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Abstract  

Background 

RNA sequencing (RNA-Seq) is a powerful technique for transcriptome profiling of 
the organisms that uses the capabilities of next-generation sequencing (NGS) 
technologies. Recent advances in NGS let to measure the expression levels of tens to 
thousands of transcripts simultaneously. Using such information, developing 
expression-based classification algorithms is an emerging powerful method for 
diagnosis, disease classification and monitoring at molecular level, as well as 
providing potential markers of disease. Here, we present the bagging support vector 
machines (bagSVM), a machine learning approach and bagged ensembles of support 
vector machines (SVM), for classification of RNA-Seq data. The bagSVM basically 
uses bootstrap technique and trains each single SVM separately; next it combines the 
results of each SVM model using majority-voting technique. 

Results 

We demonstrate the performance of the bagSVM on simulated and real datasets. 
Simulated datasets are generated from negative binomial distribution under different 
scenarios and real datasets are obtained from publicly available resources. A deseq 
normalization and variance stabilizing transformation (vst) were applied to all 
datasets. We compared the results with several classifiers including Poisson linear 
discriminant analysis (PLDA), single SVM, classification and regression trees 
(CART), and random forests (RF). In slightly overdispersed data, all methods, except 
CART algorithm, performed well. Performance of PLDA seemed to be best and RF as 
second best for very slightly and substantially overdispersed datasets. While data 
become more spread, bagSVM turned out to be the best classifier. In overall results, 
bagSVM and PLDA had the highest accuracies. 

Conclusions 

According to our results, bagSVM algorithm after vst transformation can be a good 
choice of classifier for RNA-Seq datasets mostly for overdispersed ones. Thus, we 
recommend researchers to use bagSVM algorithm for the purpose of classification of 
RNA-Seq data. PLDA algorithm should be a method of choice for slight and 
moderately overdispersed datasets.  

An R/BIOCONDUCTOR package MLSeq with a vignette is freely available at 
http://www.bioconductor.org/packages/2.14/bioc/html/MLSeq.html 

Keywords: Bagging, machine learning, RNA-Seq classification, support vector 
machines, transcriptomics 
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With the advent of high-throughput NGS technologies, transcriptome sequencing 

(RNA-Seq) has become one of the central experimental approaches for generating a 

comprehensive catalog of protein-coding genes and non-coding RNAs and examining 

the transcriptional activity of genomes. Furthermore, RNA-Seq has already proved 

itself to be a promising tool with a remarkably diverse range of applications; (i) 

discovering novel transcripts, (ii) detection and quantification of spliced isoforms, (iii) 

fusion detection, (iv) reveal sequence variations (e.g, SNPs, indels) [1]. Additionally, 

beyond these general applications, RNA-Seq holds great promise for gene expression-

based classification to identify the significant transcripts, distinguish biological 

samples and predict clinical or other outcomes due to large amounts of data which can 

be generated in a single run. 

Although microarray-based gene expression classification have become very popular 

during last decades, more recently, RNA-Seq replaced microarrays as the technology 

of choice in quantifying gene expression due to some advantages as providing less 

noisy data, detecting novel transcripts and isoforms, and unnecessity of prearranged 

transcripts of interest [2-5]. Additionally, to measure gene expression, microarray 

technology provides continuous data, while RNA-Seq technology generates discrete 

count data, which corresponds to the abundance of mRNA transcripts [6]. Therefore, 

novel approaches based on discrete probability distributions (e.g. poisson, negative 

binomial) are urgently required to deal with huge amount of data for expression-based 

classification purpose. Another choice is to use some transformation approaches (e.g. 

vst –variance stabilizing transformation- or rlog –regularized logarithmic 

transformation-) to bring RNA-seq samples hierarchically closer to microarrays and 

apply known algorithms for classification applications [7-9]. Recently, a few studies 

were performed to classify the sequencing data. Witten et al. [6] proposed a Poisson 
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linear discriminant analysis (PLDA) classifier, which is similar to diagonal linear 

discriminant analysis and can be applied to sequencing data. Ghaffari et al. [10] 

modelled the gene expression levels as a multivariate normal distribution model by a 

transformation through a Poisson filtering and tested the performance of linear 

discriminant analysis (LDA) by using three nearest neighbors and radial basis 

function of support vector machines (SVM) classifiers. Ryvkin et al. [11] developed a 

random forest (RF) based classification approach to differentiate six different class of 

non-coding RNAs on the basis of small RNA-Seq data. In addition to these 

methodologies, Cheng et al. [12] proposed binomial mixture models to classify 

bisulfite-sequencing data for DNA methylation profiling. 

In this study, we describe bagging support vector machines (bagSVM) as a first use of 

machine learning algorithms for the purpose of RNA-Seq data classification. The 

bagSVM is an ensemble machine learning approach, which randomly selects training 

samples with bootstrap technique, trains each single SVM separately and combines 

the results of each model to improve the accuracy and the reliability of predictions. 

This method is applied in several studies to improve the classification performance of 

SVM [13-16]. 
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Results and Discussion 

Datasets 
A comprehensive simulation is made to compare the performances of the classifiers. 

In addition to the simulated data, two real datasets were also used to illustrate the 

usefulness of bagSVM algorithm in real life examples. 

Simulated Datasets: Simulated datasets are generated under 144 different scenarios 

using a negative binomial model as follows: 

������ � �~��	
������, ���                                  (1) 

where, si is the number of counts per sample, gj is the number of counts per gene, djk 

is the jth differentially expressed gene between classes and φ is the dispersion 

parameter. The datasets contain all possible combination of: 

• number of biological samples (n) changing as 20, 40, 60, 80; 

• number of differentially expressed genes (p) as 25, 50, 75, 100; 

• number of classes (k) as 2, 3, 4; 

• different dispersion parameters as φ=0.01 (very slightly overdispersed), φ=0.1 

(substantially overdispersed), φ=1 (highly overdispersed). 

Each gene had a 40% chance of being differentially expressed among classes. si and gj 

are distributed identically and independently as si and gj respectively.  

Real Datasets: Two real RNA-Seq datasets are used in this study. A very short data 

description is listed in Table 1. More details about these datasets can be found in 

related papers. 

Classification Properties and Results 

A DESeq normalization [19] was applied to each dataset to adjust sample specific 

differences. Variance stabilizing transformation (vst) [19] was performed for each 

algorithm, except PLDA. For real datasets, differential expression was performed and 
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genes are ranked from most significant to less with increasing number of genes in 

steps of 20 up to 200 genes. Number of bootstrap samples was set as 100 for the 

bagSVM models since small changes were observed over 100 bootstraps. Radial basis 

function was used for the SVM models as kernel and number of trees was set to 100 

for the RF models. Other model parameters were optimized using the trainControl 

function of R package caret [20]. To validate each model, 5-fold cross-validation was 

used, repeated 10 times and accuracy rates were calculated to evaluate the 

performance of each model. Simulation results are demonstrated in Figure 1. 

As can be seen from Figure 1, overall accuracies decrease as the number of classes 

increases. This result is due to the fact that the misclassification probability of an 

observation may be arised depending on the increase in class number. Besides, the 

performance of each method was decreasing depending on the increase in 

overdispersion parameter. In slightly overdispersed data sets, all methods 

performance was very high, except CART algorithm for small sample sized data. 

Performance of PLDA seemed to be best and RF as second best for very slightly and 

substantially overdispersed datasets. The reason may be that PLDA classifies the data 

using a model based on Poisson distribution. We believe that, extending this 

algorithm with negative binomial distribution may increase its performance for highly 

overdispersed datasets. However, it is beyond scope of the present study and we leave 

this issue as an open question to be addressed in future work.  

For substantially overdispersed data, one may choose bagSVM when working with 

small number of genes, whereas PLDA should be preferred over bagSVM if there are 

enough number of genes and samples. However, the accuracy results of bagSVM 

were still high for moderate and slightly overdispersed data (mean accuracies were 

82% and 96% respectively) and still can be a preferred classifier in this situation. 
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While data become more spread, bagSVM turned out to be the best classifier (Figure 

1).  

Unless we work with technical replicates, RNA-Seq data is overdispersed and for 

same gene, counts from different biological replicates have variance, which exceeds 

the mean [21]. This overdispersion can be seen in other research studies [22-26]. 

Results of our study revealed that overdispersion has a significant effect on 

classification accuracies and should be taken into account before model building. 

Moreover, we reach a conclusion that the effect of sample and gene numbers on 

accuracy rates is largely dependent on the dispersion parameter. In other words 

increasing number of samples and genes leads to a significant increase in accuracy, 

unless the data is overdispersed (Figure 1). When data is overdispersed, increasing the 

number of samples does not change the performance of classifiers. However, 

increasing number of features significantly increases overall model accuracies in most 

scenarios. 

The results of real data sets is shown in Figure 2. In liver and kidney data, most of the 

methods performed well except CART algorithm. In cervical cancer data, bagSVM 

showed the best results and mostly improved the performance of single SVM 

classifier. Likely in simulation results, bagSVM performed as the best classifier for 

overdispersed data and all methods performances were very high except CART 

algorithm for a slightly overdispersed data. The distribution of overdispersion 

parameter is demonstrated in Figure 3. As seen from the histogram plots, cervical data 

is a highly overdispersed and liver and kidney data is a lowly overdispersed data. As 

can be noticed that, results obtained from both real and simulation data sets were 

consistent with each other (Figure 2). Consequently, we suggest that the bagSVM 

performed well in both real data sets. It outperformed other algorithms for 
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overdispersed cervical data. Consequently, we conclude that the high performance of 

classifiers in liver and kidney data may be arised as a result of very low 

overdispersion as well as small sample size. 

To make an overall assessment of the results, we generated error bar plots of 

classification accuracy results obtained from simulated data sets. In addition, for each 

scenario, the classifiers were ranked from best to worst based on the classification 

accuracies. Next, Pihur's cross-entropy Monte-Carlo rank aggregation approach [27] 

was applied to get a combined super list to indicating overall performance of each 

classifier. Finally, overall performances were clustered by hierarchical clustering to 

see the similarities of classifiers and the results are given in Figure 4. Results revealed 

that PLDA and bagSVM had the highest accuracies and found to be similar on 

average, SVM and RF performed moderately similar, while CART performed slightly 

better than a random chance. A possible explanation for such observation is that 

bagSVM uses bootstrap technique and trains a model from a dataset which have lower 

variance. However, it aggregates single models and transform good predictors into 

nearly optimal ones [28]. 

In overall, the performance of SVM and RF were not as high as bagSVM or PLDA, 

and decrease when the data becomes more spread. It can be said that bagSVM 

increases the performance of single SVMs when data is barely separable. This 

result is consistent with the findings of [29-30]. 

Witten et al. [6] mentioned that normalization strategy has little impact on the 

classification performance but may be important in differential expression analysis. 

However, data transformation has a direct effect on classification results, by changing 

the distribution of data. In this study, we used deseq normalization with variance 

stabilizing transformation and had well results with bagSVM algorithm. We leave the 
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effect of other transformation approaches (such as rlog [9] and voom [31]) on 

classification as a topic for further research. 

 

Conclusions  

A considerable amount of evidence collected from genome-wide gene expression 

studies suggests that the identification and comparison of differentially expressed 

genes have been a promising approach of cancer classification for diagnosis and 

prognosis purposes. Although microarray-based gene expression studies through a 

combination of classification algorithms such as SVM and feature selection 

techniques have recently been widely used for new biomarkers for cancer diagnosis 

[32-35], it has its own limitations in terms of novel transcript discovery and 

abundance estimation with large dynamic range. Thus, one choice is to utilize the 

power of RNA-Seq techniques in the analysis of transcriptome for diagnostic 

classification to surpass the limitations of microarray-based experiment. As 

mentioned in earlier sections, working with less noisy data can enhance the predictive 

performance of classifiers, and the novel transcripts may be a biomarker in interested 

disease or phenotypes. 

This study is among the first studies for RNA-Seq classification. However, it can be 

extended to other sequencing studies such as DNA or ChIP-sequencing data. Results 

from simulated data sets revealed that, bagSVM method performs as the best 

algorithm when the data is becoming to be overdispersed. When overdispersion is 

substantial or low, PLDA method becomes an appropriate classifier.  

In summary, bagSVM algorithm after vst transformation can be a good choice of 

classifier for all kinds of RNA-Seq datasets, mostly for overdispersed ones. PLDA 
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algorithm should be a method of choice for slight and moderately overdispersed 

datasets.  

We have developed an R package named MLSeq to implement the algorithms 

discussed here. This package is publicly available at BIOCONDUCTOR 

(http://www.bioconductor.org/packages/2.14/bioc/html/MLSeq.html). 

Methods 

Bagging Support Vector Machines 

Ensemble methods are learning algorithms that improve the predictive performance of 

a classifier. An ensemble of classifiers is a collection of multiple classifiers whose 

individual decisions are combined in some way to classify new data points [36, 37]. It 

is known that ensembles often represent much better predictive performance than the 

individual classifiers that make them up [37, 38]. 

The SVM generally shows a good generalization performance and is easy to learn 

exact parameters for the global optimum. On the other hand, due to the practical SVM 

has been carried out using the approximated algorithms in order to reduce the 

computation complexity, a single SVM classifier may not learn exact parameters for 

the global optimum [39].  To deal with this issue, several authors proposed to use a 

bagging ensemble of SVM [29, 38].  

BagSVM is a bootstrap ensemble method, which creates individuals for its ensemble 

by training each SVM classifier (learning algorithm) on a random subset of the 

training set. For a given data set, multiple SVM classifiers are trained independently 

through a bootstrap method and they are aggregated via an aggregation technique. To 

construct the SVM ensemble, K replicated training sets are generated by randomly re-

sampling, but with replacement, from the given training set repeatedly. Each sample, 

��, in the given training set, ��, may appear repeated times, or not at all, in any 
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particular replicate training set. Each replicate training set will be used to train a 

specific SVM classifier. The general structure of bagSVM is given in Figure 5 and 

Additional file 2 shows the pseudo-code of the used bagging algorithm. 

Other Classification Algorithms 

Support vector machines: SVM is a classification method based on statistical learning 

theory, which is developed by Vapnik [40] and his colleges, and has taken great 

attention because of its strong mathematical background, learning capability and good 

generalization ability. Moreover, SVM is capable of nonlinear classification and deal 

with high-dimensional data. Thus, it has been applied in many fields such as 

computational biology, text classification, image segmentation and cancer 

classification [29, 40].  

In linearly separable cases, the decision function that correctly classifies the data 

points by their true class labels represented by:  

��,� � 
���	�. �� � ��                                                                                                         	�� 

� � �, �, … , � 

In binary classification, SVM finds an optimal separating hyperplane in the feature 

space, which maximizes the margin and minimizes the probability of misclassification 

by choosing � and � in equation (2). For the linearly non-separable cases, slack 

variables � �, … ,  �!, which is a penalty introduced by Cortes and Vapnik [41], can be 

used to allow misclassified data points, where  � " 0. In many classification 

problems, the separation surface is nonlinear. In this case, SVM uses an implicit 

mapping $ of the input vectors to a high-dimensional space defined by a kernel 

function (%	�, �� � $	���$	���) and the linear classification then takes place in this 

high-dimensional space. The most widely used kernel functions are linear :  

%	�, �� � ����, polynomial: %	�, �� � &���� � �'	, radial basis function:    
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%	�, �� � (�) *+,-�� + ��-

. and sigmoidal: %	�, �� � /0�1&�&����' + 2', 

where d is the degree, , " 0 sometimes parametrized as , � � �3
⁄ , and c is a 

constant. 

Classification and regression trees: Binary tree classifiers are built by repeated data 

splitting into two descendant subsets. Each terminal subset (node) is assigned a class 

label and the resulting partition of the data set corresponds to the classifier. There are 

three principal aspects of the tree building: (i) the selection of splitting rule; (ii) the 

split-stopping rule to declare a node terminal or continue splitting; (iii) the assignment 

of each terminal node to a class.  

CART, which is introduced by Breiman [42], is one of the most popular tree 

classifiers and applied in many fields. It uses Gini index to choose the split that 

maximizes the decrease in impurity at each node. If 5	6|8� is the probability of class 6 

at node 8, then the Gini index is 1 + ∑ 5�	6|8�� . When CART grows a maximal tree, 

this tree is pruned upward to get a decreasing sequence of subtrees. Then, a cross-

validation is used to identify the subtree that having the lowest estimated 

misclassification rate. Finally, the assignment of each terminal node to a class is 

performed by choosing the class that minimizes the resubstitution estimate of the 

misclassification probability [42, 43]. 

Random forest: A random forest is a collection of many CART trees combined by 

averaging the predictions of individual trees in the forest [44]. The idea behind the RF 

is to combine many weak classifiers to produce a significantly better strong classifier. 

For each tree, a training set is generated by bootstrap sample from the original data. 

This bootstrap sample includes 2/3 of the original data. The remaining of the cases 

are used as a test set to predict out-of-bag error of classification. If there are > 

features, >
��  out of m features are randomly selected at each node and the best split 
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is used to split the node. Different splitting criteria can be used such as Gini index, 

information gain and node impurity. The value of >
��  is chosen to be approximately 

either √
�

�
 or √> or 2√> and constant during the forest growing. An unpruned tree is 

grown for each of the bootstrap sample, unlike CART. Finally, new data is predicted 

by aggregating, i.e. majority votes, the predictions of all trees [45, 46]. 

Poisson linear discriminant analysis: Let @ be an AB5 matrix of sequencing data, 

where A is number of observations and 5 is number of features. For sequencing data, 

@�� indicates the total number of reads mapping to gene 8 in observation 6.  Therefore, 

Poisson log linear model can be used for sequencing data,    

@�� C DE6FFEA	G�� �,  G�� � F�H�                                                                               (3) 

where F�  is total number of reads per sample and H� is total number of reads per 

region of interest. For RNA-seq data, equation (3) can be extended as follows, 

 @��|I� � J C DE6FFEA	G��K�� �,  G�� � F�H�                                        (4) 

where I� L �1, . . . , M!  is the class of the 6
� observation, and K��  , . . . , K�� terms allow 

the 8
�  feature to be differentially expressed between classes. 

Let 	B� , I��, 6 � 1, … , A, be a training set and B� � 	@�
�, … , @�

��� be a test set. Using 

the Bayes’ rule as follows, 

D	I� � J|B��  N  O�	B��P�         (5) 

where I� denotes the unknown class label, O� is the density of an observation in class 

J and P� is the prior probability that an observation belongs to class J. If O� is a 

normal density with a class-specific mean and common variance then a standard LDA 

is used for assigning a new observation to the class [47]. In case of the observations 

are normally distributed with a class-specific mean and a common diagonal matrix, 

then diagonal LDA methodology is used for the classification [48]. However, neither 
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normality nor common covariance matrix assumptions are not appropriate for 

sequencing data. Instead, Witten [6] assumes that the data arise from following 

Poisson model, 

@��|I� � J C DE6FFEA	G��K���,        G�� � F�H�        (6) 

where I�  represents the class of the 6
� observation and the features are independent. 

The equation (4) specifies that @��|I�  �  J C DE6FFEA	F�H�K�� �. First, the size 

factors for the training data, F� , … , F�, is estimated. Then F�, H�, K�� and P� are 

estimated as described in [6]. Substituting these estimations into equation (4) and 

recalling independent features assumption, equation (5) produces, 

QEHD&I� � J|R B�' � log OV�	B�� � log PW� �  X 

   � ∑ @��QEHK��
Y�

��� + F� ∑ HW�QEHKV���
��� � log PW� � X�,           (7) 

here X and X� are constants and do not depend on the class label. The classification 

rule that assigns a new observation to the one of the classes for which equation (7) is 

the largest and it is linear in B�. More detailed information can be found in [6]. 

RNA-Seq Classification Workflow 

Providing a pipeline for classification algorithm of RNA-Seq data gives us a quick 

snapshot view of how to handle the large-scale transcriptome data and establish a 

robust inference by using computer-assisted learning algorithms. Therefore, we 

outlined the count-based classification pipeline for RNA-Seq data in Figure 6. NGS 

platforms produce millions of raw sequence reads with quality scores corresponding 

to each base-call. The first step in RNA-Seq data analysis is to assess the quality of 

the raw sequencing data for meaningful downstream analysis. The conversion of raw 

sequence data into ready-to-use clean sequence reads needs a number of processes 

such as removing the poor-quality sequences, low-quality reads with more than five 

unknown bases, and trimming the sequencing adaptors and primers. In quality 
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assessment and filtering, the current popular tools are FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), HTSeq (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html), R ShortRead package [49], 

PRINSEQ (http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi), FASTX Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) and QTrim [50]. Following these 

procedures, next step is to align the high-quality reads to a reference genome or 

transcriptome. It has been reported that the number of reads mapped to the reference 

genome is linearly related to the transcript abundance. Thus, transcript quantification 

(calculated from the total number of mapped reads) is a prerequisite for further 

analysis. Splice-aware short read aligners such as Tophat2 [51], MapSplice [52] or 

Star [53] can be prefered instead of unspliced aligners (BWA, Bowtie, etc.). After 

obtaining the mapped reads, next step is counting how many reads mapped to each 

transcript. In this way, gene expression levels can be inferred for each sample for 

downstream analysis. This step can be accomplished with HTSeq and bedtools [54] 

softwares. However, these counts cannot be directly used for further analysis and 

should be normalized to adjust between-sample differences. Moreover, for some 

applications such as differential expression, clustering and classification, a good way 

is to work with the transformed count data. Logarithmic transformation is the widely 

used choice; however it is probable to get zero count values for some genes. There is 

no standard tool for normalization, but the popular ones include deseq [17], trimmed 

mean of M values (TMM) [55], reads per kilobase per million mapped reads (RPKM) 

[56] and quantile [57]. For transformation, vst [17], rlog [9] and voom [31] methods 

can be a good choice. Once all mapped reads per transcripts are counted and 

normalized, we obtain gene-expression levels for each sample. 
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The same workflow of microarray classification can be used after obtaining the gene-

expression matrix. The crucial steps of classification can be written as feature 

selection, building classification model and model validation. In feature selection 

step, we aim to work with an optimal subset of data. This process is crucial to reduce 

the computational cost, decrease of noise and improve the accuracy for classification 

of phenotypes, also to work with more interpretable features to better understand the 

domain [58]. Various feature selection methods have been reviewed in detail and 

compared in [59].  Next step is model building, which refers to the application of a 

machine-learning algorithm and to learn the parameters of classifiers from training 

data. Thus, the built model can be used to predict class memberships of new 

biological samples. The commonly used classifiers include LDA, SVM, RF and other 

tree-based classifiers, artificial neural networks and k-nearest neighbors. In many real 

life problems, it is possible to experience that a classification algorithm may perform 

well and perfectly classify training samples, however perform poorly when 

classifying new samples. This problem is called as overfitting and independent test 

samples should be used to avoid overfitting and generalize classification results. 

Holdout, k-fold cross-validation, leave-one-out cross-validation and bootsrapping are 

among the recommended approaches for model validation. 
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Figures 
Figure 1  - Simulation results with k=2, 3 and 4. Figure shows the performance 

results of classifiers with changing parameters of sample size (n), number of 

genes (p) and type of dispersion (φ=0.01: very slight, φ=0.1: substantial, φ=1: 

very high) 

Figure 2  - Results obtained from cervical (left panel) and liver & kidney (right 

panel) real datasets. Figure shows the performance results of classifiers for 

datasets with changing number of most significant number of genes 

Figure 3 - Distribution of overdispersion statistic in cervical and liver&kidney 

data 

Figure 4 - (A) Error bars indicating overall performances of classifiers (B) 

Pihur’s rank aggregation approach results (C) Hierarchical clustering for 

euclidean distance and average method to demonstrate overall performance of 

classifiers 

Figure 5 - The general structure of bagSVM 

Figure 6 - RNA-Seq classification workflow 

Tables 

Table 1  - Description of real RNA-Seq datasets used in this study 

Dataset Description 

Liver and kidney 

[17] 

Liver and kidney data measures the gene expression levels of 22,935 

genes belonging to human kidney and liver RNA-Seq samples. There 

were 14 kidney and liver samples (7 replicates in each) and these 

samples are treated as two distinct classes 

Cervical cancer  

[18] 

Cervical cancer data measures the expressions of 714 miRNA’s of 

human samples. There are 29 tumor and 29 non-tumor cervical samples 

and these two groups are treated as two separete classes 
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