
Exploiting evolutionary non-commutativity to prevent the

emergence of bacterial antibiotic resistance

Daniel Nichol1,5, Peter Jeavons1, Alexander G. Fletcher2, Robert A. Bonomo3, Philip K. Maini2,

Jerome L. Paul4, Robert A. Gatenby5, Alexander R.A. Anderson5 & Jacob G. Scott2,5

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
3 Department of Medicine, Louis Stokes Department of Veterans A↵airs Hospital, Cleveland, OH, USA
4 School of Computing Sciences and Informatics, University of Cincinnati, Cincinnati, OH, USA
5 Department of Integrated Mathematical Oncology, H. Lee Mo�tt Cancer Center and Research Institute,

Tampa, FL, USA

Correspondence:

Jacob G Scott, e-mail: jacob.g.scott@gmail.com and

Daniel Nichol, e-mail: dan.nichol@cs.ox.ac.uk

Keywords: theoretical biology, antibiotic resistance, bacteria, mathematical model, evolution,

fitness landscape, strong selection weak mutation

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2015. ; https://doi.org/10.1101/007542doi: bioRxiv preprint 

https://doi.org/10.1101/007542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments

presents a growing threat to public health. Here, we develop a Markov Chain model of evolution

in asexually reproducing populations which is an encoding of the Strong Selection Weak Mutation

model of evolution on fitness landscapes. This model associates the global properties of the fitness

landscape with the algebraic properties of the Markov Chain transition matrix and allows us to

derive general results on the non-commutativity and irreversibility of natural selection as well as

antibiotic cycling strategies. Utilizing this formalism, we analyse 15 empirical fitness landscapes of

E. coli under selection by di↵erent beta-lactam antibiotics and demonstrate that the emergence of

resistance to a given antibiotic can be both hindered and promoted by di↵erent sequences of drug

application. Further, we derive optimal drug application sequences with which we can probabilis-

tically ‘steer’ the population through genotype space to avoid the emergence of resistance. This

suggests a new strategy in the war against antibiotic–therapy–resistant organisms: drug sequencing

to shepherd evolution through genotype space to states from which resistance cannot emerge and

by which to maximize the chance of successful therapy.

Background: The increasing rate of antibiotic resistance and slowing discovery of novel antibi-

otic treatments presents a growing threat to public health. Previous studies of bacterial evolutionary

dynamics have shown that populations evolving on fitness landscapes follow predictable paths. In

this article, we develop a general mathematical model of evolution and hypothesise that it can be

used to understand, and avoid, the emergence of antibiotic resistance.

Methods and Findings: We develop a Markov Chain model of evolution in asexually repro-

ducing populations which is an encoding of the Strong Selection Weak Mutation model of evolution

on fitness landscapes. This model associates the global properties of the fitness landscape with the

algebraic properties of the Markov Chain transition matrix and allows us to derive general results

on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strate-

gies. Utilizing this formalism, we analyse 15 empirical fitness landscapes of E. coli under selection

by di↵erent �-lactam antibiotics and demonstrate that the emergence of resistance to a given an-

tibiotic can be both hindered and promoted by di↵erent sequences of drug application. We show

that resistance to a given antibiotic is promoted in 61.4%, 68.6% and 70.3% of possible orderings

of single, pair or triple prior drug administrations, respectively. Further, we derive optimal drug

application sequences with which we can probabilistically ‘steer’ the population through genotype

space to avoid the emergence of resistance.
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Conclusions: Our model provides generalisable results of interest to theorists studying evolu-

tion as well as providing specific, testable predictions for experimentalists to validate our methods.

Further, these results suggest a new strategy in the war against antibiotic–therapy–resistant or-

ganisms: drug sequencing to shepherd an evolving population through genotype space to states

from which resistance cannot emerge and from which we can maximize the likelihood of successful

therapy using existing drugs. While our results are derived using a specific class of antibiotics,

the method is generalisable to other situations, including the emergence of resistance to targeted

therapy in cancer and how species could change secondary to changing climate or geographical

movement.

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2015. ; https://doi.org/10.1101/007542doi: bioRxiv preprint 

https://doi.org/10.1101/007542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction1

Resistance to antibiotic treatments within bacterial pathogens poses an increasing threat to pub-2

lic health, which coupled with the slowing discovery of novel antibiotics, could soon reach crisis3

point [Spellberg et al., 2013, French, 2010]. Novel classes of antibiotics discovered since 1987 are4

few in number [Silver, 2011] . Thus, it is becoming ever clearer that if we are to combat highly5

resistant bacterial infections, then we must find new ways to prevent resistance and new applica-6

tions of existing antibiotics to these pathogens. Indeed, public health e↵orts have attempted to7

stem the emergence of resistance by reducing unnecessary prescription of antibiotics [Shlaes et al.,8

1997, Bartlett, 2011, Leuthner and Doern, 2013] and stopping the addition of sub-therapeutic an-9

tibiotics in livestock feed [Mathew et al., 2007]. However, such policies require global adoption to10

be truly e↵ective [Moody et al., 2012], which they have not yet achieved, and is likely infeasible.11

Recently, there have been e↵orts to explore how existing antibiotics can be used in new ways to pro-12

vide e↵ective treatments for resistant pathogens, for example through combination therapy [Chait13

et al., 2007] or through cycling strategies [Goulart et al., 2013, Pena-Miller and Beardmore, 2010,14

Bergstrom et al., 2004] – long term hospital–scale treatment protocols that cycle which antibiotics15

are prescribed over timescales of weeks, months or years. However, our understanding of the mecha-16

nisms underlying these strategies remains limited. Indeed, from a mathematical model Pena-Miller17

and Beardmore [2010] predict that cycling strategies have the potential to perform both better and18

worse than mixed strategies and hence tools to find optimal strategies are needed.19

In order to understand how to minimize the emergence of resistant pathogens, and to decide20

how best to treat them, we must first understand how their evolution is driven by the selective21

pressures of di↵erent antibiotic drugs — a fundamental problem of biology [de Visser and Krug,22

2014]. In particular, if we understand which traits are likely to be selected for by which treatments,23

then we may be able to avoid selecting for those traits which confer resistance. Recent insights24

into the evolutionary process have yielded some actionable information. Specifically, Weinreich25

et al. [2005, 2006] showed that if the genome of a pathogen exhibits sign epistasis, where a given26

mutation is beneficial on some genetic backgrounds and deleterious on others, then there can exist27

inaccessible evolutionary trajectories. Further, Tan et al. [2011] studied the evolutionary trajecto-28

ries of Escherichia coli under di↵erent antibiotics and found that adaptive mutations gained under29

one antibiotic are often irreversible when a second is applied. These irreversible trajectories can30

occur when resistance conferring mutations for one environment carry a cost in another which can31

be mitigated by other compensatory mutations [zur Wiesch et al., 2010, Tanaka and Valckenborgh,32

2011]. These findings lead us to hypothesize that one antibiotic could be used to irreversibly steer33

the evolution of a population of pathogens to a genotype (or combination of genotypes) which34
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is sensitive to a second antibiotic but also from which it is unlikely to acquire resistance to that35

antibiotic. This hypothesis was partly verified by the work of Imamovic and Sommer [2013] who36

demonstrated that evolving E. coli to become resistant to certain antibiotics can increase sensitiv-37

ity to others. However, this work is limited in two ways. Firstly, in that the experiments do not38

exhaustively consider all evolutionary trajectories but instead highlight only those that arose in a39

small number of replicates and secondly, they do not consider how evolution will proceed once the40

second drug is applied and whether resistance can then emerge.41

In this paper we present a Markov Chain model of evolution which we use to derive general42

results on the non-commutavity of evolution and requirements for cycling strategies. Then, using43

previously measured landscapes for 15 �-lactam anti-biotics, we illustrate that selective pressures44

are non-commutative, and that the emergence of resistance can be both hindered and promoted45

by di↵erent orderings of these pressures. These findings suggest new treatment strategies which46

use rational orderings of collections of drugs to shepherd evolution through genotype space to a47

configuration which is sensitive to treatment, as in the work of Imamovic and Sommer [2013], but48

also from which resistance cannot emerge.49

Evolution on Fitness Landscapes50

We begin with the concept of a fitness landscape introduced by Wright [1932] and used by Wein-51

reich et al. [2005] and Tan et al. [2011] to study evolutionary trajectories in asexually reproducing52

populations. We represent the genotype of an organism by a bit string of length N and model53

mutation as the process of flipping a single bit within this string. This model of mutation only54

accounts for point mutations and ignores the possibility of other biologically relevant mutations55

such as gene insertions, gene deletions and large structural changes to the genotype. This gives a set56

of 2N possible genotypes in which individuals of a given genotype, say g, can give rise to mutated57

o↵spring which take genotypes given by one of the N mutational neighbors of g — precisely those58

genotypes g0 for which the Hamming distance [Hamming, 1950], Ham(g, g0), from g is 1. As such,59

our genotype space can be represented by an undirected N -dimensional (hyper–)cube graph with60

vertices in {0, 1}N representing genotypes and edges connecting mutational neighbors (Figure 1a).61

We define a selective pressure on our graph that drives evolution, for example through an62

environmental change or drug application, as a fitness function63

f : {0, 1}N ! R�0
. (1)

This fitness function represents a genotype-phenotype map in the simplest sense — assigning to each64
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genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and65

population size M of a population satisfy Mu >> 1 >> Mu

2, and if we assume that each mutation66

is either beneficial or deleterious, then each beneficial mutation in the population will either reach67

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently68

strong that any deleterious mutation will become extinct with high probability and hence we may69

assume that this always occurs. In the case that Mu

2 ⇡ 1 stochastic tunneling [Iwasa et al.,70

2004] through double mutations can occur and we cannot ignore deleterious mutations. Assuming71

Mu >> 1 >> Mu

2, then after each mutation the population will stabilize to consist entirely72

of individuals with the same genotype and this genotype will be eventually replaced by a fitter73

neighboring genotype whenever one exists. This observation gives rise to the Strong Selection Weak74

Mutation (SSWM) model, which models a population as occupying a single vertex on a directed75

graph on the set of 2N possible genotypes, {0, 1}N , in which there exists an edge from vertex a to a76

neighboring vertex b if, and only if, f(b) > f(a) (see Figure 1b and 1c). This population undergoes a77

stochastic walk in which the population moves to an adjacent fitter genotype with some probability.78

Several ‘move rules’ have been proposed which can be used to select an adjacent fitter neighbor79

during this stochastic walk [Orr, 2005] and which of these move rules is most accurate depends on80

the population size [de Visser and Krug, 2014]. Common move rules include selecting the fittest81

neighbor [Kau↵man and Levin, 1987, Fontana et al., 1993], selecting amongst fitter neighbors at82

random [Macken and Perelson, 1989, Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting83

fitter neighbors with probability proportional to the fitness increase conferred [Gillespie, 1983, 1984,84

1991]. We encapsulate each of these variants of the SSWM model within our model.85

A Markov Model of Evolution86

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed87

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness88

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]
i,j2{0,1}N for a89

time–homogeneous absorbing Markov Chain by setting, for i 6= j,90

P(i ! j) =

8
>>>>><

>>>>>:

�
f(j)�f(i)

�r
X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)
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(a) (b)

(c) (d)

Figure 1: (a) The space of genotypes comprising bit strings of length N = 3. The vertices represent
genotypes, and edges connect those genotypes which are mutational neighbors. (b) An example
fitness landscape. (c) The directed evolutionary graph according to the landscape in (b) where the
vertices still represent genotypes but are labeled by the associated fitness for clarity. The directed
graph edges are determined by the fitness function and represent those mutations which can fix in
a population (those which confer a fitness increase). (d) The Markov Chain constructed for the
same landscape according to equations (2) and (3) with r = 0.

and91

P(i ! i) =

8
<

:
1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1d). Here the parameter r � 0 determines the extent to which the fitness92

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case93

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.94

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent95

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have96
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probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers97

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as98

we do not allow deleterious mutations to fix in the population.99

Using this Markov Chain we can explore the possible evolutionary trajectories of a population100

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each101

t 2 N, where µ(t) has length 2N and k

th component which gives the probability that the population102

has the k

th genotype at time t (where the genotypes are ordered numerically according to their103

binary value). These time steps t are an abstraction which discretely measure events of beneficial104

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1105

is not constant but may be considered drawn from a distribution parameterized by the mutation106

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution107

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,108

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the109

population has a genotype corresponding to a local optimum of the fitness landscape at time t then110

there are no beneficial mutations that can occur and this definition of a time step is not well defined.111

In this case there can be no more changes to the population under the SSWM assumptions and112

for mathematical convenience we define the probability of a local optimum population genotype113

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the114

step t to t+ 1 can be chosen to take some fixed arbitrary time.115

The distribution of a population at time t is related to its initial distribution, µ(0), by116

µ

(t) = µ

(0)
P

t

. (4)

Since the Markov Chain is absorbing we know that there exists some k such that P k

P = P

k [Grin-117

stead and Snell, 1998]. Consequently, we know that the matrix118

P

⇤ = lim
t!1

P

t (5)

exists and in fact this limit is reached after only finitely many matrix multiplications. Thus a given119

initial population distribution µ

(0) will converge to a stationary distribution µ

⇤ after a finite number120

of steps in our model. Furthermore, if P ⇤ is known then we compute the stationary distribution121

µ

⇤ as122

µ

⇤ = µ

(0)
P

⇤
. (6)

In particular, provided we assume a drug is applied for su�ciently long to ensure that the disease123
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population reaches evolutionary equilibrium, we can explore the e↵ects of applying multiple drugs124

sequentially by considering the matrices P ⇤ for the associated fitness landscapes. In the following125

discussion we make this assumption.126

By encoding the evolutionary dynamics in a Markov Chain we can investigate the evolutionary127

process from an algebraic perspective. In particular, as the transition matrix P encodes all of the128

evolutionary dynamics of the associated fitness landscape f , we can explore global properties of f129

by considering the algebraic properties of P . In the following section we present two simple, yet130

powerful, consequences of this observation.131

Non-Commutativity and Cycling of Natural Selection132

We use the Markov Chain model to formally prove that for a large class of fitness landscape pairs,133

there is non-commutativity in the evolutionary process as described by the SSWM assumptions.134

More precisely, consider two drugs, X and Y , with corresponding fitness landscapes x and y. We135

wish to determine what, if any, di↵erence there is between applying X followed by Y to a population136

as opposed to applying Y followed by X to that population. If we construct the transition matrices137

P

x

and P

y

corresponding to x and y, respectively, and take the limits P ⇤
x

and P

⇤
y

, then our model138

predicts that the ordering makes no di↵erence to the final population distribution on an initial139

population taking genotype i if, and only if,140

µ

i

P

⇤
x

P

⇤
y

= µ

i

P

⇤
y

P

⇤
x

, (7)

where µ

i

is row vector of length 2N whose i

th component is one and all of whose other components141

are zero.142

If we do not know the starting population genotype we can only guarantee that the order of143

application is irrelevant when the outcome is the same regardless of the starting genotype. We144

require for all possible length 2N unit vectors µ
i

that µ
i

P

⇤
x

P

⇤
y

= µ

i

P

⇤
y

P

⇤
x

. Since these unit vectors145

form a basis of RN this occurs precisely when146

P

⇤
x

P

⇤
y

= P

⇤
y

P

⇤
x

. (8)

Hence drug application will only commute when the corresponding limit matrices commute. In147

practice we may be able to narrow down which genotypes are likely to constitute the population148

through bacterial genotyping or by observing that certain strains are not viable in the wild due to149

the high fitness cost of certain mutations. To determine how common commutativity is we first150
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tested each pair of fitness landscapes from the landscapes empirically determined by Mira et al.151

[2014] for E. coli in the presence ofN = 4 possible resistance conferring mutations under 15 di↵erent152

antibiotics (listed in Table 1). Of these 15 antibiotics we found no commuting pairs. We then tested153

106 pairs of random fitness landscapes with varying ruggedness generated according to Kau↵man’s154

NKmodel for generating “tunably rugged” fitness landscapes [Kau↵man and Levin, 1987, Kau↵man155

and Weinberger, 1989] using a random neighborhood Boolean function for determining the fitness156

contributions of each locus. We fixed N = 5 and generated each landscape by first drawing K157

uniformly from {0, . . . , N � 1} and then using Kau↵man’s model to build a landscape. We found158

that 0.132% of the landscape pairs generated had limit matrices which commuted, suggesting that159

commutativity is rare.160

We now turn out attention to finding antibiotic cycling strategies as in Goulart et al. [2013].161

Unless x is a flat landscape (taking equal values for all genotypes) there must exist a (not necessarily162

unique) genotype j whose fitness is a minimum and which has a fitter neighbor. Such a genotype163

satisfies P[(i ! j)] = 0 for all genotypes i. Hence if x is not flat, the limit matrix P

⇤
x

has at least one164

column of all zeros and is singular, so there cannot exist a second landscape y for which P

⇤
x

P

⇤
y

= I.165

Hence there exists a unit row vector µ
i

for which µ

i

P

⇤
x

P

⇤
y

6= µ

i

. As the µ vectors encode probability166

distributions this means that natural selection in our model is irreversible in the sense that for a167

given (non-flat) landscape we cannot find another which is guaranteed to reverse its e↵ects. This168

result precludes the existence of a general cycling strategy through which we can utilize a sequence169

of drugs to drive evolution through a cycle in genotype space such that the disease population170

returns to its original genotype, regardless of that starting genotype. If we do in fact know the171

starting genotype, as we might if the disease is contracted in the wild where resistance conferring172

mutations often carry a cost [Andersson and Hughes, 2010] making the wild–type genotype most173

likely, then cycling strategies can be found e�ciently by our model. In particular, for a given174

starting genotype i the initial population distribution will be µ
i

and a sequence of drugs X1, . . . X
k

175

with fitness landscapes x1, . . . x
k

will constitute a cycling strategy precisely when µ

i

P

⇤
x1

. . . P

⇤
xk

= µ

i

.176

This criterion will be satisfied when µ

i

is a left 1–eigenvector of P ⇤
x1

. . . P

⇤
xk
. As such, we can find177

cycling strategies using matrix algebra and avoid the graph–search technique used by Goulart et al.178

[2013].179

Evolutionary Steering can both Prevent and Promote Resistance180

Prescriptions of sequences of drugs occur frequently in the clinic, and often without any guidelines181

as to which orderings are preferable. Common examples of this include, but are not limited to,182
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Figure 2: The evolutionary graphs for the fitness landscapes of E. coli with the antibiotics (a)
Ampicillin (Amp), (b) Ampicillin + Sulbactam (Sam) and (c) Cefprozil (Cpr) for 4 possible substi-
tutions found in blaTEM-50. Arrows represent fitness conferring mutations which can fix under the
SSWM assumptions, the absence of an arrow in either direction corresponds to a neutral mutation
which cannot fix under our assumptions. Squares denote local optima within the fitness landscape.

treatment of H. pylori [Gisbert et al., 2010], Hepatitis B [Hanazaki, 2004] and the ubiquitous change183

from broad to narrow spectrum antibiotics [Heenen et al., 2012]. The ordering of the sequence is184

therefore often determined arbitrarily, by the individual clinician’s personal, or historical experience185

or from laboratory data. Ideally, we would like to be able to identify drug orderings that lower the186

probability of a highly resistant disease population emerging during the treatment. To consider187

optimal drug orderings in the context of our model we first need to know the fitness landscapes (or188

proxies of the fitness landscapes) of a number of antibiotics used to treat a given bacterial infection.189

Experimentally determining these landscapes requires one to consider all possible 2N combinations190

of genotypes in a set of N genes, a task which is prohibitively di�cult for all but small values of191

N . De Visser and Krug [2014] found that there have been less than 20 systematic empirical studies192

of fitness landscapes and that landscapes have been calculated for a number of model organisms193

including E. coli [Khan et al., 2011, Tan et al., 2011, Schenk et al., 2013, Goulart et al., 2013],194

Saccharomyces cerevisiae [Hall et al., 2010], Plasmodium falciparum [Lozovsky et al., 2009] and195

type 1 Human Immunodeficiency Virus [da Silva et al., 2010]. Recent work by Hinkley et al. [2011]196

which utilizes regression methods to approximate large fitness landscapes from samples of the space197

could help ameliorate the complexity of experimentally determining fitness landscapes.198

Mira et al. [2014] investigated the fitness landscapes of E. coli under 15 di↵erent �-lactam199

antibiotics using the mean minimum inhibitory concentration (MIC) of drug as a proxy for fitness200

for a total of N = 4 resistance conferring mutations. Figure 2 shows the evolutionary graphs201
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Figure 3: The probability distributions for accessibility of the peaks of the Amp landscape for
di↵erent steering regimes. The starting distribution is µ = [1/2N , . . . , 1/2N ]. When Amp is given
first any of the three peaks of the landscape are accessible with most resistant genotype 1111 being
most likely. If Sam is given first to steer the population to its sole peak 1111, then resistance to
Amp will be guaranteed when it is applied. Alternatively, if Sam is given followed by Cpr then the
population evolves to the local optima genotype 0110 of the Cpr landscape. If Amp is applied to
this primed population the global optimum is inaccessible.

of the fitness landscapes for three of these antibiotics, Ampicillin (Amp), Ampicillin+Sulbactam202

(Sam) and Cefprozil (Cpr). We will use these three fitness landscapes to demonstrate the steering203

hypothesis explicitly. In the case of a single peaked landscape, such as that for Ampicillin +204

Sulbactam, we cannot reduce the likelihood of resistance as all evolutionary trajectories lead to the205

global fitness optimum. It is only when a drug has a multi–peaked landscape that we may be able206

to avoid resistance through careful choice of preceding drugs. Of the 15 landscapes determined207

empirically by Mira et al. [2014] only the landscape for Ampicillin+Sulbactam is single peaked. In208

their review of empirical fitness landscapes de Visser and Krug [2014] find that biological landscapes209

show a variable but substantial level of ruggedness suggesting that multi–peaked landscapes could be210

quite common. Poelwijk et al. [2007, 2011] showed that reciprocal sign epistasis within a landscape211

is necessary for the landscape to be multi–peaked.212

In the following we take r = 0 in equation (2) and note that changing the value of r will not213

change the accessibility of an evolutionary trajectory, hence by taking a di↵erent value of r � 0214

we will only change the result quantitatively (the probabilities may change) but not qualitatively.215

We begin by supposing that we do not know the initial population genotype. We can model this216

situation by taking as our prior population distribution µ = [1/2N , . . . , 1/2N ] which specifies that217
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each genotype is equally likely to constitute the starting population.218

If we apply the drug Amp to this population distribution we find that in the expected distribu-219

tion µ

⇤ = µP

⇤
Amp

(shown in the first diamond in the top row of Figure 3) each of the fitness peaks220

could be found. In particular, the most highly resistant genotype 1111 can arise in the population221

with probability 0.62. Suppose instead we apply Sam first. In this case as the landscape is single222

peaked the population will converge to the global optimum genotype 1111. This genotype is also223

the global optimum of the Amp landscape and hence if we apply Amp after Sam we will encounter224

high resistance. We have steered the population with one drug to a configuration which increases225

the probability of resistance to a second. Next suppose instead we apply Cpr after Sam, in this226

case the population is guaranteed to evolve to a local optimum 0110 of the Cpr landscape. 0110227

is the least fit local optimum of the Amp landscape. Thus if we apply Amp to the population228

primed by Sam and Cpr then evolution to the global optimum 1111 is not possible. This example229

demonstrates the steering hypothesis, that evolution can be shepherded through careful orderings230

of multiple drugs to increase or decrease the likelihood of resistance emerging.231

To test our steering hypothesis we performed for each of the 15 drugs with landscapes derived232

by Mira et al. [2014] an in silico test of steering using combinations of one, two or three preceding233

drugs. Table 1 shows for each of the 15 antibiotics the combinations which reduce the probability234

of evolution to a peak fitness genotype to the lowest possible when applied in order followed by235

the final drug. We found that for 3 of the 15 drugs there exists another which steers an initial236

population µ to a configuration which prevents evolution to the global fitness optimum of the237

landscape entirely. This number rose to 6 when pairs of drugs applied sequentially are used to steer238

the population and to 7 when triples applied in sequence were considered.239

We then performed a second in silico experiment to find combinations of steering antibiotics240

that maximize the probability that evolution proceeds to the least fit of the local optima of a final241

antibiotic. Table 3 show the results of this experiment. We found that, excluding the single peaked242

landscape for Ampicillin with Sulbactam, there exist 0 drugs for which a single other drug is able243

to steer the population to a configuration from which evolution to only the least fit optimum is244

possible. If pairs of drugs are used to steer there are 3 such drugs (including the example presented245

in the above demonstration) and if triples of steering drugs are considered there remains only 3.246

These findings suggest that through careful choice of steering drugs we may be able to prevent the247

emergence of resistance. During these experiments we found that 14/15 of the antibiotics in our248

experiment (Cefpodoxime (CPD) being excluded) appeared in an optimal steering combination of249

some length.250

Whilst careful selection of drugs for steering can prevent the emergence of resistance, arbitrary251
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drug orderings can also promote it. We performed an exhaustive in silico search of all singles, pairs252

of, and triples of steering drugs applied sequentially to prime the initial population µ for a final253

application of each of the 15 antibiotics. We found that steering with a single drug increased the254

likelihood of the most resistant genotype emerging in 57.3% of cases and decreased the likelihood in255

29.8% of cases. Steering with pairs of drugs increased the likelihood in 64.1% of cases and decreased256

it in 28.4% of cases and steering with triples increased the likelihood in 65.6% of cases and decreased257

it in 27.5%. For each of the antibiotics except Cefaclor, Cefprozil and Ampicillin+Sulbactam (which258

is single peaked making steering irrelevant) we found that a random steering combination of length259

one, two or three is more likely to increase the chances of resistance than to reduce it. Indeed,260

for Piperacillin+Tazobactam and Ceftizoxime we found that a random steering combination will261

increase the probability of the most highly resistance genotype occurring in more than 80% of cases,262

suggesting that sequential multidrug treatments which use these antibiotics should proceed with263

caution. These findings suggest that the present system of determining sequential drug orderings264

without quantitative optimisation based guidelines could in fact be promoting drug resistance and265

that to avoid resistance we must carefully consider the order in which drugs are applied.266

Discussion267

We have encoded Strong Selection Weak Mutation evolutionary dynamics on fitness landscapes268

as a Markov Chain. Through this encoding we can explore the dynamics of evolution by consid-269

ering the algebraic properties of the associated Markov transition matrix. In particular, we have270

demonstrated that evolution on fitness landscapes is non-commutative through parallels with the271

non-commutativity of matrix multiplication and that antibiotic cycling strategies can be determined272

through matrix multiplication. We argue then that the ordering in which a collection of drugs is273

applied can significantly impact the population that exists after the application is complete.274

We have shown that we can find sequences of drugs that can be applied to both avoid and275

promote the emergence of resistance in the population. In light of the slow pace of novel antibiotic276

discovery and the rapid emergence of resistance to the presently most utilized antibiotics, this277

finding suggests a new treatment strategy — one in which we use a sequence of drugs (or even278

treatment breaks which themselves impose a selective pressure [Andersson and Hughes, 2010]) to279

steer, in an evolutionary sense, the disease population to avoid resistance from developing. Further,280

the drugs used to prime the disease population for treatment by an e↵ective antibiotic do not281

themselves need to be the most e↵ective drugs available. This means that there could be a large282

pool of potential steering drugs in the form of antibiotics which have gone unused for many years283
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Final drug

# of

Peaks

Fittest peak

genotype

Probability of

ending at

highest fitness

genotype (no

steering)

Best

single

steering

drug

Probability of

ending at

highest fitness

genotype (with

best single

steering drug)

Best ordered

pair of

steering

drugs

Probability of

ending at

highest fitness

genotype (with

best steering

pair)

Best ordered

triple of steering

drugs

Probability of

ending at

highest fitness

genotype (with

best steering

triple)

Ampicillin
(AMP)

3 1111 0.62 CPR 0.25 AMP!CPR 0.0 - -

Amoxicillin
(AMX)

2 1101 0.75 CTX 0.62 SAM!CPR 0.51 CRO!SAM!CPR 0.51

Cefaclor (CEC) 3 0011 0.19 SAM 0.0 - - - -
Cefotaxime
(CTX)

4 1111 0.17 CPR 0.04 AMP!CPR 0.0 - -

Ceftizoxime
(ZOX)

2 0111 0.86 AMX 0.81 SAM!AMX 0.75 CEC!CPR!AMC 0.75

Cefuroxime
(CXM)

2 0111 0.56 AMC 0.33 CXM!AMC 0.19 AMC!CXM!AMC 0.11

Ceftriaxone
(CRO)

4 1111 0.28 CEC 0.20 TZP!CEC 0.05 AMC!TZP!CEC 0.0

Amoxicillin
+Clav (AMC)

2 1101 0.67 CXM 0.39 AMC!CXM 0.23 CXM!AMC!CXM 0.13

Ceftazidime
(CAZ)

3 0110 0.39 TZP 0.08 AMC!TZP 0.0 - -

Cefotetan (CTT) 5 0111 0.18 AMC 0.0 - - - -
Ampicillin
+Sulbactam

(SAM)
1 1111 1.0 ? 1.0 ? 1.0 ? 1.0

Cefprozil (CPR) 3 0101 0.25 AMP 0.0 - - - -
Cefpodoxime

(CPD)
2 1111 0.81 CRO 0.74 CTX!FEP 0.57 SAM!CEC!CRO 0.50

Pipercillin
+Tazobactam

(TZP)
2 0101 0.80 CTT 0.72 CTT!CTT 0.72 CTX!FEP!CTT 0.68

Cefepime (FEP) 4 1111 0.48 CTX 0.39 CAZ!CEC 0.36 CAZ!CEC!CTX 0.33

Table 1: For each of the 15 antibiotics we have derived the (ordered) sets of one, two and three
steering drugs which reduce the probability of evolution to the maximal fitness genotype to the
lowest possible. In the case that an ordered set of steering drugs reduced the probability to 0 we
have not considered ordered sets of greater length (marked as - in the table). * – as the landscape
for SAM is single peaked there can be no combination of steering drugs which reduce the probability
of finding the global optimum. In all experiments the initial population distribution is taken as
µ = [1/2N , . . . , 1/2N ] and r = 0
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Final drug

# of single

steering drugs

better (*/15)

# of single

steering drugs

worse (*/15)

# of steering

pairs

better(*/225)

# of steering

pairs worse

(*/225)

# of steering

triples better

(*/3375)

# of steering

pairs worse

(*/3375)

Ampicillin
(AMP)

7 (46.7%) 7 (46.7%) 97 (43.1%) 126 (56.0%) 1373 (40.7%) 1998 (59.2%)

Amoxicillin
(AMX)

5 (33.3%) 9 (60.0%) 60 (26.7%) 164 (72.9%) 787 (23.3%) 2578 (76.4%)

Cefaclor (CEC) 9 (60.0% ) 5 (33.3%) 132 (58.7%) 88 (39.1%) 2087 (61.8%) 1264 (37.5%)
Cefotaxime
(CTX)

4 (26.7%) 10 (66.7%) 67 (29.8%) 155 (68.9%) 989 (29.3%) 2335 (69.2%)

Ceftizoxime
(ZOX)

2 (13.3%) 12 (80.0 %) 31 (13.8%) 193 (85.8%) 444 (13.2%) 2930 (86.8%)

Cefuroxime
(CXM)

5 (33.3%) 9 (60.0%) 95 (42.2%) 128 (56.9%) 1486 (43.5%) 1885 (55.9%)

Ceftriaxone
(CRO)

5 (33.3%) 9 (60.0%) 61 (27.1%) 163 (72.4%) 810 (24.0%) 2564 (76.0%)

Amoxicillin
+Clav (AMC)

7 (46.7%) 7 (46.7%) 99 (44.0%) 124 (55.1%) 1428 (42.3%) 1943 (57.6%)

Ceftazidime
(CAZ)

4 (26.7%) 10 (66.7%) 76 (33.8%) 147 (65.3%) 1218 (36.1%) 2153 (63.8%)

Cefotetan (CTT) 4 (26.7%) 10 (66.7%) 58 (25.8%) 166 (73.8%) 843 (25.0%) 2531 (75.0%)
Ampicillin
+Sulbactam

(SAM)
0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Cefprozil (CPR) 7 (46.7%) 7 (46.7%) 113 (50.2%) 110 (48.9%) 1703 (50.5%) 1668 (49.4%)
Cefpodoxime

(CPD)
3 (20.0%) 11 (73.3%) 26 (11.6%) 195 (86.7%) 282 (8.4%) 3077(91.2%)

Pipercillin
+Tazobactam

(TZP)
2 (13.3%) 12 (80.0%) 11 (5.9%) 213 (94.7%) 81 (2.4%) 3293 (97.6%)

Cefepime (FEP) 3 (20.0%) 11 (73.3%) 34 (15.1%) 190 (84.4%) 402 (11.9%) 2972 (88.1%)

Overall 67 (29.8%) 129 (57.3%) 960 (28.4%) 2162 (64.1%) 13933 (27.5%) 33200 (65.6%)
Overall (Without
steering for SAM)

67 (31.9%) 129 (61.4%) 960 (30.5%) 2162 (68.6%) 13933 (29.5%) 33200 (70.3%)

Table 2: For each of the 15 antibiotics we determined how many of the possible single, ordered
double and ordered triple combinations of steering drugs (allowing drugs to appear multiple times
in the combination and also allowing the target drug to appear as a steering drug) improved or
worsened the probability of the most resistant genotype being found after the steering drugs are
applied in order followed by the final target drug. In each case the initial population was given by
µ = [1/2N , . . . , 1/2N ] and r = 0. As the SAM landscape is single peaked no combination of steering
drugs will improve or worsen the outcome. As such, we have computed the overall numbers both
with and without the contribution of the SAM row.
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due to their ine�cacy.284

However, a major di�culty in using sequential drug treatments to steer disease populations is285

that in order to predict the outcomes we must know the fitness landscapes of the drugs involved. De286

Visser and Krug [2014] state that there exist less than 20 systematic studies of fitness landscapes and287

that these studies consider between 3 and 9 possible mutations. For steering to be fully e↵ective we288

must account for all likely fitness conferring mutations and their e↵ects on fitness under many drugs.289

Thus, many of the studies reviewed by de Visser and Krug are insu�cient for determining clinically290

actionable steering strategies for certain diseases. Fortunately, for a number of highly resistant291

infectious diseases [Woodford and Ellington, 2007, Jensen and Lyon, 2009] and cancers [Lord and292

Ashworth, 2013, Lito et al., 2013] there are only a small number of mutations which seem to293

contribute to resistance. Further, recent work by Hinkley et al. [2011] in HIV has introduced a294

method to approximate large fitness landscapes from relatively fewer data points using a regression295

method. It follows that determining the landscapes is not an entirely intractable problem. A further296

complication in determining steering strategies is that fitness landscapes can be dependent on the297

disease microenvironment and have the potential to change from patient to patient or throughout298

the course of treatment. The consequences of such e↵ects on fitness landscapes have not yet been299

experimentally determined.300

Even in the absence of actual fitness landscapes our findings should be taken as a cautionary301

warning for multi-drug treatments, particularly those used to treat complex diseases such as mul-302

tiple infections or cancers. In the same way that the drug ordering can be used to steer away from303

resistance we have shown it can also be used to make resistance more likely. Our results show that304

we may be inadvertently selecting for highly resistant disease populations through arbitrary drug305

ordering in the same way that highly resistant disease can emerge through irresponsible drug dosing.306

This result corroborates the findings of Pena-Miller and Beardmore [2010] that antibiotic cycling307

strategies can vary greatly in their e�cacy and be both worse and better than mixing strategies.308

If we are to avoid resistance to our most e↵ective drugs we must carefully consider how they are309

used together, both in combination and in sequence, with other drugs and take appropriate steps310

to reduce the risk.311

Two major assumptions within our modeling are that drugs are administered for su�ciently312

long that evolution can converge to a local fitness optimum and that this convergence is guaranteed313

to occur. This assumption poses two potential problems in converting our model predictions to314

predictions of real–world bacterial evolution. The first is that if selection is strong and mutations315

are rare then there is a possibility of the population being driven to extinction before an adaptive316

mutation occurs. We have chosen to ignore this possibility within our modeling as in the context317
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of treating bacterial infections this would constitute a success. The second is that the time to318

convergence could be prohibitively long for steering to constitute a realistic treatment strategy.319

We believe that the assumption of reasonable convergence times could be valid as adaptive walks320

in rugged landscapes are often short [Orr, 2005]. However, it has been shown that for certain321

landscapes there can exist adaptive walks of length exponential in the number of loci [Kaznatcheev,322

2013], but since we get to choose those drugs with which to steer we can avoid landscapes for which323

the convergence time is prohibitively long. Further, our model is not necessarily restricted to the324

dynamics within a single patient. Goulart et al. [2013] used fitness landscapes to explore whole325

hospital scale antibiotic treatment strategies and our model, as an encoding of evolution on fitness326

landscapes, is capable of making predictions at this scale also. As such, even if evolutionary327

convergence is experimentally determined to be prohibitively slow for steering to be e↵ective as328

a treatment for bacterial infection within a single patient, our results will still hold in scenarios329

which admit longer timescales. Specifically, evolutionary steering could provide an e↵ective means330

to avoid the emergence of drug resistance at the hospital scale or in life–long diseases such as HIV.331

The Strong Selection Weak Mutation model we have used here is a highly simplified, yet well332

studied model of evolution. The model ignores much of the complexity of the evolutionary process,333

specifically simplifying the genotype–phenotype map, ignoring the disease microenvironment and334

making the assumption of a monomorphic disease population in which deleterious and neutral mu-335

tations cannot fix. Under certain regimes of population size and mutation rates these simplifying336

assumptions break down. For example, if the population is su�ciently large then stochastic tun-337

neling [Iwasa et al., 2004] – the situation where double mutations can occur allowing the crossing338

of fitness valleys – can arise causing a breakdown of the Strong Selection assumption. Similarly,339

if the mutation rate is su�ciently high then the population ceases to be monomorphic and forms340

a quasispecies [Nowak, 1992, Bull et al., 2005]. Conversely, if the population is su�ciently small341

then it becomes possible for deleterious mutations to fix [Moran et al., 1962, Wright, 1932, Fisher,342

1958]. Finally, we have ignored the possibility of neutral spaces in the fitness landscape which have343

been shown to have significant impact on whether non-optimal genotypes can fix in the population344

as well as the time taken for evolution to find a locally optimal genotype [Schaper and Louis, 2014,345

Schaper et al., 2012]. We believe that each of these breakdowns of the SSWM model will have346

important consequences for the possibility and e�cacy of steering and hence a proper treatment347

of their implications is beyond the scope of this paper. In our future work we aim to undertake348

a comprehensive study of the implications of population size, mutation rate, neutral drift and349

evolutionary convergence times on the steering hypothesis.350

The SSWMmodel is a simplification of the evolutionary process and given that non-commutativity351
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is present in this highly simplified model it is unlikely that commutativity will emerge as more com-352

plexity is introduced. It follows that the cautionary message regarding sequential drug application353

which results from our simplified model merits serious consideration. Whether or not measuring354

fitness landscapes provides su�cient information to correctly identify optimal drug orderings in355

vivo is a question that cannot be answered through mathematical modeling alone. It is only by356

verifying the predictions of steering strategies given by our model through biological experiment357

that we can determine whether they are viable. Supposing our model predictions are indeed viable358

then knowledge of some approximation to the fitness landscapes of the presently most used antibi-359

otics could, in combination with our model, provide at least a good heuristic for how to proceed360

with multi-drug treatments, future antibiotic stewardship programs and clinical trial design.361
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Final drug

# of

Peaks

Least fit

peak

genotype

Probability of

ending at

lowest fitness

genotype (no

steering)

Best

single

steering

drug

Probability of

ending at

lowest fitness

genotype (with

best single

steering drug)

Best ordered

pair of

steering

drugs

Probability of

ending at

lowest fitness

genotype (with

best steering

pair)

Best ordered

triple of steering

drugs

Probability of

ending at

lowest fitness

genotype (with

best steering

triple)

Ampicillin
(AMP)

3 0110 0.19 CPR 0.51 SAM!CPR 1.0 - -

Amoxicillin
(AMX)

2 0010 0.25 CTX 0.38 SAM!CPR 0.49 AMP!SAM!CPR 0.49

Cefaclor (CEC) 3 0100 0.41 TZP 0.70 CXM!AMC 0.78 AMC!CXM!AMC 0.87
Cefotaxime
(CTX)

4 1010 0.21 FEP 0.27 CTX!FEP 0.43 SAM!CEC!CRO 0.50

Ceftizoxime
(ZOX)

2 1001 0.14 AMX 0.19 SAM!AMX 0.25 AMP!SAM!AMX 0.25

Cefuroxime
(CXM)

2 0100 0.44 AMC 0.67 CXM!AMC 0.81 AMC!CXM!AMC 0.89

Ceftriaxone
(CRO)

4 0100 0.30 CXM 0.59 AMC!CXM 0.76 CXM!AMC!CXM 0.86

Amoxicillin
+Clav (AMC)

2 0100 0.33 CXM 0.61 AMC!CXM 0.77 CXM!AMC!CXM 0.87

Ceftazidime
(CAZ)

3 0011 0.26 FEP 0.28 CAZ!CEC 0.40 CAZ!AMX!FEP 0.45

Cefotetan (CTT) 5 1101 0.19 AMX 0.75 SAM!AMX 1.0 - -
Ampicillin
+Sulbactam

(SAM)
1 1111 1.0 ? 1.0 ? 1.0 ? 1.0

Cefprozil (CPR) 3 0011 0.25 ZOX 0.26 CAZ!CEC 0.34 CAZ!CEC!FEP 0.43
Cefpodoxime

(CPD)
2 1010 0.19 CRO 0.26 CTX!FEP 0.43 SAM!CEC!CRO 0.50

Pipercillin
+Tazobactam

(TZP)
2 1000 0.20 CTT 0.28 CTT!CTT 0.28 CTX!FEP!CTT 0.32

Cefepime (FEP) 4 0000 0.14 FEP 0.14 TZP!CEC 0.17 CXM!AMC!CTX 0.20

Table 3: For each of the 15 antibiotics we have derived the (ordered) sets of one, two and three
steering drugs which increase the probability of evolution to the least fit optimum genotype to
the highest possible. In the case that an ordered set of steering drugs increases the probability
to 1 we have not considered ordered sets of greater length (marked as - in the table). * – as the
landscape for SAM is single peaked there can be no combination of steering drugs which change the
probability of finding the global optimum. In all experiments the initial population distribution is
taken as µ = [1/2N , . . . , 1/2N ] and r = 0
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