287 

                   response=CS.response, 288 

                   CS_Point.File=paste0(write.dir,"samples.txt"), 289 

                   CS.program='"C:/Program Files/Circuitscape/cs_run.exe"') 290 

 291 

# Run optimization 292 

SS_RESULTS <- SS_optim(CS.inputs=CS.inputs, 293 

                       GA.inputs=GA.inputs) 294 

 295 

# Compare results 296 

SS_table <- data.frame(c("Monomolecular", 2.0, 275), 297 

    t(SS_RESULTS$ContinuousResults[c(3:5)])) 298 

colnames(SS_table) <- c("Truth", "Optimized") 299 

SS_table 300 

                 Truth     Optimized 301 

Equation Monomolecular Monomolecular 302 

shape                2      1.999999 303 

max                275      274.9982 304 

 305 

The exact transformation parameters were recovered in 147 iterations (Fig 3). 306 

Example 2: Multisurface optimization 307 

This example simultaneously optimizes three resistance surface using least cost paths. 308 

# Get data 309 
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data(resistance_surfaces) 310 

data(samples) 311 

 312 

# Create a spatial points object 313 

sample.locales <- SpatialPoints(samples[,c(2,3)]) 314 

 315 

# Create a subdirectory for the second example 316 

dir.create(file.path("C:/ResistanceGA/","MultipleSurfaces"))  317 

 318 

# Run `GA.prep` 319 

GA.inputs <- GA.prep(ASCII.dir=resistance_surfaces, 320 

                     Results.dir="C:/ResistanceGA/MultipleSurfaces/", 321 

                     max.cat=500, 322 

                     max.cont=500, 323 

                     seed = 321, 324 

                     parallel = 4) # Run on in parallel on 4 cores  325 

 326 

# Run `CS.prep` functions 327 

gdist.inputs<-gdist.prep(n.POPS=length(sample.locales),                          328 

                         samples=sample.locales) 329 

 330 

# Set parameters for transforming and combining resistance surfaces 331 

PARM <- c(1,250,75,6,3.5,150,1,350) 332 

 333 

# PARM<- c(1,   # First feature of categorical    334 

#          250, # Second feature of categorical    335 

#          75,  # Third feature of categorical      336 

#          6,   # Transformation equation for continuous surface     337 

#          3.5, # Shape parameter     338 

#          150, # Scale parameter  339 

#          1,   # First feature of feature surface     340 

#          350) # Second feature of feature surface 341 
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 342 

# Combine resistance surfaces 343 

Resist <- Combine_Surfaces(PARM=PARM, 344 

                           gdist.inputs=gdist.inputs, 345 

                           GA.inputs=GA.inputs, 346 

                           out=NULL, 347 

                           rescale=TRUE) 348 

 349 

# Create the response surface 350 

gd.response <- Run_gdistance(gdist.inputs=gdist.inputs, 351 

                             GA.inputs=GA.inputs, 352 

                             r=Resist) 353 

 354 

# Re-run `gdist.prep` to include the response 355 

gdist.inputs<-gdist.prep(n.POPS=length(sample.locales), 356 

                         response=lower(as.matrix(gd.response)), 357 

                         samples=sample.locales) 358 

 359 

# Run `MS_optim` 360 

Multi.Surface_optim.gd <- MS_optim(gdist.inputs=gdist.inputs, 361 

                                   GA.inputs=GA.inputs) 362 

 363 

# View optimized parameter values with the true simulation values 364 

Summary.table <- data.frame(PARM,round(t(Multi.Surface_optim.gd@solution),2)) 365 

colnames(Summary.table)<-c("Truth", "Optimized") 366 

row.names(Summary.table)<-c("Category1", "Category2", "Category3", 367 

"Transformation", "Shape", "Max", "Feature1", "Feature2")  368 

Summary.table 369 

               Truth Optimized 370 

Category1        1.0      1.00 371 

Category2      250.0    268.27 372 

Category3       75.0     80.42 373 
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Transformation   6.0      6.51 374 

Shape            3.5      3.50 375 

Max            150.0    161.11 376 

Feature1         1.0      1.00 377 

Feature2       350.0    375.56 378 

 379 

# Compare the true and optimized resistance surfaces 380 

optim.resist <- Combine_Surfaces(PARM=Multi.Surface_optim.gd@solution, 381 

                                 gdist.inputs = gdist.inputs, 382 

                                 GA.inputs = GA.inputs) 383 

 384 

resist.stack <- stack(Resist,optim.resist) 385 

names(resist.stack) <- c("Truth", "Optimized") 386 

pairs(resist.stack) # Correlation plot (Fig. 4) 387 

plot(resist.stack) # Resistance maps (Fig. 4) 388 

 389 

This example took 210 iterations to optimize. As described above, the optimization has 390 

recovered different parameter values than those that were simulated, but the relative values of the 391 

simulated and optimized surfaces are identical (Fig. 4).  392 

 393 

Obtaining ResistanceGA 394 

ResistanceGA is hosted on GitHub, and can be downloaded using the install.github 395 

function from the devtools package: 396 

install.github(“wpeterman/ResistanceGA”) 397 

Following download, the package can be loaded: 398 

library(ResistanceGA) 399 

View the vignette with more demonstrations of ResistanceGA functions: 400 

 vignette('ResistanceGA') 401 
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Alternatively, the HTML vignette can be viewed here: http://goo.gl/n7VOZx 402 
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Table 1. Functions of the ResistanceGA package 481 

Function   Returned objects   Description 
Combine_Surfaces  R raster object  Combine multiple resistance surfaces into 

a new composite surface based on 
specified parameters 

CS.prep  Named list  This function prepares and bundles the 
inputs necessary to run CIRCUITSCAPE 

Diagnostic.Plots  .tif file  This function returns a multipanel figure 
including the histogram of residuals and 
qqplot from a fitted mixed effects model 

GA.prep  Named list  This function prepares and compiles the 
objects and commands needed to execute 
the genetic algorithm 

gdist.prep  Named list  This function prepares and bundles the 
inputs necessary to run gdistance 

Grid.Search  contour plot, R data 
object  

 For a single continuous surface, this 
function can be used to visualize the AICc 
response surface 

lower  R data object   Convenience function to obtain the lower 
half of a square distance matrix 

MLPE.lmm  lmer object  Fits a maximum likelihood population 
effects mixed effects model in lme4 

MS_optim  GA object, diagnostic 
plots, .txt summary 
file 

 This is a wrapper function for 
simultaneously optimizing multiple 
surfaces. 

Plot.trans  ggplot object  Implements and plots a continuous surface 
transformation 

Resistance.Opt_multi  AICc value  This is the function passed to ga to 
optimize multiple resistance surfaces 
simultaneously 

Resistance.Opt_single  AICc value  This is the function passed to ga to 
optimize resistance surfaces in isolation 

Resistance.tran  R raster object, .asc 
file  

 Applies specified transformation to 
continuous resistance surface and returns 
a raster object. Optionally, a .asc file can 
be exported 

Run_CS  R raster object or R 
data object 

 This function executes CIRCUITSCAPE 
from R and  returns either the lower half 
of the pairwise resistance distance matrix 
or the cumulative current map produced 
by CIRCUITSCAPE 
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Run_gdistance  costDistance matrix 
object from 
gdistance  

 This function executes gdistance and  
returns the costDistance matrix object 

SS_optim   .tif files, .csv 
summary tables 

  This is a wrapper function for optimizing 
surfaces in isolation. All surfaces in a 
common directory will be optimized in 
turn, and numerous summary tables of 
optimized parameters and AICc values are 
produced 

  482 
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Table 2. Arguments of the required preparation functions and their default settings. Only one of 483 

either CS.prep or gdist.prep needs to be run, depending upon whether optimization will use 484 

CIRCUITSCAPE or gdistance. 485 

Function Arguments Defaults Comments 
CS.prep n.POPS Must be defined  

 response NULL Must be defined to 
run optimization 

 CS_Point.File Must be defined  

 CS.program "C:/Program Files/Circuitscape/cs_run.exe"' Default Windows 
installation location  

 Neighbor.Connect 8  

gdist.prep n.POPS Must be defined   

 response NULL Must be defined to 
run optimization 

 samples Must be defined  

 transitionFunction function(x) 1/mean(x)  

 directions 8  

 longlat FALSE  

GA.prep ASCII.dir Must be defined .asc files should be in 

their own directory 

 Min.Max "max" Must be "max" when 

optimization with ga 

 min.cat 0.0001  

 max.cat 2500  

 max.cont 2500  

 cont.shape NULL  

 pop.mult 15  

 percent.elite 0.05  

 type "real-valued" Must be "real-valued"  

 pcrossover 0.85  

 pmutation 0.1  

 maxiter 1000  

 run 25  

 keepBest TRUE  

 population "gareal_Population"  

 selection "gareal_lsSelection"  

 crossover "gareal_blxCrossover"  
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 mutation "gareal_raMutation"  

 seed NULL  

  quiet FALSE   

    

 486 
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Figure 1. There are eight continuous resistance surface data transformations implemented in 487 

ResistanceGA. Prior to transformation, the original continuous resistance surface had values 488 

ranging from 0–10. The shape and magnitude of each transformation are each controlled by a 489 

single parameter. All transformations in the figure have a shape parameter value of 3, and 490 

maximum value parameter of 100. Linear relationships are not explicitly incorporated, but all 491 

monomolecular functions become linear as the shape parameter increases. 492 

 493 

Figure 2. Flow chart depicting a potential work flow for optimizing resistance surfaces. Analysis 494 

begins by optimizing each resistance surface in isolation. If multiple surfaces are supported (e.g., 495 

∆AICc ≤ 4), these surfaces can be simultaneously optimized to create a composite surface. If 496 

desired, different combinations of the best supported single surfaces can be optimized and 497 

compared. Inputs into the optimization are shown in yellow ovals, optimization steps are blue 498 

rectangles, decision points are white diamonds, and final products from optimization are green 499 

ovals. 500 

Figure 3. Optimization of a continuous surface that was transformed using a monomolecular 501 

function following Example 1 in the main text (transformation = Monomolecular, shape = 2.0, 502 

maximum = 275). Optimization with CIRCUITSCAPE took 147 iterations of the genetic 503 

algorithm and precisely recovered the transformation parameters resulting in perfectly correlated 504 

resistance surfaces. 505 

 506 

Figure 4. Simultaneous optimization of three resistance surfaces (Example 2 in the main text). 507 

The original categorical, continuous, and feature resistance surfaces are shown on the left and 508 

their actual resistances following transformation/rescaling are shown in the middle. When these 509 

surfaces are added together to create a composite, the minimum resistance value is no longer 1, 510 

so the surface is rescaled to present the relative resistance values (scaled composite resistance). 511 

Optimization using least cost paths took 215 iterations of the genetic algorithm when run in 512 

parallel on 4 cores. The relative resistance values of the optimized surface and the true resistance 513 

surface are perfectly correlated.  514 
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Figure 1  516 
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