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Abstract

Ongoing large experimental characterization is crucial to determine all regulatory se-
quences, yet we do not know which genetic variants in those regions are non-silent. Here,
we present a novel analysis integrating sequence and DNase I footprinting data for 653
samples to predict the impact of a sequence change on transcription factor binding for a
panel of 1,372 motifs. Most genetic variants in footprints (5,810,227) do not show evi-
dence of allele-specific binding (ASB). In contrast, functional genetic variants predicted by
our computational models are highly enriched for ASB (3,217 SNPs at 20% FDR). Com-
paring silent to functional non-coding genetic variants, the latter are 1.22-fold enriched for
GWAS traits, have lower allele frequencies, and affect footprints more distal to promoters
or active in fewer tissues. Finally, integration of the annotations into 18 GWAS meta-studies
improves identification of likely causal SNPs and transcription factors relevant for complex
traits.
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1 Introduction
Genome-wide association studies (GWAS) have successfully identified large numbers of ge-
netic variants associated with disease and normal trait variation (Mailman et al. 2007); yet a
formidable challenge remains in determining the specific functional relevance of human DNA
sequence variants. First, GWAS only identify large regions of association and in general, can-
not directly pinpoint the true causative variants. Second, even after fine mapping, most of these
genetic variants are located in non-coding regions that make it more difficult to infer the mech-
anism linking individual genetic variants with the disease trait. Third, we generally do not
know in which cell-types/tissues, sequence variants identified by GWAS may have a functional
impact.

Functional genomics data collected by ENCODE (The ENCODE Project Consortium 2012),
Roadmap Epigenomics (Bernstein et al. 2010), and other groups (e.g., Visel et al. 2009) have
provided a great deal of information on the tissue-specific regulatory regions of the human
genome. At the same time, several computational methods have been developed that can ex-
ploit the correlation structure of these types of data to identify tissue-specific regulatory regions.
For example, different types of histone modifications have been integrated using hidden Markov
models (HMMs) (Ernst and Kellis 2010), and dynamic Bayesian networks (DBNs) (Hoffman
et al. 2013). Open chromatin and sequence motifs have been integrated in different types of
mixture models (CENTIPEDE (Pique-Regi et al. 2011), PIQ (Sherwood et al. 2014) and oth-
ers (Boyle et al. 2012; Neph et al. 2012)). All these computationally and experimentally de-
rived annotations for regulatory regions have been used to functionally characterize GWAS hits
(Trynka et al. 2013; Schaub et al. 2012; Boyle et al. 2012; The ENCODE Project Consortium
2012; Neph et al. 2012; Ward and Kellis 2012). However, a simple positional overlap between
a genetic variant and regulatory regions is not sufficient evidence to prove that the allelic status
has a functional impact on binding. One of the major current limitations is that motif models
for transcription factor (TF) binding are generally not sufficiently well calibrated to make a
prediction of the sequence impact on binding.

Here, we have extended the CENTIPEDE approach to generate a catalog of regulatory sites
and binding variants for more than 600 experimental samples from the ENCODE and Roadmap
Epigenomics projects using recalibrated sequence motif models for more than 800 TFs. This
is the most comprehensive catalog of regulatory variation annotated through integration of se-
quence and functional data to date. We then incorporated ASB information to provide additional
empirical evidence and to validate the accuracy of the computational predictions. We also ex-
amined genomic properties of the annotations, identifying characteristics that separate variants
that disrupt binding from those that do not, and demonstrated the action of natural selection on
TF binding sites. Finally, we used our catalog to annotate and interpret variants associated with
complex traits and we validate the allele-specific enhancer activity by reporter gene assay. Our
results show that this strategy provides a general framework for the identification of regulatory
variants and the determination of their functional role in complex traits.
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2 Results

2.1 Identification of regulatory sequences and factor activity
The CENTIPEDE approach allows one to predict TF activity from integrating sequence motifs
together with functional genomics data, and gains the most information from high-resolution
data such as DNase-seq or ATAC-seq (Buenrostro et al. 2013). In the original CENTIPEDE
approach, the sequence models are pre-determined; e.g, k-mers or previously defined position
weight matrix (PWM) models. However, many motif models were created with very few sam-
ple sequences obtained from known TF binding sites and do not represent the full spectrum of
sequence variation that can be tolerated without affecting binding. We have extended CEN-
TIPEDE to readjust the sequence model for TF binding (Fig. 1A and Fig. S1) using DNase-seq
data and sequence orthologs (Methods). Compared to the original motif models the consensus
sequence is largely maintained in the recalibrated motifs (Fig. S6). When we consider ChIP-
seq peaks as validation we obtain superior precision recall characteristics (Supplemental S6.1
and Fig. S7) and a much higher correlation with the prior probability of binding calculated by
CENTIPEDE (Suplemental S6.2 and Fig. S8)

Across all 653 tissues, we identified a total of 6,993,953 non-overlapping footprints corre-
sponding to 1,372 active motifs and spanning 4.15% of the genome. Each individual sample
contained, on average, 280,000 non-overlapping footprints for 600 motifs and spanning 0.162%
of the genome, indicating that footprints are highly tissue specific. Considering all SNPs from
1000 Genomes Project (1KG) at any allele frequency (even singletons), we found 5,810,227
unique genetic variants in active footprints (footprint-SNPs), 3,831,862 of which are predicted
to alter the prior odds of binding ≥20-fold (effect-SNPs) based on the logistic sequence model
hyperprior in the CENTIPEDE model (Fig. 1A3, Supplemental eq. 2). In some cases, effect-
SNPs increase (or decrease) the binding affinity of a sequence with an already high (or low)
affinity, and for these cases the functional impact is likely to be small. However, 264,965
of these SNPs are predicted to have a larger effect on the binding of a factor (switch-SNPs),
switching from a high prior probability of binding (>0.5) to a low probability (<0.5).

2.2 Analysis of allele-specific binding using DNase-seq data
To validate the SNP functional predictions, we used our recently developed approach, Quanti-
tative Allele-Specific Analysis of Reads (QuASAR) (Harvey et al. 2014) to perform joint geno-
typing and ASB analysis within DNase I hypersensitivity (DHS) regions. The parameters of the
QuASAR model also allowed us to detect tissues with chromosomal abnormalities or samples
from pooled individuals (Supplemental S4.2), which we excluded from ASB analysis (Table
S5; Fig. S9 and S10). Across the remaining 316 samples, we identified 204,757 heterozy-
gous SNPs in DHS sites (DHS-SNPs) with coverage >10x. Based on our classification, among
DHS-SNPs: 55,044 are footprint-SNPs, 26,773 are effect-SNPs, and 5,991 are switch-SNPs.
Overall, the predictions are highly concordant with the direction of ASB; 88% of the sequence
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models show positive correlation between the predicted and observed ASB (Supplemental S5.2,
Fig. S11). Each of the nested SNP functional categories have marked differences in p-value dis-
tribution (Fig. 1C) for the QuASAR test of ASB. Compared to what would be expected from
the null uniform distribution, effect-SNPs and switch-SNPs have 8x and 14x times more SNPs
with p < 0.001 respectively, showing that our functional annotations can predict ASB. Further-
more, these enrichments for lower p-values are much higher than those of DHS-SNPs (4x) and
footprint-SNPs (6x), indicating that identifying SNPs in DHS regions and/or footprints alone is
not enough to predict functional effects.

We then examined the observed allele ratios (ρ̂obs) across different CENTIPEDE annota-
tions. Fig. 1B shows that effect-SNPs and switch-SNPs tend to have a higher magnitude of
allelic imbalance. If we consider SNPs that are in the tail of the distribution |0.5− ρ̂obs| > 0.15,
effect-SNPs show a moderate but significant enrichment (1.29-fold, Fisher p = 1.1×10−229)
compared to DHS-SNPs.

All these results indicate that the following three categories of SNPs: effect-SNPs, footprint-
SNPs that are not effect-SNPs, and the remaining DHS-SNPs, have marked differences in their
probability to show evidence for ASB (Table 1). We therefore followed the strategy of Ben-
jamini and Bogomolov (2014) to perform multiple testing correction in each category separately
using Storey’s procedure (Storey 2003). At an FDR threshold of 20%, we detect 3,217 unique
loci displaying significant ASB (Table 1), hereafter referred to as ASB-SNPs. Several of the
ASB-SNPs were significant in more than one cell-type, giving a total of 4,940 observations of
ASB-SNPs. Based on the proportion of true null hypothesis (π̂0) estimated by the Storey FDR
procedure, we estimate that 56% of the effect-SNPs show evidence of ASB. While this conser-
vative estimate can be considered a lower bound, it is still much higher than the estimates for
DHS-SNPs (2.1%) and footprint-SNPs (3.1%), indicating that most SNPs in DHS regions and
even in the putative binding sites do not affect binding.

2.3 Characterization of effect-SNPs
Regions of the genome with demonstrated molecular function (e.g. genic regions) generally
show reduced diversity (McVicker et al. 2009) and a site frequency spectrum skewed towards
rare variants. This is due to negative (purifying) selection, which prevents deleterious alleles
from reaching high frequencies in the population. We investigated whether a similar skew in
the site frequency spectrum exists at functional non-coding variants (effect-SNPs). We observed
that effect-SNPs are slightly more likely to be rare compared to those that do not affect binding
(Fig. 2A), displaying a mild but significant 1.08-fold enrichment for having a MAF <1%. This
observation is analogous to what has been seen among coding variation, where rare (< 0.5%)
variants are 1 to 2 times more likely to be non-synonymous changes than synonymous (The
1000 Genomes Project Consortium 2012). Of effect-SNPs with MAF < 1%, a slightly higher
proportion are predicted to increase binding of a factor (54%), rather than decrease binding
(46%) relative to the major allele.

eQTL studies have found that variants associated with gene expression tend to occur close
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to the transcription start site (TSS) (Veyrieras et al. 2008; Gaffney et al. 2012; McVicker et al.
2013). We detect a similar trend among our annotations, with 83% of footprint-SNPs occur-
ring within 100kb of the TSS. However, we find a 1.12-fold depletion of effect-SNPs within
300 bases of a TSS (Fig. 2B), probably because we are focusing on the core promoter region
(Cooper et al. 2006). We also discovered a 1.18-fold enrichment for effect-SNPs in motifs active
in 5 or fewer samples (Fig. 2C). These results support the hypothesis that factors binding closer
to the TSS and/or active in many tissues are housekeeping factors and those that recruit the
transcriptional machinery, and therefore changes in binding affinity are more likely detrimental
to the cell.

Since allele frequency can be correlated with distance to the TSS, and shared footprints may
also be more common at the promoter region, we tested all these features together in a joint
model to control for one variable being a confounder of another (Methods). All three factors
are significant predictors when considered together in a multiple regression logistic model, and
the direction of the effect is the same as when considered separately (Table S6).

2.4 Motif-wise characteristics of regulatory variants
To examine the distribution of ASB-SNPs across the different regulatory factors, we calculated
the ASB enrichment ratio (Fig. S12, Supplemental S7.3). At a nominal p-value cutoff of p <
0.01, we detect 32 motifs enriched for ASB and 56 depleted for ASB (Fig. 3A; Table S8). In
cases where multiple motifs correspond to a single factor, we asked if all binding sites were
similarly enriched or depleted for ASB-SNPs. We generally found this to be the case (Table
S9), most notably for the factor AP-1. We see the same pattern for motifs significantly depleted
of ASB-SNPs, such as CTCF and E2F (Table S9). ASB enrichment ratios are also consistent
across factors with similar functions. For example, three factors in addition to AP1 with roles
in the immune response, CREB (Zhao and Brinton 2004), c/EBP (Hu et al. 2000), and NF-κB
(Thomas et al. 1997) are over 2-fold enriched for ASB-SNPs within their binding sites (Table
S10).

We then examined the genomic characteristics at motif instances to identify features that
distinguish motifs enriched for ASB versus those that are not. We found that motifs enriched
for ASB were significantly farther from the TSS, having an average median distance to the TSS
of 23kb compared to 17kb for those depleted (t-test p = 2.8×10−7; Fig. 3B). Furthermore,
motifs enriched for ASB were active in significantly fewer samples, on average active in 20%
vs 40% for those depleted (t-test p = 5.2×10−9; Fig. 3C), indicating that TF with motifs with a
high degree of ASB effects tend to be active in fewer tissues.

2.5 Evidence for motif-wise selection in TF binding sites
An important question in evolutionary biology is the extent to which selection has acted on cis-
regulatory elements in humans (Wray 2007). While methods are being developed to address
this question (Arbiza et al. 2013; Smith et al. 2013), such methods have only been applied to
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a narrow subset of TFs, and, in the case of Smith et al. (2013), rely on RNA expression data
to classify mutations as up- or downregulating transcription relative to the reference enhancer
sequence. Given our categorization of footprint-SNPs relative to their effect on factor bind-
ing, we performed an initial survey of selection across TF binding sites using a test similar to
the McDonald-Kreitman (MK) test (McDonald and Kreitman 1991) (see Supplemental S7.4,
Fig. S3). Applying our modified MK test, we obtained a selection score for factor motifs with
sufficient sites in each category (Fig. 4, Table S11). At an FDR of 1%, we observe 84 fac-
tors whose binding sites are enriched for fixed functional differences (higher selection scores),
suggestive of positive selection acting on those sites. Among the top scoring motifs are several
factors that regulate neural and developmental processes, including POU1F1, PHOX2B, DBX2,
UNCX, and YY1. Among the factors with the lowest selection scores, suggestive of purifying
selection, we find ARNT, RBPJ, CREB1, POU2F2, and MYC.

As a majority (994) of the factors showed mild but significant evidence for purifying selec-
tion, we next asked whether these sites were influenced by background selection from nearby
genes (Fig. S15). We find a mild but significant positive correlation between selection score
and median TSS distance (Spearman ρ =0.16, p =5.6×10−9). Additionally, there is a negative
correlation between tissue specificity and selection score (Spearman ρ = -0.20, p =1.2×10−13).
While some of the selection signal may come from nearby genes under selection, there does
appear to be a pattern of selective constraint on broadly active factors binding in promoter re-
gions.

2.6 Enrichment of binding variants in GWAS data
Given that our annotations comprise predicted and observed functional effects across multiple
cell-types/tissues, we asked if they could help interpret genomic hits reported in the GWAS
catalog. To account for the possibility that the reported SNP is not itself causal, we defined
the GWAS hit regions to include SNPs in linkage disequilibrium using an r2 cutoff of 0.8
(from 1KG Project). In GWAS hit regions, we compared the proportion of effect-SNPs and
ASB-SNPs to footprint-SNPs and found a 1.11-fold enrichment for effect-SNPs and a 1.22-
fold enrichment for ASB-SNPs (p < 2.2× 10−16, 95% CI: 1.10 - 1.14 and p < 5× 10−3, 95%
CI: 1.06 - 1.39, respectively).

We next asked whether ASB sites may be used to improve existing functional annotations.
Adding our annotation to category 2 SNPs from the RegulomeDB (Boyle et al. 2012) (SNPs
with multiple regulatory annotations, but not shown to be functional), we detect a 1.6-fold
enrichment for GWAS hits compared to category 2 SNPs alone (p = 6.11×10−5, 95% CI:
1.27 - 1.99), further highlighting the importance of identifying functional sites at a base-pair
resolution, as a large number of genetic variants in regulatory sites are not functional.

To test if the annotated effect-SNPs can give a mechanistic support for SNPs associated with
complex traits, we integrated them into GWAS meta analyses for 18 traits (see Table S14) using
the recently developed hierarchical model fgwas (Pickrell 2014). For each trait, we identified
factors whose binding sites were enriched for associated SNPs (Fig. 5, Fig. S13 and Table
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S7). Overall, we observed enrichment for biologically relevant factors; for example, factors en-
riched for height-associated SNPs include the embryonic stem cell factor POU5F1, consistent
with previous observations of genetic variants associated with height being enriched in embry-
onic stem cell DHS sites (Trynka et al. 2014). We also see enrichment for the developmental
regulators TBX15, FOXD3, and NKX2-5. From a study of low-density lipoprotein (LDL) lev-
els in the blood, enriched factors include the liver-specific factor HNF4A, as well as several
regulators of immune function, including SPIB, CREB1, IRF1, IRF2, and NR3C1 (GR).

Our high resolution annotations allowed us to dissect the most likely functional variant
(posterior probability of association, PPA > 0.2) in 88 previously identified GWAS regions
(Fig. S16, Table S13). We performed reporter gene assays for six SNPs to validate the predicted
allelic effects on gene expression and the underlying molecular mechanism (Methods, Table
S15). Among the regions tested we validated that five have enhancer/repressor activity and four
have variants with allele-specific activity. These include rs4519508 (p = 0.041) and rs4973431
(p = 0.035) associated with height, rs532436 (p = 0.048) associated with blood LDL levels and
rs6730558 (p = 0.022) associated with mean red cell volume.

rs4519508, associated with a 2.1cm decrease in height (Lango Allen et al. 2010), is in a
binding site for the cell-cycle regulator family E2F (Fig. 5D). Our annotation increased the PPA
from a baseline of 10.5% to 44.4%, and it is the highest associated SNP in the association block
(Fig. S14A). We found that this E2F footprint is active in >300 tissues (most of them fetal) and
we detected ASB at this SNP in lung fibroblasts, validating that the reference allele at rs4519508
confers stronger binding than the alternate. Interestingly, in the reporter assay we observed 1.3-
fold increased expression in the presence of the alternate allele, suggesting that at this location,
E2F is acting as a repressor. Finally, this SNP is located within the promoter of PPP3R1, a
regulatory subunit of calcineurin important for cardiac and skeletal muscle phenotypes; and a
SNP in the same region has been shown to be associated with endurance (He et al. 2010) in
humans. The p-value of association for this GWAS locus (p = 8.1 × 10−6) does not reach
genome-wide significance in the height meta-analysis data we used (Lango Allen et al. 2010).
However, in a recent more extensive meta-analysis for height (Wood et al. 2014) this locus
achieves genome-wide significance p = 8.4× 10−10, demonstrating that our annotation can be
useful to rescue relevant loci.

Finally, a SNP associated with LDL levels, rs532436, is within a footprint for USF, an E-box
motif (Fig. 5C). Adding our annotation increased the PPA of the SNP from 39.7% to 94.7%
(Fig. S14B). We found that the alternate allele, associated with a 0.0785 mg/dL increase of
LDL in the blood, is predicted to have a lower binding probability and results in 2.5-fold lower
expression, compared to the reference allele. This SNP is identified by GTEx as an eQTL for
two proximal genes in whole blood: ABO (p = 5 × 10−5) and SLC2A6 (GLUT6, a class III
glucose transport protein; p = 8× 10−5). The SNP has an opposite effect on expression of the
two genes, with the alternate allele showing lower expression for ABO and higher expression
for SLC2A6.

These results show that our integrated analysis provides support for likely mechanisms link-
ing regulatory sequence changes to complex organismal phenotypes. Furthermore, these mech-
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anisms can be directly investigated through molecular studies, providing additional support that
these sequence changes are truly functional.

3 Discussion
We have developed an approach for assessing functional significance of non-coding genetic
variants. Our strategy integrates sequence information with functional genomics data to pre-
cisely annotate TF binding, and predict the impact of single nucleotide changes on these re-
gions. By borrowing data from ENCODE and Roadmap Epigenomics, we generated one of
the most comprehensive catalogs available to date annotating regulatory regions and functional
genetic variants across the genome. We found that genetic variants that impact TF binding
are depleted in the core promoter regions, tend to have low allele frequency and are enriched
in tissue-specific footprints. These properties largely reflect the family-wise characteristics of
motifs, which are further reflected in signals of selection. Finally, we showed how regula-
tory annotations improve the identification of potential causal SNPs in GWAS, and we provide
examples of molecular mechanisms behind the association signals for height and blood lipid
levels.

Thus far the most common approach to make use of functional genomics data to identify
regulatory variants, assumes that each SNP in a regulatory region is equally likely to be func-
tional. A key finding in this study is that genetic variants in regulatory active sequences, as
defined by DNase I sensitivity and footprinting, are in very large proportion silent; only 2.1%
of SNPs in DHS regions and 3.1% of SNPs in CENTIPEDE footprints are estimated to have
ASB. This is analogous to SNPs in coding regions, where most genetic changes are synony-
mous and do not result in an amino acid change (The 1000 Genomes Project Consortium 2012).
The sequence model developed in this study provides a very useful filter for non-coding genetic
variants that are not functional, resulting in a tissue-specific and motif-specific annotation of
effect-SNPs (56.5% of which are estimated to have an impact on ASB). This is crucial infor-
mation to take into account when we attempt to understand the molecular mechanism behind
GWAS hits and evolutionary signals of selection. As additional functional genomics studies are
performed, across larger sample sizes, tissue types and cellular conditions, it will be important
to further determine the functional subset of regulatory variants within binding sites to achieve
greater power in functionally annotating genetic variants associated with complex traits.

A key feature of our annotation is that it spans a large collection of tissues and transcription
factor motifs. This allowed us to trace some of the evolutionary history of TF binding and
identify evolutionary constraints on specific molecular functions, which may reflect selective
pressures during human history. For example, we observed that immune TFs are enriched for
ASB sites, which supports the hypothesis that this may be a consequence of human adaptations
to pathogen exposures (Miller et al. 1976). On the other hand, we identified neural development
TFs that may have undergone positive selection in humans. The large number of regulatory
variants predicted in our study, together with previously reported eQTL signals, and the overall
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relevance that they have in explaining complex traits provides further support for polygenic
models of complex traits in humans. By taking advantage of the factor-specific annotations in
our study, we identified motifs that are enriched for regulatory variants associated with relevant
GWAS traits; e.g., immune TFs in the lipids study, and developmental TFs for height. Overall,
the GWAS meta-analysis and selection signals in our study support the concept that variation in
binding sites has been a major target of evolutionary forces and contribute to disease risk and
complex phenotypes in human populations.

Methods
Identification of active regulatory sites and motif recalibration. We used 1,949 PWM se-
quence models from the TRANSFAC (Matys et al. 2006) and JASPAR (Sandelin et al. 2004)
databases to scan the genome for a set of representative motif matches (Supplemental S3.1). For
each sequence model, we used the sequences to calculate a new PWM model which we then
used to scan the genome and identify all genome-wide motif matches using a two step approach:

Step 1: Initial CENTIPEDE scan and motif recalibration. After scanning the genome for motif
matches (using 1949 seed motifs), we extracted DNase-seq data at these sites using 653 sam-
ples publicly available from the ENCODE and Roadmap Epigenomics projects (Supplemental
S1 and S2.1). The motifs and samples used are summarized in Tables S1 and S2. For each mo-
tif and only for this initial step, we used a reduced subset of motif matches that include the top
5,000 instances on the human genome and up to 10,000 additional low-scoring sequences (Sup-
plemental S3.1). These low scoring motif instances are human sequences that have orthologous
high scoring motif instances in the chimp or rhesus genome. We then applied the CENTIPEDE
model to survey TF activity for each 1,272,697 tissue-TF pair. For each pair we then determined
that the TF is active if the motifs instances that exhibit a CENTIPEDE footprint can be predicted
from the PWM score (Z-score > 5, Fig. S4 and S5). Using this criterion, we determined that
1,891 TF motifs are active in at least one tissue. The full list of motifs active in each tissue can
be found in Table S12. We then recalibrated the PWM model for each active motif using the
sequences of all motif matches that have a DNase-seq footprint (CENTIPEDE posterior>0.99).

Step 2: Full genome CENTIPEDE scan and genetic variant analysis. Using these newly up-
dated sequence models we scanned the human genome for all possible matches both to the
reference and to alternate alleles from genetic variants catalogued in the 1KG Project (The
1000 Genomes Project Consortium 2012) and used the CENTIPEDE algorithm to assess the
probability that each motif instance is bound by a TF. In this second step, we included all high
and low scoring PWM matches down to a CENTIPEDE prior probability of binding of 10%
(Supplemental eq. 2 and S3.2).
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ChIP-seq validation of the revised sequence motif models. To evaluate whether the up-
dated sequence models derived from DNase-seq data are better at predicting TF binding than
the original seed motifs, we compared to ChIP-seq data available for a small set of TFs from the
ENCODE project (as these data are generated in independent experimental assays that should
be highly TF-specific). Using precision recall operating characteristic (P-ROC) curve analysis
(see Supplemental S6.1), we determined that for a given precision (precision = 1 - FDR, false
discovery rate), the updated sequence models have higher recall (sensitivity) than the original
PWM in detecting ChIP-seq peaks (Fig. S7). Additionally, we compared the correlation be-
tween the prior probability of binding (calculated by CENTIPEDE based on the PWMs) and
the number of ChIP-seq reads overlapping motif matches (Supplemental S6.2).

Identification of allele-specific binding. Starting from raw sequencing reads, we used a cus-
tom mapper (Degner et al. 2012) to align the reads to the hg19 reference genome. As allele-
specific analysis is extremely sensitive to mapping errors and PCR duplicates, we employed
several methods to reduce these sources of potential bias (Supplemental S2.2 - S2.4). To detect
allele-specific binding, we applied QuASAR (Harvey et al. 2014) to the processed read data.
QuASAR first genotypes SNPs in the dataset using the read counts, then determines the likeli-
hood of allelic imbalance at each heterozygous site. To adjust for multiple testing, we used the
q-value method (Storey 2003) on the p-values produced by QuASAR.

Annotation of ASB with binding predictions. To determine which SNPs displaying ASB
fall within a predicted footprint, we overlapped DHS-SNPs identified by QuASAR with CEN-
TIPEDE footprints for each sample. We classified a SNP as having an effect on binding if the
difference in the prior log odds ratio (from the logistic sequence model in CENTIPEDE, Sup-
plemental eq. 2) between the two alleles was≥3, indicating a≥20-fold change in the prior odds
of TF binding. To generate a final set of annotated SNPs, we aggregated the data from each sam-
ple and motif into one table. For cases where a SNP is within multiple predicted binding sites,
we selected the factor whose CENTIPEDE likelihood ratio was the greatest. SNPs were then
partitioned based on their predicted effect on binding into three non-overlapping categories: 1)
SNPs in predicted footprints whose binding effect is in the direction predicted, 2) all other SNPs
in footprints, 3) all other DHS-SNPs. Because each annotation has a different prior expectation
of being functional, we readjusted for multiple testing within each annotation separately using
the q-value method (Storey 2003) on p-values produced by the QuASAR model.

Regression model for binding effect. To see which features of a SNP were predictors of
functional effect, we performed multiple regression analysis using a logistic model considering
the dependent binary variable El, indicating whether the footprint-SNP, l, is also an effect-SNP.

logit(El) ∼ Cl + Fl + Tl +Nl (1)

We considered the following variables related to the probability of a footprint-SNP being an
effect-SNP: the log fold-change in factor affinity predicted by the sequence model (Cl); the
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minor allele frequency (Fl); the absolute distance to the nearest transcription start site (Tl); the
number of tissues for which the motif containing the footprint-SNP was predicted to be bound
(Nl). The model was fit using the GLM function in R.

Identification of selection signals on TF motifs To identify divergent TF binding sites, we
used the UCSC liftOver tool on binding sites without a polymorphism to obtain orthologous
regions in the chimpanzee genome. Using the PWM model, we calculated PWM scores on the
chimpanzee sequences. Sites where the prior probability of binding differ from the humans sites
were classified as divergent, and were further categorized by the difference in binding affinity:
”functional” for sites that change ≥20-fold between species (analogous to effect-SNPs), and
”silent” for those that do not. For the binding sites containing a polymorphism, we separated
them into similar groupings where the change is functional (i.e., effect-SNP) and those where
it is not. For each factor motif, we then calculated the number of binding sites belonging to
each of the four categories (divergent functional, divergent silent, polymorphic functional, and
polymorphic silent) and calculated a selection score similar to the McDonald-Kreitman test
(Supplemental S7.4).

Expansion of GWAS Catalog. We created an expanded GWAS catalog by adding SNPs in
linkage disequilibrium (LD) with each GWAS hit. Using 1000 Genomes data for European
populations, we mapped each GWAS hit to all SNPs on the same LD block at an r2 cutoff of 0.8.
The final file is a tabix-indexed bed file where each SNP entry has fields for its corresponding
GWAS SNP, the r2 between them, and associated GWAS traits.

Integrating functional annotations with GWAS To integrate functional annotations and
GWAS results, we used the fgwas command line tool (Pickrell 2014). fgwas computes associ-
ation statistics genome wide using all common SNPs from European populations in the 1KG
Project, splitting the genome into blocks larger than LD. Summary statistics were imputed with
ImpG using Z-scores from meta-analysis data. Using an empirical Bayesian framework im-
plemented in the fgwas software, GWAS data were then combined with functional annotations.
We then compared the informativeness of these annotations from each of the 1891 motifs with
CENTIPEDE predicted regulatory sites to a baseline model (see Supplemental S8.2) consisting
of previously used genomic annotations identified as relevant (Pickrell 2014).

Validating putative causal SNPs by reporter gene assays We selected six of the 88 unique
putatively causal GWAS SNPs. SNPs were chosen based on being in active footprints in LCLs
(the cell line used for transfection), being effect-SNPs, and showing one or more of the fol-
lowing characteristics: allele specific binding (ASB), PPA > 0.5 in fgwas, or eQTL in the
GTEX data. rs4519508 was chosen for having ASB; rs9686661, and rs6730558 were chosen
for highest predictiveness; and rs2336384, rs532436, and rs4973431 for highest predictiveness
and being an eQTL.
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To test enhancer expression, we first constructed inserts containing the reference or alternate
allele for each SNP of interest (see Supplemental S8.3). Cloning was performed using the
Infusion Cloning HD kit (Clontech) and DNA was extracted using the PureYield kit (Promega).
Transfections were performed into GM18507 using the standard protocol for the Nucleofector
electroporation (Lonza). Luciferase activity was measured for four replicate experiments using
the Dual-Glo Luciferase Assay Kit (Promega). We contrasted the activity of each construct to
the pGL4.23 vector, to assess enhancer/repressor activity of each region. To evaluate allele-
specific effects, we contrasted the activity of the reference allele to the alternate allele for each
region and we used a t-test to assess significance.

Data Access
Our footprint and footprint-SNP annotations are available as a custom UCSC Genome Browser
hub. Please see http://genome.grid.wayne.edu/centisnps/ for information on
how to view and download the data.
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Table 1: Summary of Allele-Specific Binding SNPs. Each row represents a category that is
a subset of the category in the previous row. Each column reports the number of heterozygous
SNPs, SNPs displaying significant ASB (20% FDR), and the estimated proportion of non-null
hypotheses using Storey’s q-value approach. In parentheses are reported the numbers for SNPs
that are not present in any of the subsequent subsets and are the basis for our partitioned q-value
approach to detect ASB-SNPs.

# Het SNPs # ASB (20% FDR) 1− π̂0
All DHS Hets 204,757 (179,137) 0 (0) 2.1 (1.7)%
Footprint-SNPs 55,044 (42,098) 0 (0) 3.1 (0.3)%
Effect-SNPs 26,773 (26,773) 3,217 (3,217) 56.5 (56.5)%
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Figure 1: Identification of allele-specific binding. (A) A visual description of the methods. [(A1) Data sources.
(A2) Iterative process of using CENTIPEDE to revise sequence models and call footprints. (A3) Computational
predictions of factor binding. SNPs are categorized by the degree to which they are predicted to impact binding.
(A4) The nested categories of functional annotations. (A5) Use of allele-specific analysis to detect differential
binding.] (B) SNPs predicted to have effects on binding are enriched for a large magnitude of allelic imbalance
|(allele ratio - 0.5)|. Each line represents a density plot of the magnitude for SNPs within a functional category.
Numbers on arrows represent the expected proportion of true signal (1 − π̂0) for each category. (C) ASB p-value
densities for different SNP categories (the dotted blue line represents the null distribution).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 8, 2014. ; https://doi.org/10.1101/007559doi: bioRxiv preprint 

https://doi.org/10.1101/007559


A B

0.0

0.5

1.0

1.5

2.0

2.5

[0
, 0

.0
1)

[0
.0

1,
 0

.1
)

[0
.1

, 0
.2

)

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

Minor Allele Frequency

N
um

be
r 

of
 S

N
P

s 
(in

 m
ill

io
ns

)

●

●

●

●

●

●

●

●

● ●
●

●

●

●

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

D
en

si
ty

[0
, 2

8)

[2
8,

 9
0)

[9
0,

 1
70

)

[1
70

, 2
50

)

[2
50

, 3
50

)

[3
50

, 4
50

)

[4
50

, 5
50

)

[5
50

, 6
80

)

[6
80

, 8
00

)

[8
00

, 9
30

]

[9
30

, 1
00

0)

[1
00

0,
 5

00
0)

[5
00

0,
 1

00
00

)

[1
00

00
, 5

00
00

]

Distance to TSS

C

0.0

0.5

1.0

1.5

2.0

[1
, 5

)

[5
, 1

0)

[1
0,

 2
0)

[2
0,

 3
0)

[3
0,

 4
0)

[4
0,

 5
0)

[5
0,

 6
53

]

Number of Tissues

N
um

be
r 

of
 S

N
P

s 
(in

 m
ill

io
ns

)

SNPs	  in	  coding	  regions	  
•  Non-‐Synonymous	  
•  Synonymous	  

SNPs	  in	  footprints	  
•  Affects	  binding	  
•  Does	  not	  affect	  binding	  

Figure 2: Characterization of binding SNPs. (A) Comparison of the minor allele frequency of SNPs pre-
dicted to affect binding (dark red) or not (light red). Minor allele frequency at coding SNPs, separated into non-
synonymous (dark blue) and synonymous (blue), is shown for comparison. MAF is in bins of 10%, with the
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binned.
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Figure 4: Examining selection on TF binding sites. Comparison of fixed functional (Df ) to fixed silent (Ds)
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examples indicated by red points and the factor name.
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Figure 5: Integration of annotations into GWAS results. (A/B) Enrichment (log2(change in prior odds w.r.t
the baseline model)) of factors for association with (A) low-density lipoprotein levels and (B) height. Error bars
are drawn for 95% confidence intervals. (C/D) Association plots showing the Bayes factor of each SNP in the
displayed region for (A) low-density lipoprotein levels and (B) height. Shown in red are SNPs with a posterior
probability of association >0.4.
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