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Abstract

A detailed mechanistic understanding of the direct functional consequences of DNA
variation on gene regulatory mechanism is critical for a complete understanding of com-
plex trait genetics and evolution. Here, we present a novel approach that integrates sequence
information and DNase I footprinting data to predict the impact of a sequence change on
transcription factor binding. Applying this approach to 653 DNase-seq samples, we identi-
fied 3,831,862 regulatory variants predicted to affect active regulatory elements for a panel
of 1,372 transcription factor motifs. Using QUASAR, we validated the non-coding variants
predicted to be functional by examining allele-specific binding (ASB). Combining the pre-
dictive model and the ASB signal, we identified 3,217 binding variants within footprints
that are significantly imbalanced (20% FDR). Even though most variants in DNase I hyper-
sensitive regions may not be functional, we estimate that 56% of our annotated functional
variants show actual evidence of ASB. To assess the effect these variants may have on com-
plex phenotypes, we examined their association with complex traits using GWAS and ob-
served that ASB-SNPs are enriched 1.22-fold for complex traits variants. Furthermore, we
show that integrating footprint annotations into GWAS meta-study results improves identi-
fication of likely causal SNPs and provides a putative mechanism by which the phenotype
is affected.
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1 Introduction

Genome-wide association studies (GWAS) have successfully identified large numbers of ge-
netic variants associated with disease and normal trait variation (Mailman et al. 2007); yet a
formidable challenge remains in determining the specific functional relevance of human DNA
sequence variants. First, GWAS only identify large regions of association and in general, can-
not directly pinpoint the true causative variants. Second, even after fine mapping, most of these
genetic variants are located in non-coding regions that make it more difficult to infer the mech-
anism linking individual genetic variants with the disease trait. Third, we generally do not
know in which cell-types/tissues, sequence variants identified by GWAS may have a functional
impact.

Recent technological advances in molecular biology combined with high-throughput se-
quencing have made possible the analysis of many different types of molecular function across
the entire genome. Functional genomics data collected by ENCODE (The ENCODE Project
Consortium 2012), Roadmap Epigenomics (Bernstein et al. 2010), and other groups (e.g., Visel
et al. 2009) have provided a great deal of information on the tissue-specific regulatory regions of
the human genome. At the same time, several computational methods have been developed that
can exploit the correlation structure of these types of data to identify tissue-specific regulatory
regions. For example, different types of histone modifications have been integrated using hid-
den Markov models (HMMs) (Ernst and Kellis 2010), and dynamic Bayesian networks (DBNs)
(Hoffman et al. 2013). Open chromatin and sequence motifs have been integrated in different
types of mixture models (CENTIPEDE (Pique-Regi et al. 2011), PIQ (Sherwood et al. 2014)
and others (Boyle et al. 2012; Neph et al. 2012)). A systematic comparison of CENTIPEDE
predictions and ChIP-seq data from ENCODE on LCLs and K562 cells demonstrated a remark-
able agreement in classifying motif instances as bound or unbound, and CENTIPEDE was used
to create one of the most extensive map of transcription factor (TF) binding in LCLs. All these
computationally and experimentally derived annotations for regulatory regions have been used
to functionally characterize GWAS hits (Trynka et al. 2013; Schaub et al. 2012; Boyle et al.
2012; Dunham et al. 2012; Neph et al. 2012).

However, a simple positional overlap between a genetic variant and regulatory regions is not
sufficient evidence to prove that the allelic status has a functional impact on binding. One of the
major current limitations is that motif models for TF binding are generally not sufficiently well
calibrated to make a prediction of the sequence impact on binding. As an additional challenge,
the sequence elements (motifs) and the epigenetic state (e.g., open chromatin, DNA methyla-
tion state, histone marks) constitute a combinatorial grammar that is still poorly understood in a
global genomic scale, making it difficult to understand the mechanistic link between sequence
variation and complex traits. Quantitative trait loci (QTLs) for molecular cellular phenotypes
(as defined in Dermitzakis (2012)), such as gene expression (eQTL) (Stranger et al. 2007), TF
binding (Kasowski et al. 2010), and DNase I sensitivity (dsQTL) (Degner et al. 2012) have been
crucial for providing stronger evidence and a better understanding of how genetic variants in
regulatory sequences can affect gene regulation (Gibbs et al. 2010; Melzer et al. 2008; Gieger
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et al. 2008). eQTL studies usually require a large collection of individuals which has limited
the number of tissues and cellular conditions that have been explored to date (e.g., Dimas et al.
2009; GTEx Consortium 2013). Moreover, eQTL analysis cannot directly determine the true
causative variant and the underlying molecular mechanism of regulation being affected. Cata-
logs such as the RegulomeDB (Boyle et al. 2012) and HaploReg (Ward and Kellis 2012) com-
bine functional annotations, including those from eQTL studies, to build support for variants
that may be truly functional. However, these annotations are derived by overlapping multi-
ple studies with ad hoc methods and it is in general very challenging to combine the different
sources of information with the appropriate weights, in the absence of a suitable joint model.

Allele-specific analysis of sequencing reads overlapping heterozygous loci represents an
increasingly popular approach for exploring genetic effects on gene expression, chromatin state
and TF binding using even one single individual (Pastinen 2010; McDaniell et al. 2010; Reddy
et al. 2012; Cowper-Sallari et al. 2012; McVicker et al. 2013; Kasowski et al. 2013; Kilpinen
et al. 2013). An advantage of allele specific approaches is that they effectively control for any
trans-acting modifiers of gene expression, such as the genotype at other loci or environmental
differences between samples. While it is possible to survey allele-specific binding (ASB) for
a wide panel of TFs using DNase-seq footprinting (Degner et al. 2012) in a single experiment,
few studies have characterized ASB, and only for a limited number of TFs in a limited number
of cell-types or tissues (McDaniell et al. 2010; Reddy et al. 2012; Kilpinen et al. 2013). This
is likely because ASB analysis requires considerable sequencing effort to infer ASB with high
confidence. Alternatively, here we have developed an approach that combines computational
predictions and empirical measurements for ASB to identify allele-specific effects on samples
of low to intermediate sequencing depth data.

Specifically, we have extended the CENTIPEDE approach to generate a catalog of regu-
latory sites and binding variants for more than 600 experimental samples from the ENCODE
and Roadmap Epigenomics projects using recalibrated sequence motif models for more than
800 TFs. This is the most comprehensive catalog of regulatory variation annotated through
integration of sequence and functional data to date. We then incorporated ASB information to
provide additional empirical evidence and to validate the accuracy of the computational pre-
dictions. We also examined genomic properties of the annotations, identifying characteristics
that separate variants that disrupt binding from those that do not, and demonstrated the action
of natural selection on TF binding sites. Finally, we used our catalog to annotate and interpret
variants associated with complex traits. Our results show that this strategy provides a general
framework for the identification of regulatory variants and the determination of their functional
role in complex traits.
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2 Results

2.1 Identification of regulatory sequences and factor activity

The CENTIPEDE approach allows one to predict TF activity from integrating sequence motifs
together with functional genomics data, and gain the most information from high-resolution
data such as DNase-seq or ATAC-seq (Buenrostro et al. 2013). In the original CENTIPEDE
approach, the sequence models are pre-determined; e.g, k-mers or previously defined position
weight matrix (PWM) models. Here we have extended CENTIPEDE by iteratively re-adjusting
the sequence model for TF binding (Fig. 1A).

After scanning the genome for motif matches (using 1949 seed motifs), we extracted DNase-
seq data at these sites using 653 samples publicly available from the ENCODE and Roadmap
Epigenomics projects. The motifs and samples used are summarized in Tables S1 and S2. Using
these samples, we applied the CENTIPEDE model to survey TF activity at the top-scoring
motif matches (see Supplemental Methods) for each 1,272,697 tissue-TF pair. From this, we
determined 1,891 TF motifs that have a footprint in at least one tissue. We then recalibrated the
sequence models using the sequences of the top-scoring matches. Additionally, we included
sequences with a low score in the original motif if a strong footprint is observed in the human
data and the orthologous sequences in chimpanzee and rhesus macaque species have high PWM
scores, as those sequences likely share an evolutionary history (Supplemental Methods). This
novel strategy has the advantage of retaining the TF-motif identity better than considering a
random sample of low scoring instances of the original motif in the genome.

In general, the improved sequence models have higher specificity than the original models,
and have a higher overall information content (Fig. S2). Using this procedure, the probabili-
ties of certain bases are readjusted, but the core part of the motif and its consensus sequence is
largely maintained. To evaluate whether the updated sequence models derived from DNase-seq
data are better at predicting TF binding than the original seed motifs, we compared to ChIP-seq
data available for a small set of TFs from the ENCODE project (as these data are generated
in independent experimental assays that should be highly TF-specific). Using precision re-
call operating characteristic (P-ROC) curve analysis, we determined that for a given precision
(precision = 1 - FDR, false discovery rate), the updated sequence models have higher recall
(sensitivity) than the original PWM in detecting ChIP-seq peaks (Fig. S3). This implies that the
recalibrated motifs have a higher TF-specificity than the original motif models.

Using these newly updated sequence models we scanned the human genome for all possible
matches both to the reference and to alternate alleles from genetic variants catalogued in the
1000 Genomes (1KG) Project (The 1000 Genomes Project Consortium 2012) and used the
CENTIPEDE algorithm to assess the probability that each motif instance was bound by a TF.
After scanning, we discarded sequence models that were still not well calibrated for a given
sample (indicated by a lack of correlation between the PWM scores and the observed DHS
peaks, see Supplemental Methods). Across all 653 tissues, we identified a total of 6,993,953
non-overlapping footprints corresponding to 1,372 active motifs and spanning 4.15% of the
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genome. Each individual sample contained, on average, 280,000 non-overlapping footprints
for 600 motifs and spanning 0.162% of the genome, indicating that footprints are highly tissue
specific.

Considering all 1KG variants at any allele frequency (even singletons), we found 5,810,227
unique genetic variants in active footprints (footprint-SNPs), 3,831,862 of which are predicted
to alter the prior odds of binding >20-fold (effect-SNPs) based on the logistic sequence model
(Fig. 1A-3) hyperprior in the CENTIPEDE model. In some cases, effect-SNPs increase (or
decrease) the binding affinity of a sequence with an already high (or low) affinity, and for these
cases the functional impact is likely to be small. However, 264,965 of these SNPs are predicted
to have a larger effect on the binding of a factor (switch-SNPs), switching from a high prior
probability of binding (>0.5) to a low probability (<0.5).

2.2 Analysis of allele-specific binding using DNase-seq data

We next sought to validate the SNP functional predictions by examining ASB within DNase
I hypersensitivity (DHS) regions. Generally, high-depth sequencing data from functional ge-
nomics experiments is needed to perform ASB analysis. However, most of the ENCODE and
Roadmap Epigenomics DNase-seq samples were collected with the intention of mapping reg-
ulatory regions, and sequenced at a coverage that is generally insufficient for allele-specific
analysis (Table S1). Additionally, ASB analysis requires prior identification of heterozygous
SNPs, and for most of these samples, genotypes are not available. Despite these challenges,
when SNPs have sufficient coverage and mapping biases are properly addressed, both ASB sig-
nal and genotype can be inferred from the functional genomics sequencing data itself (see Sup-
plemental Methods). We used our recently developed approach, Quantitative Allele-Specific
Analysis of Reads (QuASAR) (Harvey et al. 2014) to perform joint genotyping and ASB anal-
ysis using a filtered set of 1KG variants (Supplemental Methods). Briefly, for each sample,
QuASAR first uses allele counts from all unambiguous reads overlapping a genetic variant to
detect if the sample is heterozygous. QuASAR then uses the read counts to determine allelic
imbalance, taking into account base calling error and genotype uncertainty.

Parameters of the QuUASAR model also allow us to detect tissues with chromosomal ab-
normalities or samples from pooled individuals (Supplemental Methods), which we excluded
from ASB analysis (Table S4; Fig. S4 and S5). Across the remaining 316 samples, we iden-
tified 204,757 heterozygous SNPs in DHS sites (DHS-SNPs) with coverage >10x. Across all
motif instances, our predictions are overall highly concordant with the direction of ASB; 88%
of the motif sequence models show positive correlation between the predicted and observed
ASB (see Supplemental Methods). Based on our classification, among DHS-SNPs: 55,044 are
footprint-SNPs, 26,773 are effect-SNPs, and 5,991 are switch-SNPs. Each of these nested SNP
categories have marked differences in the distribution of p-values (Fig. 1C) for the QuUASAR
test of ASB. Compared to what would be expected from the null uniform distribution, effect-
SNPs and switch-SNPs have 8x and 14x times more SNPs with p < 0.001 respectively, showing
that our functional annotations can predict ASB. Furthermore, these enrichments for lower p-
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values are much higher than those of DHS-SNPs and footprint-SNPs, indicating that identifying
SNPs in DHS regions and/or footprints alone is not enough to predict functional effects.

In addition to the distribution of p-values, we examined the allelic ratio, p, for SNPs in
each of the categories. To see which categories, if any, had an observed allele ratio (p,ps)
markedly different than the expected value of 0.5 (50% of the reads coming from each allele),

we calculated Ap, defined as 05
~ -9 — Pobs
AP =55 M
We found that the average Ap for effect-SNPs and switch-SNPs (Ap = 0.119) is significantly
higher than that for DHS-SNPs and footprint-SNPs (Ap = 0.105, Wilcoxon p < 1076, Fig.
1B). These results indicate that effect-SNPs and switch-SNPs have a higher impact on TF bind-
ing than DHS-SNPs or footprint-SNPs alone.

Our previous analyses indicate that the following three categories of SNPs, effect-SNP,
footprint-SNPs that are not effect-SNPs, and the remaining DHS-SNPs, show characteristic
differences in their impact on TF binding (Table 1). To improve the power of ASB detection
and quantify the enrichment level of ASB signals in each category, we therefore followed the
strategy of Benjamini and Bogomolov (2014) to perform multiple testing of ASB in each cate-
gory separately, and use Storey’s procedure (Storey 2003) to correct for multiple comparisons in
each category. At an FDR threshold of 20%, we detect 3,217 unique loci displaying significant
ASB (Table 1), hereafter referred to as ASB-SNPs. Several of the ASB-SNPs were significant
in more than one cell-type, giving a total of 4,940 observations of ASB-SNPs. Based on the
proportion of true null hypothesis (7y) estimated by the Storey FDR procedure, we estimate that
56% of the effect-SNPs show evidence of ASB. We should note that this estimate is conserva-
tive and can be considered a lower bound. When considering DHS-SNPs and Footprint-SNPs,
7o estimates (2.1 % and 3.1% respectively) indicate that most SNPs in DHS regions and even
in the putative binding site do not affect binding.

2.3 Characterization of effect-SNPs

Using the extensive catalog of regulatory variants produced by CENTIPEDE across many cell-
types/tissues and TFs, we next sought to identify characteristics that distinguish effect-SNPs
from SNPs in footprints that do not impact binding.

Regions of the genome with demonstrated molecular function (e.g. genic regions) generally
show reduced diversity (McVicker et al. 2009) and a site frequency spectrum skewed towards
rare variants. This is due to negative (purifying) selection, which prevents deleterious alleles
from reaching high frequencies in the population. We investigated whether a similar skew in
the site frequency spectrum exists at functional non-coding variants (effect-SNPs). We observed
that effect-SNPs are slightly more likely to be rare compared to those that do not affect binding
(Fig. 2A), displaying a mild but significant 1.08-fold enrichment for having a MAF <1%. This
observation is analogous to what has been seen among coding variation, where rare (< 0.5%
) variants are 1-2 times more likely to be non-synonymous changes than synonymous (The
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1000 Genomes Project Consortium 2012). Of effect-SNPs with MAF < 1%, a slightly higher
proportion are predicted to increase binding of a factor (54%), rather than decrease binding
(46%) relative to the major allele.

We next examined the genomic location of footprint-SNPs relative to the nearest transcrip-
tion start site (TSS). eQTL studies have found that variants associated with gene expression
tend to occur close to TSS (Veyrieras et al. 2008; Gaffney et al. 2012; McVicker et al. 2013),
with most signals occurring within 100kb of the TSS. We detect a similar trend among our an-
notations, with 83% of footprint-SNPs occurring within 100kb of the TSS. It is not surprising
that we find a 1.12-fold depletion of effect-SNPs within 300 bases of a TSS (Fig. 2B), as this is
typically considered to be the core promoter region (Cooper et al. 2006). Indeed, Degner et al.
(2012) found that potential regulatory variants (variants associated with DNase I hypersensitiv-
ity, dsQTLs) that are also eQTLs are enriched within 1kb of the TSS. The observed depletion
of effect-SNPs may reflect the fact that factors binding closer to the TSS may be housekeep-
ing factors and those that recruit transcriptional machinery, and therefore changes in binding
affinity are more likely detrimental to the cell.

We also investigated whether effect-SNPs occur more frequently in tissue-specific footprints
compared to footprints shared among tissues. We hypothesize that an effect-SNP in a footprint
that is active in many tissues is more likely to have pleiotropic effects as each tissue where the
motif is active will be affected. On the contrary, we hypothesize that an effect-SNP in a tissue-
specific footprint will have functional consequences in a specific tissue/organ and possibly less
severe phenotypic effects. We examined the number of samples for which a SNP was identified
in an active regulatory footprint and discovered a 1.18-fold enrichment for effect-SNPs in motifs
active in 5 or fewer samples (Fig. 2C).

Since allele frequency can be correlated with distance to the TSS, and shared footprints
may also be more common at the promoter region, we tested all these features together in a
joint model to control for one variable being a confounder of another. To this end, we employed
a multiple regression logistic model to predict whether a footprint-SNP is more likely to affect
TF binding based on distance to the TSS, tissue-specificity and allele frequency (Methods). All
three factors are significant predictors when considered together, and the direction of the effect
is the same as when considered separately (Table S5).

2.4 Motif-wise characteristics of regulatory variants

Next, we examined the distribution of ASB-SNPs across the different regulatory factors. Specif-
ically, for each factor, we calculated the number of footprints in which we detected ASB-SNPs
to the number of footprints in which we detected any heterozygous SNP (ASB enrichment ra-
tio, Fig. S7). Using the average ratio across all factors, we determined which are enriched
or depleted for ASB-SNPs, assessing significance with a binomial test. At a nominal p-value
cutoff of p < 0.01, we detect 32 motifs enriched for ASB and 56 depleted for ASB (Fig. 3A;
Table S7). In cases where multiple motifs correspond to a single factor, we asked if all binding
sites were similarly enriched or depleted for ASB-SNPs. We generally found this to be the case
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(Table S8), most notably for the factor AP-1. Six out of seven AP-1 motifs have binding sites
enriched, and three of them are the top three enriched motifs in our dataset. We see the same
pattern for motifs significantly depleted of ASB-SNPs, such as CTCF and E2F. For CTCF, two
of the three motifs have binding sites depleted, while for E2F, all 14 motifs have binding sites
depleted for ASB-SNPs (Table S8).

To see if ASB enrichment ratios are consistent across factors with similar functions, we
looked at several factors similar to AP-1. AP-1, among other roles, has been shown to regulate
proinflammatory genes such as those encoding cytokines (Dendorfer et al. 1994; Mukaida et al.
1994; Bailly et al. 1996). We examined three other factors with roles in the immune response,
CREB (Zhao and Brinton 2004), ¢/EBP (Hu et al. 2000), and NF-«<B (Thomas et al. 1997).
Each of these factors are over 2-fold enriched for ASB-SNPs within their binding sites, whether
they exert a pro- or anti-inflammatory effect (Table S9). It is important, however, to note that
each of these factors regulates a variety of non-immune related genes, and further investigation
is necessary to test the impact of regulatory variation on the immune response.

We then examined the genomic characteristics at motif instances to identify features that
distinguish motifs enriched for ASB versus those that are not. Similar to what we hypothesized
for effect-SNPs, we expected motifs for which we observe a high number of ASB-SNPs to be
active in fewer cell-types/tissues. Additionally, we expected motifs more affected by ASB-SNPs
to have binding sites farther from the TSS, reflecting the tendency of effect-SNPs to be depleted
near promoter regions. As expected, we found that motifs enriched for ASB were significantly
farther from the TSS, having an average median distance to the TSS of 23,443 bases compared
to 17,599 bases for those depleted (t-test p = 2.786x10~7; Fig. 3B). Furthermore, motifs
enriched for ASB were active in significantly fewer samples, on average active in 20% vs 40%
for those depleted (¢-test p = 5.195x107?; Fig. 3C), indicating that TF with motifs with a high
degree of ASB effects tend to be active in fewer tissues.

An important question in evolutionary biology is the extent to which selection has acted on
cis-regulatory elements in humans (Wray 2007). While methods are being developed to address
this question (Arbiza et al. 2013; Smith et al. 2013), such methods have only been applied to
a narrow subset of TFs, and, in the case of Smith et al. (2013), rely on RNA expression data
to classify mutations as up- or downregulating transcription relative to the reference enhancer
sequence. Given our categorization of footprint-SNPs relative to their effect on factor binding,
we performed an initial survey of selection across factor binding sites using a test similar to
the McDonald-Kreitman (MK) test (McDonald and Kreitman 1991) (Supplemental Methods).
The MK test, developed for protein-coding regions, is a nucleotide-based test that categorizes
divergent and polymorphic variants into two classes, non-synonymous (functional change), and
synonymous (silent change).

For our test, we consider the whole set of TF binding sites for a given motif as a functional
unit, rather than the individual nucleotides or motif instances. For each motif, we examined
all SNPs in 1KG and all fixed differences from orthologous sites in chimpanzee. Using the
same definition as effect-SNPs, we defined which of the divergent and polymorphic changes
are functional (as opposed to silent) and compared the proportion of fixed sites that are func-


https://doi.org/10.1101/007559

bioRxiv preprint doi: https://doi.org/10.1101/007559; this version posted July 29, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

tional to the proportion of polymorphic sites that are functional. Applying our modified MK
test, we obtained a selection score for factor motifs with sufficient sites in each category (Fig. 4,
Table S10). At an FDR of 1%, we observe 84 factors whose binding sites are enriched for fixed
functional differences (higher selection scores), suggestive of positive selection acting on those
sites. Among the top scoring motifs are several factors that regulate neural and developmental
processes, including POU1F1, PHOX2B, DBX2, UNCX, and YY1. Additionally, 994 factors
have binding sites depleted for fixed functional divergent sites (lower selection scores), sugges-
tive of purifying selection. Of these, the top depleted factors include ARNT, RBPJ, CREBI,
POU2F2, and MYC.

Because binding sites could show signs of background selection due to physical proximity to
genes, rather than selection on the site itself, we compared the selection score for each factor to
its median distance from the nearest TSS. We find that there is a mild but significant correlation
(Spearman p = 0.16, p = 5.592 x 107?), where factors that bind closer to the TSS tend to have
lower selection scores (Fig. S10). However, without further investigation it is not clear how
much of this signal is due to background selection from genes under negative selection, and how
much is due to promoter regions themselves under purifying selection. Finally, we compared
the tissue-specificity for each factor to its selection score. We found that factors active in many
cell-types/tissues have lower selection scores (Spearman p = -0.20, p = 1.194 x 1073, Fig.
S10), suggesting a pattern of selective constraint on binding sites of broadly active factors.

2.5 Enrichment of binding variants in GWAS data

Trying to pinpoint causal variation within GWAS-identified regions of association is a signifi-
cant challenge, particularly for non-coding regions. These identified regions can be broad, and
the few SNPs reaching genome-wide significance are not necessarily functional themselves.
Furthermore, GWAS variants may only have a functional impact in a subset of tissues and con-
ditions, making it difficult to uncover the molecular mechanisms connecting sequence change
and phenotypic effect. Given that our annotations comprise predicted and observed functional
effects across multiple cell-types/tissues, we asked if they could help interpret genomic hits
reported in the GWAS catalog.

To account for the possibility that the reported SNP is not itself causal, we defined the
GWAS hit regions to include SNPs in linkage disequilibrium using an r? cutoff of 0.8 (from
1KG Project). In the GWAS hit regions, we examined effect-SNPs and ASB-SNPs compared to
footprint SNPs and we found a 1.11-fold enrichment (p < 2.2x10716, 95% CI: 1.099 - 1.136)
for effect-SNPs and a 1.22-fold enrichment (95% CI: 1.06 - 1.39, p < 5x1073) for ASB-SNPs.

We next asked whether ASB sites may be used to improve existing functional annotations.
To do so we focused on category 2 SNPs from the RegulomeDB (Boyle et al. 2012) (SNPs
with multiple regulatory annotations suggesting they affect TF binding, but not yet shown to
be functional). Overlapping our ASB annotations with this set of variants, we detect a 1.6-fold
enrichment (p = 6.105x107°, 95% CI: 1.27 - 1.99) for GWAS catalog SNPs (compared to
category 2 SNPs alone). This further confirms the importance of identifying functional sites at

10
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a base-pair resolution as a large number of genetic variants in regulatory sites are not functional.

To test if our footprint annotations added support for associations of SNPs in meta-analysis
studies of GWAS traits, we integrated our footprint annotations into a hierarchical model (Pick-
rell 2014) and applied the model to GWAS for two traits, lipid levels (Global Lipids Genetics
Consortium 2013) and height (Lango Allen et al. 2010). For each trait examined, we identi-
fied factors whose binding sites were enriched for associated SNPs (Fig. 5, Fig. S8). Factors
enriched for association with lipid levels include the liver-specific factor HNF4A, as well as sev-
eral regulators of immune function, including SPIB, CREB1, IRF1, IRF2, and NR3C1 (GR).
Factors enriched for association with height include the embryonic stem cell factor POUSF1
and the developmental regulators TBX15, FOXD3, NKX2-5.

We next looked at individual regions of association to explore whether our annotations im-
proved fine mapping. Examining SNPs with a posterior probability of association (PPA) >0.2,
we identified 25 SNPs for lipid levels and 14 SNPs for height within footprints (Fig. S9, Table
2). One SNP associated with LDL levels, rs532436, is within a footprint for USF, an E-box
motif (Fig. 5A, right). Adding our annotation increased the PPA of the SNP from 39.7% to
94.7% (Fig. S9B). We found that the A allele, associated with a 0.0785 mg/dL increase of LDL
in the blood, is predicted to have a lower binding probability. Additionally, the SNP is an eQTL
identified in whole blood for SLC2A6 (GLUT®6), a class III glucose transport protein, and we
predict transcription factor activity at this site in several blood cell-types.

One of the SNPs associated with height, rs4519508, is in a binding site for the cell-cycle
regulator family E2F (Fig. 5B, right). Our annotation increased the PPA from 10.5% to 44.4%,
and it is the highest associated SNP in the association block (Fig. S9A). This example shows
that while some signals may not be strong enough to reach genome-wide significance, our
annotations may help rescue such variants by providing additional support for their association.
This SNP occurs in a broadly active factor, E2F, with a footprint at this site in 368 samples,
including ten samples (8 of them fetal) for which the predicted binding affinity of E2F is greatly
reduced. Additionally, we detect ASB at this SNP in lung fibroblasts, further supporting a
functional role for this variant. However, as this SNP was imputed and not part of the original
GWAS, we cannot directly compare its effect on binding to its effect on height.

These results show that our integrated analysis provides support for some likely mechanisms
linking regulatory sequence changes to complex organismal phenotypes.

3 Discussion

We have developed an approach for assessing functional significance of non-coding genetic
variants. Our strategy integrates sequence information with functional genomics data to pre-
cisely annotate TF binding, and predict the impact of single nucleotide changes on these re-
gions. By borrowing data from ENCODE and Roadmap Epigenomics, we generated one of
the most comprehensive catalogs available to date annotating regulatory regions and functional
genetic variants across the genome. We found that genetic variants that impact TF binding
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are depleted in the core promoter regions, tend to have low allele frequency and are enriched
in tissue-specific footprints. These properties largely reflect the family-wise characteristics of
motifs, which are further reflected in signals of selection. Finally, we showed how regulatory
annotations improve the identification of potential causal SNPs in GWAS, and we provide ex-
amples of putative molecular mechanisms behind the association signals for height and blood
lipid levels.

Thus far the most common approach to make use of functional genomics data to identify
regulatory variants, assumes that each SNP in a regulatory region is equally likely to be func-
tional. A key finding in this study is that genetic variants in regulatory active sequences, as
defined by DNase I sensitivity and footprinting, are in very large proportion silent; only 2.1%
of SNPs in DHS regions and 3.1% of SNPs in CENTIPEDE footprints are estimated to have
ASB. This is analogous to SNPs in coding regions, where most genetic changes are synony-
mous and do not result in an amino acid change. The sequence model developed in this study
provides a very useful filter for non-coding genetic variants that are not functional, resulting in
a tissue-specific and motif-specific annotation of effect-SNPs (56.5% of which are estimated to
have an impact on ASB). This is crucial information to take into account when we attempt to un-
derstand the molecular mechanism behind GWAS hits and evolutionary signals of selection. As
additional functional genomics studies are performed, across larger sample sizes, tissue types
and cellular conditions, it will be important to further determine the functional subset of regu-
latory variants within binding sites to achieve greater power in functionally annotating genetic
variants associated with complex traits.

A key feature of our annotation is that it spans a large collection of tissues and transcrip-
tion factor motifs. This allowed us to trace some of the evolutionary history of TF binding and
identify evolutionary constraints on specific molecular functions, which may reflect selective
pressures during human history. For example, we observed that immune TFs are enriched for
ASB sites, which supports the hypothesis that this may be a consequence of human adaptations
to pathogen exposures. On the other hand, we identified neural development TFs that may have
undergone positive selection in humans. The large number of regulatory variants predicted in
our study, together with previously reported eQTL signals, and the overall relevance that they
have in explaining complex traits provides further support for polygenic models of complex
traits in humans. By taking advantage of the factor-specific annotations in our study, we iden-
tified motifs that are enriched for regulatory variants associated with relevant GWAS traits;
e.g., immune TFs in the lipids study, and developmental TFs for height. Overall, the GWAS
metaanalysis and selection signals in our study support the concept that variation in binding
sites has been a major target of evolutionary forces and contribute to disease risk and complex
phenotypes in human populations.
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Methods

Identification of active regulatory sites. We used 1,949 PWM sequence models from the
TRANSFAC (Matys et al. 2006) and JASPAR (Sandelin et al. 2004) databases to scan the
genome for a set of locations with the best motif matches. Additionally, we included other
regions with homologous sequences, obtained by scanning the best motif matches in two other
primate genomes (rhesus and chimp) and finding the orthologous region in humans. For each
sequence model, we used the sequences to calculate a new model (Supplemental Methods),
which we then used to scan the genome and identify all genome-wide motif matches. Scanning
was done in two stages. First, we identified every match and kept those above a motif-specific
threshold match score (Supplemental Methods). Next, we scanned the genome again consider-
ing only the motifs that overlapped 1KG variants. For each of these matches we calculated two
PWM scores, one for each allele. Using motif locations and DNase-seq data, we trained the
CENTIPEDE model for each sample/motif combination using motifs devoid of variants. We
then applied the model to each sample/motif combination again, using motif instances over-
lapping known variants. Thus, for motif matches containing a variant, two binding predictions
were made, one for each allele.

Identification of allele-specific binding. Starting from raw sequencing reads, we used a cus-
tom mapper (Degner et al. 2012) to align the reads to the hgl9 reference genome. As allele-
specific analysis is extremely sensitive to mapping errors and PCR duplicates, we employed
several methods to reduce these sources of potential bias (Supplemental Methods). To detect
allele-specific binding, we applied QuASAR (Harvey et al, in prep.) to the processed read data.
QuASAR first genotypes SNPs in the dataset using the read counts, then determines the likeli-
hood of alleleic imbalance at each heterozygous site. To adjust for multiple testing within each
sample, we used the ¢-value method (Storey 2003) on p-values produced by QuASAR.

Annotation of ASB with binding predictions. To determine which positions displaying ASB
fall within a predicted footprint, we overlapped DHS-SNPs identified by QuASAR with CEN-
TIPEDE footprints for each sample. We classified a SNP as having an effect on binding if the
difference in the prior log odds ratio (from the logistic sequence model in CENTIPEDE) be-
tween the two alleles was >3, indicating a >20-fold change in the prior odds of TF binding.
To generate a final set of annotated SNPs, we aggregated the data from each sample and motif
into one table. For cases where a SNP is within multiple predicted binding sites, we selected
the factor whose sequence model predicts the greatest log ratio between the prior log odds of
binding for each allele. SNPs were then partitioned based on their predicted effect on binding
into three non-overlapping categories: 1) SNPs in predicted footprints whose binding effect is
in the direction predicted, 2) all other SNPs in footprints, 3) all other DHS-SNPs. Because
each annotation has a different prior expectation of being functional, we readjusted for multiple
testing within each annotation separately using the g-value method (Storey 2003) on p-values
produced by the QuASAR model.
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Regression model for binding effect. To see which features of a SNP were predictors of
functional effect, we performed multiple regression analysis using a logistic model considering
the dependent binary variable £, indicating whether the footprint-SNP, [, is also an effect-SNP.

logit(El) ~C+ F,+1,+ N, 2)

We considered the following variables related to the probability of a footprint-SNP being an
effect-SNP: the fold-change in factor affinity predicted by the sequence model (C); the minor
allele frequency (F;); the absolute distance to the nearest transcription start site (7;); the number
of tissues for which the motif containing the footprint-SNP was predicted to be bound (/V;). The
model was fit using the GLM function in R.

Identification of selection signals on TF motifs To identify divergent TF binding sites, we
used the UCSC liftOver tool on binding sites without a polymorphism to obtain orthologous
regions in the chimpanzee genome. Using the PWM model, we calculated PWM scores on the
chimpanzee sequences. Sites where the prior probability of binding differ from the humans
sites were classified as divergent, and were further categorized by the difference in binding
affinity: functional for sites that change >20-fold between species (analogous to effect-SNPs),
and silent for those that do not. For the binding sites containing a polymorphism, we separated
them into similar groupings where the change is functional (i.e., effect-SNP) and those where
it is not. For each factor motif, we then calculated the number of binding sites belonging to
each of the four categories (divergent functional, divergent silent, polymorphic functional, and
polymorphic silent) and calculated a selection score similar to the McDonald-Kreitman test
(Supplemental Methods).

Expansion of GWAS Catalog. We created an expanded GWAS catalog by adding SNPs in
linkage disequilibrium (LD) with each GWAS hit. Using 1000 Genomes data for European
populations, we mapped each GWAS hit to all SNPs on the same LD block at an 2 cutoff of 0.8.
The final file is a tabix-indexed bed file where each SNP entry has fields for its corresponding
GWAS SNP, the 72 between them, and associated GWAS traits.

Integrating functional annotations with GWAS To integrate functional annotations and
GWAS results, we used the fgwas command line tool (Pickrell 2014). fgwas computes associ-
ation statistics genome wide using all common SNPs from European populations in the 1KG
Project, splitting the genome into blocks larger than LD. Summary statistics were imputed with
ImpG using Z-scores from meta-analysis data. Using an empirical Bayesian framework im-
plemented in the fgwas software, GWAS data were then combined with functional annotations.
We then compared the informativeness of these annotations from each of the 1891 motifs with
CENTIPEDE predicted regulatory sites to previously used genomic annotations (same features
as the baseline model, see Supplemental Methods).
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Data Access

Our footprint and footprint-SNP annotations are available as a custom UCSC Genome Browser
hub. Please see http://genome.grid.wayne.edu/centisnps/ for information on
how to view and download the data.
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Table 1: Summary of Allele-Specific Binding SNPs. Each row represents a category that is
a subset of the category in the previous row. Each column reports the number of heterozygous
SNPs, SNPs displaying significant ASB (20% FDR), and the estimated proportion of non-null
hypotheses using Storey’s g-value approach. In parentheses are reported the numbers for SNPs
that are not present in any of the subsequent subsets and are the basis for our partitioned g-value
approach to detect ASB-SNPs.

# Het SNPs # ASB (20% FDR) 1 —
All DHS Hets 204,757 (179,137) 0 (0) 2.1 (1.7)%
Footprint-SNPs 55,044 (42,098) 0@ 3.1(0.3)%

Effect-SNPs 26,773 (26,773) 3,217 (3,217) 56.5 (56.5)%
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Table 2: SNPs associated with GWAS traits that fall in CENTIPEDE-predicted TF binding
sites. PPA, Posterior probability of association. The PPAs for association with a trait are given
each SNP. Before indicates the PPA from the base model, after indicates the PPA after adding
footprint annotations to the model.

SNP Trait Factor SNP PPA SNP PPA
(before) (after)
rs17511102 Height Pou5f1 0.999 1.000
rs11752007 Height TBX15 0.740 0.955
rs7466269  Height Nkx2-5 0.426 0.838
rs34529769 Height SMAD 0.395 0.818
rs314263 Height RFX1 0.267 0.807
rs9849338 Height Foxd3 0.356 0.791
rs4973431 Height CDP CR1 0.184 0.690
rs4725984  Height RFX1 0.116 0.601
rs12740374 Height RFX1 0.084 0.510
rs894344 Height CDP CR1 0.087 0.502
rs4519508 Height E2F 0.105 0.444
rs4073154  Height RFX1 0.063 0.441
rs3828559  Height SREBP 0.184 0.343
rs10171985 Height Foxd3 0.036 0.202
rs1044973 HDL Whn 0.368 0.755
rs676210 HDL LYS14 0.296 0.657
rs12740374 HDL RFX1 0.266 0.618
rs6907508 HDL EMX2 0.219 0.465
rs1800562  LDL CPRF-1 0.981 0.999
rs267733 LDL ATF3 0.978 0.998
rs2479409  LDL TGA2 0.931 0.998
rs532436 LDL USF/E-box 0.397 0.947
rs2075375 LDL bZIP911 0.238 0.811
rs217381 LDL ATF-3 0.271 0.678
rs217386 LDL /Cell09/HLH-29 0.260 0.586
rs2162011 LDL CPRF-1 0.044 0.548
rs2954021 LDL bZIP911 0.075 0.525
rs6920309  LDL ATF3 0.060 0.494
rs9293637 LDL Pax6 0.186 0.366
rs2479409  TC TGA2 0.970 0.997
rs1800562  TC CPRF-1 0.925 0.995
rs2235215 TC STB4 0.676 0.965
rs532436 TC USF/E-box 0.469 0.836
rs1556857 TC STB4 0.067 0.479
rs553427 TC STB4 0.032 0.303
rs9686661 TG SPI-B 0.641 0.951
rs2270924 TG Pax-2 0.259 0.600
rs13173241 TG ZMS1 0.169 0.292

1s7789194 TG GBF1 0.259 0.259



https://doi.org/10.1101/007559

bioRxiv preprint doi: https://doi.org/10.1101/007559; this version posted July 29, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

A
1) Input data: %‘é’ AP-1 | 2) Iterative | 4) Nested annotation:
DNase-seq: g° | CENTIPEDE || DHS-SNP___________
ENCODE Y II_Footprlnt -SNP |
Roadmap I | Effect-SNP i i
Epigenome R v —— ,70 \ 5 100 SWItch SNP .i_ e
Distance from center of motlf (bp)

MA0099.2 ,” 'l \

Position Weight Seed motif i
Matrices: : ’

! Rewsed motif 5) Allele specific binding:
4 N
“ ’

/4 TCATAGCTCGGGTAAGAGGC

TRANSFAC 1 L7 e
JASPAR s ¢ racfimarcas @ 8o
. S e 3 60
3) Computational predlctlon YA P A S T
. - \\ 7/ CAACAGCTGACTCATAGCTC 8 20
Genetic variants: 07 Effect-SNP A N aomacracene @ |
—_ 08 CCACAACAGCTGACTCATAG
1000 Genomes D C A CCCACAACAGCTGACTCATA A
1 % 06 ACCACEEEEﬁgﬁﬁzﬁgglgﬁglEﬁIAGCTCGGGTMGAGGCCACCACC
_ \ ACCACCCCCACAACAGCTGACTTATAGCTCGGGTAAGAGGCCACCACC
~ N T
o o2 |‘/ : ¥
Switch-SNP N
vo ==} 6688233 | i
2 -0 o 10 =20 IS S ¥
PWM Score SN
B C
4 - 59.5%
Switch-SNPs ------- >
- |
Effect-SNPs | 56.5%
> Vo P
22 Do 2
8 : Ll 3.1% o
[ Footprint-SNPs__ ! _3.1% Q
1 [l [v)
DHS-SNPs ,_.__i. i _2:.1%
1 : D
0J
T T T T T T T T 1 T T T T 1
0.0 0.1 02 03 04 05 06 07 08 0 0.001 0.01 0.1 1
Magnitude of allele—specific binding (ASB) p-value

Figure 1: Identification of allele-specific binding. (A) A visual description of the methods. [(A1) Data sources.
(A2) Iterative process of using CENTIPEDE to revise sequence models and call footprints. (A3) Computational
predictions of factor binding. SNPs are categorized by the degree to which they are predicted to impact binding.
(A4) The nested categories of functional annotations. (AS) Use of allele-specific analysis to detect differential
binding.] (B) SNPs predicted to have effects on binding are enriched for a large magnitude of allelic imbalance
[|(allele ratio - 0.5) / 0.5|]. Each line represents a density plot of the magnitude for SNPs within a functional
category. Numbers on arrows represent the expected proportion of true signal (1 — 7rg) for each category. (C) ASB
p-value densities for SNP categories. The dotted blue line represents the null distribution.
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Figure 2: Characterization of binding SNPs. (A) Comparison of the minor allele frequency of SNPs pre-
dicted to affect binding (dark red) or not (light red). Minor allele frequency at coding SNPs, separated into non-
synonymous (dark blue) and synonymous (blue), is shown for comparison. MAF is in bins of 10%, with the
exception of rare (MAF < 1%) SNPs. (B) Proportion of SNPs at increasing distance from the nearest transcription
start site (TSS) up to S0Kb. Fewer SNPs affecting binding (dark red) are present near a TSS compared to those
with no effect (light red). Distance is absolute distance, regardless of direction (up- or downstream) from TSS. (C)
Stratification of footprint-SNPs by the number of tissues for which the footprint was predicted active, colored by
binding effect (dark red) or not (light red). Number of tissues is binned by 5 or 10 until 50, where the remainder is
binned.
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Figure 3: Characterization of binding elements. (A) Plot showing factors whose binding sites are significantly
enriched or depleted for ASB variants (p-value <0.01), with indication of the number of tissues affected (color)
and the median distance to the TSS (shape). Horizontal lines represent the 95% confidence interval of the ASB
enrichment ratio. An asterisk denotes a possible human analog for the specified factor. Redundant motifs were

excluded from the plot. (B) Barplot showing the distance to the nearest TSS between motifs either enriched or

depleted for ASB-SNPs. (C) Barplot showing the number of tissues where a motif was predicted to be active for
motifs either enriched or depleted for ASB-SNPs.
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Figure 4: Examining selection on TF binding sites. Comparison of fixed functional (D) to fixed silent (Ds)
(y-axis) versus polymorphic functional (P) to polymorphic silent (P,) (x-axis) variants across all of the binding
sites for each TF examined. Scores towards the top left are suggestive of positive selection (excess of fixed
functional changes), with several of the top significant examples indicated by green points and the factor name.
Scores towards the bottom right are suggestive of negative (purifying) selection, with several of the top significant
examples indicated by red points and the factor name.
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Figure 5: Integration of annotations into GWAS results. (A/B) Enrichment (logs(change in prior odds w.r.t
the baseline model)) of factors for association with (A) low-density lipoprotein levels and (B) height. Error bars
are drawn for 95% confidence intervals. (C/D) Association plots showing the prior association (Bayes factor) of
each SNP in the displayed region for (A) low-density lipoprotein levels and (B) height. Shown in red are SNPs
with a posterior probability of association >0.4.
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