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In the study of networks, it is often insightful to use algorithms to determine mesoscale features such as “com-
munity structure”, in which densely connected sets of nodes constitute “communities” that have sparse connec-
tions to other communities. The most popular way of detecting communities algorithmically is to optimize the
quality function known as modularity. When optimizing modularity, one compares the actual connections in
a (static or time-dependent) network to the connections obtained from a random-graph ensemble that acts as
a null model. The communities are then the sets of nodes that are connected to each other densely relative to
what is expected from the null model. Clearly, the process of community detection depends fundamentally on
the choice of null model, so it is important to develop and analyze novel null models that take into account
appropriate features of the system under study. In this paper, we investigate the effects of using null models that
take incorporate spatial information, and we propose a novel null model based on the radiation model of popu-
lation spread. We also develop novel synthetic spatial benchmark networks in which the connections between
entities are based on distance or flux between nodes, and we compare the performance of both static and time-
dependent radiation null models to the standard (“Newman-Girvan”) null model for modularity optimization and
a recently-proposed gravity null model. In our comparisons, we use both the above synthetic benchmarks and
time-dependent correlation networks that we construct using countrywide dengue fever incidence data for Peru.
We also evaluate a recently-proposed correlation null model, which was developed specifically for correlation
networks that are constructed from time series, on the epidemic-correlation data. Our findings underscore the
need to use appropriate generative models for the development of spatial null models for community detection.

PACS numbers: 87.19.Xx,89.20.-a,89.75.Fb,05.45.Tp

I. Introduction

A network formalism is often very useful for describing
complex systems of interacting entities [1, 2]. Scholars in
a diverse set of disciplines have studied networks for many
decades, and network science has experienced particularly ex-
plosive growth during the past 20 years [1]. The most tradi-
tional network representation is a static graph, in which nodes
represent entities and edges represent pairwise connections
between nodes. However, many networks are time-dependent
[3, 4] or multiplex (include multiple types of connections be-
tween nodes) [5, 6]. Moreover, network structure is influenced
profoundly by spatial effects [7]. To avoid discarding poten-
tially important information, which can lead to very mislead-
ing results, it is thus crucial to develop methods that incorpo-
rate features such as time-dependence, multiplexity, and spa-
tial embeddedness in a context-dependent manner [3, 5, 7].
Because of the newfound wealth of available rich data, it
has now become possible to validate increasingly complicated
network structures and methods using empirical data.

In the present paper, we study a mesoscale network struc-
ture known as community structure. A “community” is a
set of nodes with dense connections among themselves, and
with only sparse connections to other communities in a net-
work [8, 9]. Communities arise in numerous applications. For
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example, social networks typically include dense sets of nodes
with common interests or other characteristics [10], networks
of legislators often contain dense sets of individuals who vote
in similar ways [11], and protein-protein interaction networks
include dense sets of nodes that constitute functional units
[12]. The algorithmic detection of communities and the sub-
sequent investigation of both their aggregate properties and
the properties of their component members can provide novel
insights into the relationship between network structure and
function (e.g., functional groupings of newly discovered pro-
teins [13]).

Myriad community detection methods have been devel-
oped [8, 9]. The most popular family of methods entails
the optimization of a quality function known as modularity
[14, 15]. To optimize modularity, one compares the actual
network structure to some null model, which quantifies what it
means for a pair of nodes to be connected “at random”. Tradi-
tionally, most studies have randomized only network structure
(while preserving some structural properties) and not incor-
porated other features (such as spatial or other information).
The standard null model for modularity optimization is the
“Newman-Girvan” (NG) null model, in which one random-
izes edge weights such that the expected strength distribution
is preserved [14, 15]. It is thus related to the classical con-
figuration model [1]. It has become very popular due to its
simplicity and effectiveness, and it has been derived system-
atically through the consideration of Laplacian dynamics on
networks [16]. However, it is also a naive choice, as it does

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2014. ; https://doi.org/10.1101/007435doi: bioRxiv preprint 

https://doi.org/10.1101/007435


2

not incorporate domain-specific information. The choice of
a null model is an important consideration because (1) it can
have a significant effect on the community structure obtained
via optimization of a quality function, and (2) it changes the
interpretation of communities [17–19]. The best choice for a
null model depends on both one’s data set and scientific ques-
tion. In the present paper, we explore the issue of null model
choice in detail in the context of spatially embedded and tem-
poral networks.

Most existing research on community detection does not
incorporate metadata about nodes (or edges) or information
about the timing and location of interactions between nodes.
However, with the increasing wealth of space-resolved and
time-resolved data sets, it is important to develop commu-
nity detection techniques that take advantage of the additional
spatial and temporal information (and of domain-specific in-
formation, such as generative models for human interactions
[20]). Indeed, community detection in temporal networks
has become increasingly popular [21–27], but the majority of
methods use networks that are constructed from either static
snapshots of data or aggregations of data over time windows.
Few investigations of community structure in temporal net-
works have used methods that exploit temporal structure (see,
e.g., [24, 27]). There is also starting to be more work on the
influence of space on community structure [20, 28–31], but
much more research is necessary.

In the present paper, we use modularity maximization to
study communities in spatially embedded and time-dependent
networks. We compare the results of community detection
using two different spatial null models — a gravity null
model [20] and a new radiation null model — to the stan-
dard NG null model using novel synthetic benchmark net-
works that incorporate spatial effects via distance decay or
disease flux as well as temporal correlation networks that we
constructed using time-series data of recurrent epidemic out-
breaks in Peru. We also evaluate a recently-proposed correla-
tion null model, which was developed specifically for corre-
lation networks that are constructed from time series [18], on
the epidemic-correlation data.

Network methods have become increasingly prevalent in
the modeling of infectious diseases [32]. Most studies focus
on the importance of interpersonal contact networks on the
disease spread on an individual level. Our direct analysis of
disease data in the present paper provides a complementary
(e.g., more systemic) approach. Our work also complements
other approaches, such as large-scale compartmental models
that incorporate transportation networks to link local popula-
tions. Such models have been used to study large-scale spatial
disease spread (e.g., to examine the influence of features such
as spatial location, climate, and facility of transportation on
phenomena such as disease persistence and synchronization
of disease spread) [7, 33–35].

The rest of the present paper is organized as follows. In
Section II, we give an overview of networks and community
detection. We also discuss the gravity null model and in-
troduce a new radiation null model. We give our results for
synthetic spatial networks in Section III, and we give our re-
sults for correlation networks that we construct from disease

data in Section IV. We summarize our results in Section V.
In appendices, we include the results of additional numerical
experiments from varying parameters in the benchmark net-
works. We also include an additional examination of the sim-
ilarity between network partitions for the benchmarks and the
dengue fever correlation networks.

II. Networks and Community Structure

A network describes a set of entities (called nodes) that are
connected by pairwise relationships (called edges). In the
present paper, we study weighted networks which are spa-
tially embedded: each node represents a location in space.
One can represent a weighted network with N nodes as an
N × N adjacency matrix W, where an edge Wi j represents the
strength of the relationship between nodes i and j. We seek
to find communities, which are sets of nodes that are densely
connected to each other but sparsely connected to other dense
sets in a network [8, 9].

We wish to study the evolution of network structure through
time. The simplest way to represent temporal data is through
an ordered set of static networks, which can arise either as
snapshots at different points in time or as a sequence of aggre-
gations over consecutive time windows (which one can take
either as overlapping or nonoverlapping). Static networks pro-
vide a good starting point for the development and investiga-
tion of new methods — which, in our case, entails how to
incorporate spatial information into null models for commu-
nity detection via modularity maximization. However, they
do not take full advantage of temporal information in data that
changes in time. For example, it can be hard to track the iden-
tity of communities in temporal sequences of networks [24].

To mitigate the community-tracking problem, we also use
a type of multilayer network [5, 6] known as a multislice net-
work [24]. This gives an N × N × m adjacency tensor W that
has m layers and N nodes in each layer. The intralayer edges
in the network are exactly the same as they were for the se-
quence of static networks. The tensor element W i js gives the
weight of an intralayer edge between nodes i and j in layer s.
Additionally, each layer has a copy of node i, and it is con-
nected to itself in consecutive layers s and r using interlayer
edges of weight Cisr. In this paper, we will suppose for sim-
plicity that Cisr = ω ∈ [0,∞), but one can also consider more
general situations [5, 36]. A multislice network can have up
to (N × m) multilayer nodes (i.e., node-layer tuples), each of
which corresponds to a specific (node, time) pair. Hence, this
structure makes it possible to detect temporally evolving com-
munities in a natural way.

For our computations of community structure, we flatten
the N × N × m adjacency tensor into a (N × m) × (N × m)
adjacency matrix, such that the intralayer connections are on
the main block diagonal and the interlayer connections oc-
cur on the off-block-diagonal entries. We detect communi-
ties by maximizing modularity, which we use to describe the
“quality” of a particular network partition into communities
in terms of its departure from a null model [14]. The null
model amounts to a prior belief regarding influences on net-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2014. ; https://doi.org/10.1101/007435doi: bioRxiv preprint 

https://doi.org/10.1101/007435


3

work structure, so it is important to carefully consider the
choice of null model [18, 20, 27].

For a weighted static network W, modularity is [37]

Q =
1

2w

∑
i j

(Wi j − γPi j)δ(ci, c j) , (1)

where 2w =
∑

i j Wi j is the total edge weight, ci denotes the
community that contains node i, the function δ is the Kro-
necker delta, and Pi j is the i j-th element of the null model ma-
trix. One can examine different scales of community structure
by incorporating a resolution parameter γ [38, 39]. Smaller
values of γ tend to yield larger communities and vice versa.

For multislice networks, modularity is given by

Q =
1

2w

∑
i jsr

[(
W i js − γPi js

)
δsr + δi jC jsr

]
δ(cis, c jr) , (2)

where 2w =
∑

i js W i js, the quantity cis denotes the community
that contains node i in layer s, and Pi js is the i j-th element of
the null model tensor in layer s [24].

To detect communities via modularity maximization, one
searches the possible network partitions for the one with the
highest modularity score. Because exhaustive search over all
possible partitions is computationally intractable [40], practi-
cal algorithms invariably use approximate optimization meth-
ods (e.g., greedy algorithms, simulated annealing, or spec-
tral optimization), and different approaches offer different bal-
ances between speed and accuracy [8, 9].

In the present paper, we optimize modularity using a two-
phase iterative procedure similar to the Louvain method [41].
However, rather than using the adjacency matrix W, we work
with the modularity matrix B with elements Bi j = Wi j − γPi j
for static networks and with the modularity tensor with ele-
ments Bi js = W i js − γPi js for multislice networks [42].

The employed Louvain-like algorithm [42] is stochastic,
and a modularity landscape for empirical networks typically
includes a very large number of nearly-optimal partitions [17].
For each of our numerical experiments, we thus apply the
computational heuristic 50 times to obtain a consensus com-
munity structure [43] by constructing an association matrix
Arep (where the entries Arep

i j represent the fraction of times that
nodes i and j are classified together in the 50 partitions) and
performing community detection on Arep using the uniform
null model PU

i j = 2w/[N(N − 1)] [27]. We choose the uniform
null model in order to detect the strongest community struc-
ture in the association matrix (i.e., one that is often detected
by the original optimization process).

Because community detection using modularity maximiza-
tion is strongly parameter-dependent, one might also some-
times be interested in the most persistent communities across
a range of values of the resolution parameter γ or (for mul-
tislice networks) the interlayer edge weight ω [12, 27]. To
obtain these, we construct an association matrix Apersist across
a range of parameter values (where the entries Apersist

i j repre-
sent the fraction of times that nodes i and j are classified to-
gether in network partitions across different parameter values)

and perform community detection on Apersist using the uniform
null model to detect the most persistent community structure
in the association matrix (i.e., one that is often detected by the
original optimization process).

For multislice networks, we perform community detection
and then consensus clustering using the same basic procedure.
This yields an assignment of each multilayer node (i.e., node-
layer tuple) to a community. We are also sometimes interested
in community assignments of the original entities (i.e., a par-
tition of the set of nodes regardless of what layer they are in).
For example, we might wish to compare the result of algorith-
mic community detection to known partitions, such grouping
a node (i.e., province) by climate, population, administrative
region, etc. To do this, we perform what we call province-level
community detection, which proceeds in two rounds: (1) we
detect communities in a multislice network using any method
and null model of choice; (2) we use this partition to con-
struct an N×N province-level association matrix (i.e., a matrix
Aprovince where entries Aprovince

i j represent the fraction of times
that nodes i and j are classified together in all layers), and we
detect province-level communities by maximizing modularity
on this association matrix using a uniform null model. We
choose the uniform null model to detect the most temporally
persistent community structure in the association matrix (i.e.,
one that is often detected in multiple layers).

A. Null Models for Community Detection

The choice of null model is vital for the detection of com-
munities using modularity maximization [17, 18, 27]. The
most common choice is the Newman-Girvan (NG) null model,
which randomizes a network such that the expected strength
sequence of nodes is preserved [44, 45]. For static, weighted
networks, the NG null model is given by

PNG
i j =

kik j

2w
, (3)

where ki =
∑

j Wi j is the strength (i.e., weighted degree) of
node i and 2w =

∑
i j Wi j is the total edge weight in the net-

work.
For multislice networks, the NG null model is [24]

PNG
i js =

kisk js

2w
, (4)

where kis =
∑

j W i js is the intralayer strength of node i in layer
s and 2w =

∑
i js W i js.

Despite its popularity and demonstrated effectiveness in
many situations, the NG null model is naive in the sense that
it does not incorporate problem-specific information (such
as spatial embeddedness). It only takes node strengths into
account, and consequently it is not suitable for all applica-
tions. It is often important to incorporate additional (domain-
specific or even problem-specific) information, and what one
considers to be connected “at random” depends fundamen-
tally on the research question of interest.
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1. Spatial Null Models: Gravity Model

In many spatially embedded networks, proximity has a
strong effect on the connections between nodes, as (all else
held equal) neighboring nodes are more likely to be connected
to each other (and their connections are likely to have to have
larger weights) than nodes that are far away [7, 20]. More-
over, proximity can mask other underlying influences. Conse-
quently, incorporating the expected influence of proximity on
edge weights into null models for community detection should
make it possible to discover new and important types of struc-
tures.

Expert et al. [20] proposed a spatial null model that was in-
spired by the “gravity model” of human mobility [46–49]. A
gravity model assumes that the interaction between two loca-
tions is proportional to their importance (e.g., population), but
it decays with distance.

In the standard gravity model, the interaction between lo-
cations i and j with respective populations ni and n j that are a
distance di j apart is

Gi j = nαi nβj f (di j) , (5)

where the “deterrence function” f (d) describes the effect of
space on node interactions. Common choices for the deter-
rence function include inverse proportionality to distance (i.e.,
f (di j) = 1/di j), inverse proportionality to squared distance
(i.e., f (di j) = 1/d2

i j), exponential decay (i.e., f (di j) = e−di j ),
and other interactions of the form f (di j) = dκi j [7]. It is com-
mon the estimate the parameters α, β, and κ using regression.
Gravity models have been employed successfully during the
past half century to model spatial interactions such as popula-
tion migration [7, 50, 51], trade [52], and disease spread [35].

The simplest form of a gravity-like interaction in Eq. (5),
with α = β = 1 and κ = −1, was incorporated into a gravity
null model [20], to give

Pgrav
i j = IiI j f (di j) , (6)

where Ii is the importance of node i. One estimates the “de-
terrence function”

f (d) =

∑
{k,l|dkl=d}Wkl∑
{k,l|dkl=d} (IkIl)

, (7)

from data for all nodes at distance d between them in a data
set. Expert et al. [20] used Ii = ni (where ni denotes the
population of province i) as their measure of node impor-
tance. After briefly experimenting with variations, such as
using population density or a logarithm of the population (i.e.,
Ii = log(ni)) and observing no significant differences in per-
formance, we will follow their lead. Another simple choice is
node strength (i.e., Ii = ki =

∑
j Wi j), though the null model

then becomes very similar to the usual NG null model [20].
Moreover, if f (d) does not depend on distance, then the null
model becomes exactly the NG null model in that case.

In most data sets, distances are continuous, so one needs to
bin distance data to obtain enough nodes in each distance bin

to construct a meaningful deterrence function f (d) in Eq. (7).
In our calculations, we bin the distances into equal-distance
bins (e.g., every b km). After examining the effects of bin size
on algorithmic community structure — in particular, we stud-
ied the effect of bin size on the deterrence function and the ef-
fect of bin size on the partition quality and similarity between
algorithmic partitions — we select a bin size large enough
so that the deterrence function is relatively smooth but small
enough that it shows a downward trend. We will give the spe-
cific bin sizes for spatial benchmark and dengue correlation
networks in their respective Sections. For the benchmark net-
works we can test the similarity of algorithmic partitions to
the planted community structure at different bin sizes.

Alternative binning methods include binning into equal-
sized bins (e.g., each bin containing c elements). After testing
the choice of binning procedure on the benchmark networks
before applying the null model to empirical data and observ-
ing no qualitative differences in null model performance, we
selected the equal-distance method for the rest of the paper.

Combining Eqs. (6) and (7) allows us to write the gravity
null model as

Pgrav
i j = IiI j

∑
{k,l|dkl=di j}

Wkl∑
{k,l|dkl=di j}

(IkIl)
. (8)

Expert et al. used the null model (8) to uncover a linguistic
partition of a network of Belgian mobile phone calls into the
French and Flemish speaking parts of Belgium. This partition
was obscured by geographical communities when using the
NG null model [20].

In the present paper, we generalize the gravity null model
to a multislice setting by calculating a separate gravity null
model for each layer s. The resulting multislice gravity null
model is

Pgravi js = IiI j

∑
{k,l|dkl=di j}

Wkls∑
{k,l|dkl=di j}

(IkIl)
, (9)

where we have assumed that the population stays constant
across time. If one has reliable information about changes
in population with time, one can incorporate such information
into the null model (9) by substituting Ii with an analogous
quantity Iis that depends both on the node i and on the layer s.

2. Spatial Null Models: Radiation Model

Gravity models include multiple parameters that one needs
to either choose arbitrarily or estimate from data. Moreover,
by their design, gravity models are unable to predict differ-
ent fluxes between locations that are the same distance apart
but which have regions with different population densities be-
tween them. For example, one would expect a higher flux of
infectious disease between two locations that are separated by
a space with high population density than between locations
that are separated by a space with low population density (be-
cause of the higher availability of susceptible hosts in the latter
case) [53]. By contrast, one would expect a smaller commut-
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ing flux between such locations in the latter case due to higher
availability of nearby jobs, as this reduces peoples’ willing-
ness to commute for longer distances [54].

A recent model that was developed to attempt to address
these issues is the radiation model [54], which was designed
for population flows and has subsequently been applied suc-
cessfully in several situations [55, 56]. Because the radiation
model is designed to capture human mobility between popu-
lations, and the long-distance spread of many infectious dis-
eases — including dengue — is believed to be largely due to
long-distance mobility [57], the radiation model might pro-
vide a useful but simplified description for the spread of dis-
ease across space. In this section, we use it to construct a new
spatial null model for community detection that we believe
might be well-suited for studying the long-distance spread of
dengue.

The mean commuting flux predicted by the radiation model
for locations i and j with populations ni and n j is

Ti j = Ti
nin j

(ni + ri j)(ni + n j + ri j)
, (10)

where ri j is the population between locations i and j, and Ti is
the number of commuters in location i. A simple way to cal-
culate ri j is to use the population qi j in the circle of radius di j
centered at i and subtract the total of the populations at the ori-
gin and destination. That is, ri j = qi j − (ni + n j). Although the
radiation model is relatively recent [54], several modifications
to it have already been proposed. These include incorporating
a normalization for finite systems [56] and the development
of a general framework that includes ideas from the radiation,
gravity, and intervening-opportunities models [58].

We propose a novel null model for community detection
based on the original formulation of the radiation model [54].
We use a similar formulation to Eq. (8) to incorporate both
the expected distance-dependent flux and the actual network
structure. To avoid creating a directed network, we use a sym-
metrized predicted flux

T̂i j = (Ti j + T ji)/2 (11)

between nodes i and j. 1 We thereby construct the radiation
null model

Prad
i j = T̂i j

∑
{k,l|dkl=di j}

Wkl∑
{k,l|dkl=di j}

T̂kl
. (12)

1 Although the directionality of fluxes is an important factor to study, we
wish to keep our null models as simple as possible in order to focus on the
effect of incorporating space into them. Additionally (and again for sim-
plicity), we will construct our disease-correlation networks using Pearson
correlations, so we will study the community structure of undirected net-
works. If one instead constructs a directed networks — e.g., by including a
time delay when measuring the similarity of time series, considering ideas
such as Granger causality, or otherwise measuring similarity in a way that
produces a directed network (see, e.g., Ref. [59]), then it would also be de-
sirable to construct a directed version of the radiation null model. Clearly,
this is an interesting future direction, but it is beyond the scope of our study.

In Section IV, we will study community structure in em-
pirical data from several years of dengue fever occurrences in
Peru. Because we do not possess detailed data on the com-
muting patterns in Peru (see the description of our data in
Section IV A), we assume that commuters are distributed uni-
formly across space. We can then simplify Eq. (10) by sub-
stituting Ti = T f ni, where T f is the fraction of the population
that commutes. Because the quantity T f is present in both the
numerator and denominator of Eq. (12), we can now cancel it
out. However, if one possesses commuting data, it would be
desirable to use it to improve the radiation null model.

We also extend the radiation null model to a multislice set-
ting in an analogous manner to the gravity null model. The
multislice radiation null model is

Prad
i js = T̂i j

∑
{k,l|dkl=di j}

Wkls∑
{k,l|dkl=di j}

T̂kl
. (13)

Again, one can incorporate temporal data about population
sizes and thereby replace Ti j with Ti js to improve the null
model.

3. Spatial Null Models: Other Models

The incorporation of spatial information into null models
for community detection is an important problem, and sev-
eral other ideas have been proposed recently. For example,
Cerina et al. [28] focused on disentangling the correlation be-
tween node attributes and space, so they used a simple expo-
nential decay: f (di j) = e−di j/d, where d is the mean distance
between nodes in a network. Shakarian et al. [30] focused
on finding geographically-disperse communities, so they in-
troduced a decay constant θ such that f (di j) = e−di j/θ

2
. An-

other recently-proposed null model was used to attempt to find
geographically-proximate communities [29].

As the exact nature of the influence of spatial distance on
interactions in the dengue fever data is unclear, we decided to
focus only on null models that include a contribution from the
data, rather than using null models with an arbitrarily chosen
functional dependence. Thus, we do not test these null models
in the present paper.

III. Synthetic Benchmark Networks

To test the performance of the spatial null models, we de-
velop novel synthetic benchmark networks that represent ide-
alized spatially-embedded networks with planted community
structure.

In what we call the distance benchmark, the probability of
an edge between two nodes depends only on the geographi-
cal distance between nodes and on their community assign-
ments. We assign N nodes uniformly at random to positions
on the lattice {1, 2, . . . , l} × {1, 2, . . . , l}. We assign a popu-
lation ni to each node i (which is an idealized “city”). We
create two versions of the distance benchmark: the “uniform
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population distance benchmark” and the “random population
distance benchmark”. The uniform population version corre-
sponds to the benchmark in Expert et al. [20]; we assign the
same population (ni = 100) to each node. In the random pop-
ulation benchmark, we assign an integer population uniformly
at random from the set {1, . . . , 100}.

We also assign the nodes uniformly at random to one of
two communities. In the distance benchmarks, the probability
pdist

i j that an edge exists between nodes i and j at distance di j

is inversely proportional to distance:

pdist
i j =

λ(ci, c j)
Z1di j

, (14)

where ci is the community that contains node i and the func-
tion λ(ci, c j) = 1 if nodes i and j are in the same community
and λ(ci, c j) = λd otherwise. The “inter-community connec-
tivity” λd controls the degree of mixing between communities.
When λd = 0, only nodes in the same community are adjacent
to each other; when λd = 1, there are no distinct communities.
The normalization constant Z1 ensures that

∑
i> j pdist

i j = 1. We
place L = µN(N − 1)/2 edges, where there is an edge be-
tween nodes i and j with probability pdist

i j each, and the pa-
rameter µ ≥ 0 determines the network’s edge density. We in-
terpret multiple edges as weights. We normalize the weights
in the network to [0, 1] by dividing each entry by the max-
imum weight. When we generalize the above benchmarks
to a multilayer setting, we thereby yield synthetic multilayer
benchmark networks in which the relative magnitudes of in-
terlayer edges and intralayer edges are comparable to those in
the disease-correlation networks.

With our flux benchmark, we aim to mimic the spread of
disease on a network. We allocate its edge weights depend-
ing on the mean flux between pairs of nodes that is predicted
by the radiation model. We place N nodes uniformly at ran-
dom on the lattice {1, 2, . . . , l} × {1, 2, . . . , l}, and we assign
populations and communities in the same manner as for the
distance benchmark. Again as with the distance benchmark,
we consider both uniform-population and random-population
versions of the flux benchmark. Now, however, the edge prob-
ability pflux

i j is directly proportional to the predicted radiation-
model flux between nodes i and j (which is turn is inversely
proportional to distance di j):

pflux
i j =

λ(ci, c j)T̂i j

Z2
, (15)

where T̂i j is the mean flux between nodes i and j that is pre-
dicted by the radiation model (see Eq. 10 and 11), and Z2 is a
normalization constant to ensure that

∑
i> j pflux

i j = 1.
In Table I, we summarize the four synthetic benchmark net-

works that we have just introduced.
We create both static (i.e., single-layer) and multilayer

benchmarks networks. The static benchmarks enable us to
study the performance of modularity maximization using a
chosen null model in a simple setting without the additional
complications of a multilayer network. However, the multi-
layer benchmarks are ultimately more appropriate for disease

TABLE I. Primary characteristics (i.e., population and edge proba-
bility) for the distance and flux benchmarks for static networks. The
quantity rand({a, b}) signifies that select a number uniformly at ran-
dom from the set {a, a + 1, . . . , b}. Additionally, λ(ci, c j) = 1 if nodes
ci and c j are in the same community and λ(ci, c j) = λd otherwise,
di j is the distance between nodes i and j in space, and Z1 and Z2 are
normalization constants.
Benchmark Population pi j

Distance, uniform population 100 pdist
i j =

λ(ci,c j)
Z1di j

Distance, random population rand({1, 100}) pdist
i j =

λ(ci,c j)
Z1di j

Flux, uniform population 100 pflux
i j =

λ(ci,c j)T̂i j

Z2

Flux, random population rand({1, 100}) pflux
i j =

λ(ci,c j)T̂i j

Z2

data because they can incorporate temporal evolution.
We begin by placing nodes in space and assigning pop-

ulations in the same manner as for the static benchmarks.
We then assign nodes uniformly at random into one of two
communities, and we extend this structure into a multilayer
planted community structure with m layers. For the “tempo-
rally stable” benchmarks, the planted community structure is
the same for each layer. For the “temporally evolving” mul-
tilayer benchmarks, we change the community assignment of
a fraction p of the nodes. For each of these nodes, we select
a new community assignment uniformly at random, and we
change the community of the node in each layer; we start at a
layer that we select uniformly at random, and we also change
the assignment (to the same new community) in all remaining
layers.

We then generate the edges for each layer independently, in
the same manner as we generate a static benchmark and using
identical parameter values (N, l, µ, λd) for each; see Fig. 1. In-
dependent generation of each layer based on the same starting
conditions represents differences between observations due to
noise and experimental variation.

For each of the above types of multilayer benchmarks, we
set the value of the interlayer edges between corresponding
nodes in consecutive layers to be ω. Each of the reported
community detection results for these benchmarks is an av-
erage over consensus community detection (over 50 repeats)
for 50 independently drawn instances of a benchmark with the
same values of the same parameter values (N, l, µ, λd), (γ, ω),
and (when relevant) p.

We evaluate the performance of the NG, gravity, and radia-
tion null models on our benchmarks by comparing algorithmic
partitions with the planted community structure using normal-
ized mutual information (NMI) [60]. NMI is an information-
theoretic similarity measure that is relatively sensitive to small
differences in partitions, such as the move of a single node
from one community to another, compared to pair-counting
measures such as the Rand coefficient and z-Rand scores [61].
This sensitivity makes it suitable for assessing performance
on benchmarks that are based on well-defined, ground-truth
planted partitions.

NMI is one of many normalized versions of mutual infor-
mation (MI) [62]. Both MI and NMI are based on the concept
of information entropy, which is a measure of uncertainty. MI
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FIG. 1. Construction of temporally stable multilayer spatial bench-
marks. We assign N nodes uniformly at random to positions on a l× l
lattice (which we show in layer 1) and divide them into two equal-
sized communities (black and white) whose nodes we choose uni-
formly at random. Node i has a population of ni, and each slice has
the same set of nodes. For each slice, we allocate edges uniformly
at random according to a probability distribution that depends on the
type of benchmark; for details, see the text and Table I. We inter-
pret multiple edges as weights, and we visualize these weights using
edge thickness. We connect copies of nodes in adjacent slices with
interlayer edges of weight ω (dashed lines).

measures the amount of information that one can predict about
one random variable (which in the present paper is a partition
of a network into communities) based on another one. For a
partition X = {X1, X2, . . . XK} with K communities and a par-
tition Y = {Y1,Y2, . . .YL} with L communities, MI is defined
as

I(X,Y) =

K∑
k=1

L∑
l=1

P(k, l) log2

[
P(k, l)

P(k)P(l)

]
, (16)

where P(k) and P(l) are the marginal probabilities of ob-
serving communities k and l in partitions X and Y , respec-
tively, and P(k, l) is the joint probability of observing com-
munities k and l simultaneously in partitions X and Y . MI
takes values between 0 and min{H(X),H(Y)}, where H(X) =

−
∑K

k=1 P(k) log2 P(k) is the entropy of X.
Normalized mutual information (NMI) [60] is defined as

NMI(X,Y) =
I(X,Y)

√
(H(X)H(Y))

∈ [0, 1] . (17)

The normalization to lie within the range [0, 1] facilitates in-
terpretation and comparisons. We make use of NMI in the
following sections, and we obtain the same qualitative conclu-
sions using variation of information [63], which is a different
measure of similarity. See Appendix A for our comparisons
using VI.

A. Results on Static Benchmarks

To emphasize the difference between the gravity and radi-
ation null models, we take N = 50 and l = 10 to obtain a
relatively densely filled lattice. (See Appendix B for the re-
sults for a synthetic network with parameter values N = 10
and N = 90.) We first compare this benchmark versus a sit-
uation with parameter values N = 100 and l = 100 (which
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FIG. 2. Uniform population static benchmarks: Normalized mu-
tual information (NMI) scores between algorithmically detected and
planted community structures in static uniform population distance
benchmarks for (left) l = 10, N = 50 and (right) l = 100, N = 100,
edge density parameter µ = 100 and uniform populations of 100 for
different bin sizes (colored curves). We detect communities by opti-
mizing modularity using the (top) NG, (middle) gravity, and (bottom)
radiation null models.

are the parameter values that were used in Expert et al. [20]).
We test varying bin sizes in uniformly-spaced bins using the
parameter values b ∈ {10−4, 10−3, 10−2, 0.1} ∪ {1, 2, . . . , 10},
l = 10 and b ∈ {1, 2, . . . , 100}, l = 100. We find that bin width
makes a large difference on both benchmarks: b = 1 produces
the highest NMI scores (i.e., it has the “best performance”)
and increasing bin width leads to a decrease in performance
of both spatial null models (see Fig. 2). This effect is espe-
cially pronounced for the gravity null model.

In both cases, the best aggregate performance of the spatial
null models at optimal bin sizes is similar for l = 10 and l =

100, so we henceforth use the l = 10 benchmark with b = 1 to
lower computational time and memory usage. However, one
needs to keep the strong influence of bin size on algorithm
results in mind for applications.

We then study the performance of the three null mod-
els using several values of the resolution parameter γ ∈
{0.5, 0.75, 1, 1.25, 1.5} and the inter-community connectivity
λd ∈ {0, 0.01, . . . , 0.99, 1} on static benchmarks with N = 50
nodes and lattice size parameter l = 10. Smaller values of γ
tend to yield larger communities and vice versa. Considering
larger λd increases the level of mixing between the communi-
ties and makes community detection more difficult. For sim-
plicity, we fix the density parameter µ = 100. As we discuss
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FIG. 3. Static benchmarks: NMI scores between algorithmically detected and planted community structures in static benchmarks with l = 10,
N = 50, µ = 100 and (columns 1, 2) uniform populations of ni = 100 or (columns 3, 4) populations ni determined uniformly at random from the
set {0, . . . , 100} . We plot NMI for different values of the resolution parameter γ (colored curves) as a function of inter-community connectivity
λd ∈ [0, 1]. We examine both distance benchmarks (in columns 1, 3) and flux benchmarks (in columns 2, 4). We detect communities by
optimizing modularity using the (top) NG, (middle) gravity, and (bottom) radiation null models.

in Appendix C, the value of µ has little effect on the results of
community detection when it is above a certain minimum.

For the uniform population distance benchmark, the only
factor that influences edge placement is the distance between
nodes. On this benchmark, the gravity null model has the
best performance, as it is able to find the correct partitions
for λd / 0.82 (see Fig. 3). The radiation null model has the
second best performance and is able to find partially meaning-
ful partitions for λd / 0.74, above which we observe a plateau
of “near-singleton” partitions in which most nodes are placed
into singleton communities. (We use the term “singleton par-
tition” to refer to a partition in which every node is assigned
to its own community.) The NG null model, which does not
incorporate spatial information, does much worse than either
of the spatial null models; it suffers a sharp decline in perfor-
mance at λd ≈ 0.4. This demonstrates that, although incorpo-
rating spatial influence is beneficial for its own sake, we see
that using a null model that incorporates population informa-
tion to study community structure in networks whose structure
does not depend on population decreases the performance of
community detection. That is, incorporating spatial informa-
tion is important, but it needs to be done intelligently.

On the uniform population flux benchmark — in which
we include the population density in the region between two
nodes in the flux prediction (so the population density influ-

ences edge structure) — the radiation null model outperforms
the other null models. The gravity null model comes in second
place, and the NG null model is a distant third.

For the random population distance benchmark, we observe
a fast deterioration in quality of the detected communities for
λd ' 0.4 for all null models, and all null models reach a “near-
singleton” regime by λd ≈ 0.6. The NG null model has the
best performance among the three null models for λd / 0.43.
For λd ' 0.43, the gravity null model has the best perfor-
mance, although the partitions consist largely of singletons
for λd ' 0.6.

For the random population flux benchmark, the radiation
null model has the best performance of the three null models.
It has the slowest decrease in NMI scores with the increase
in λd. The gravity null model has the second-best perfor-
mance, and NG fails even when there is no mixing between
the two communities (see Fig. 3). However, even the best per-
formance is much worse on random population benchmarks
than it is on the uniform population benchmarks. Note ad-
ditionally that including population information into the edge
placement probability by taking pdistpop

i j =
pi p jλ(ci,c j)

Z1di j
(“distance

and population benchmark”) brings back the advantage for the
gravity null model (see Appendix D).

Among the parameter values that we consider (γ ∈

{0.5, 0.75, 1, 1.25, 1.5}), γ = 1 appears to give the best results
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(i.e., the largest NMI scores). In the near-singleton regime,
γ = 1.5 outperforms it slightly (see Fig. 3), however this par-
tition is vastly different from the planted partition.

B. Results on Multilayer Benchmarks

We now study the influence of the resolution parameters
γ and ω on the community quality of multilayer benchmarks
networks. We first compare our results to our findings from
static benchmarks by varying γ and λd for fixed values of ω.

We first study the performance of the NG, gravity, and
radiation null models on temporally stable uniform popula-
tion benchmarks (see Fig. 4) with parameter values N = 50,
l = 10, and m = 10 layers using γ ∈ {0.5, 0.75, 1, 1.25, 1.5}
and ω ∈ {10−3, 0.1, 0.25, 0.5, 0.75, 1}. We expect that for
larger ω values the weight of the interlayer edges outweighs
the intralayer edges, leading to each node being assigned to
the same community as its copies in other layers. However,
for the temporally stable benchmarks we did not observe this
effect; here, we only show figures for ω = 0.1, as different
values of ω give very little difference in results (in some plots
nearly unnoticeable).

We also experimented with “random population” bench-
marks (see Appendix E) and smaller and larger values of
ω. Our results on multilayer benchmarks follow our findings
from static benchmarks. Once again, we find that the choice
of γ has a large influence on the quality of the algorithmic
partitions, and (as with our findings for static benchmarks)
γ = 1 seems to yield the best performance (i.e., the highest
NMI scores) in most cases, except the near-singleton regime,
where γ = 1.5 outperforms it slightly.

We now examine the NMI between algorithmic versus
planted partitions on temporally stable multilayer benchmarks
while varying ω and λd for fixed γ = 1. As we show in Fig. 5,
we find that the value of ω usually has little effect on our abil-
ity to detect the planted communities via modularity maxi-
mization on benchmarks with a temporally stable community
structure. This suggests that the small interlayer variation due
to the independent creation of layers is not enough to observe
the influence of ω on community detection.

We then study the performance of the three null models
on temporally evolving uniform population benchmarks (see
Fig. 6) with parameter values of N = 50 nodes, a lattice pa-
rameter of l = 10, a fraction p = 0.4 of nodes that change
community over the whole timeline, and m = 10 layers. We
show results for γ ∈ {0.5, 0.75, 1, 1.25, 1.5} forω = 0.1 and for
ω ∈ {10−3, 0.1, 0.25, 0.5, 0.75, 1} for γ = 1. Compare Fig. 6
to the left panels of Figs. 4 and 5. We observe on tempo-
rally evolving benchmarks that varying ω makes a difference,
where the structures for ω / 0.1 for the gravity null model
and ω / 0.5 for the radiation null model are the most similar
to the planted partitions. This is in accordance with our ex-
pectation that algorithmically detected community structure
becomes overly biased towards connecting copies of nodes
across slices above a critical ω value (which depends on net-
work structure).

We also perform a “province-level” community detection
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FIG. 4. NMI between algorithmically detected and planted commu-
nity structures in uniform population (ni = 100 for all i) multilayer
temporally stable spatial benchmarks with N = 50, l = 10, m = 10,
and µ = 100 for ω = 0.1 and various values of γ (colored curves) as
a function of λd for (left) the distance benchmark and (right) the flux
benchmark. We detect communities by optimizing modularity using
the (top) NG, (middle) gravity, and (bottom) radiation null models.

on the multilayer benchmarks in which we seek assignments
of nodes (regardless of what layer they are in) to communities
and compare the results to benchmark networks with planted
community structure. This is analogous to trying to detect
community structure in disease data that persists over time —
e.g., to seek the influence of climate on disease patterns. This
is easiest to apply to temporally stable multilayer networks.

For temporally stable multilayer benchmarks (see the dis-
cussion in Appendix F), we successfully detect the underly-
ing communities, and we obtain similar performance results
as with the multilayer communities that we discussed above.

Our results on synthetic benchmark networks suggest that
using a spatial null model on a spatial network does not nec-
essarily assure a better result for community detection. The
quality of results with different null models depends strongly
on the data and the choice of parameter values. For example,
incorporating population information into a null model in a
situation in which the population is not influencing connectiv-
ity structure might cause community detection to yield spuri-
ous communities (as we discussed in the context of random
population benchmarks).

The level of influence of different node properties or events
(such as disease flux on edge placement) and the extent of
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FIG. 5. NMI between algorithmically detected and planted commu-
nity structures in uniform population (ni = 100 for all i) multilayer
temporally stable spatial benchmarks with N = 50, l = 10, m = 10,
and µ = 100 for γ = 1 and different values of interlayer edge weights
ω (colored curves) as a function of λd for (left) the distance bench-
mark and (right) the flux benchmark. We detect communities by opti-
mizing modularity using the (top) NG, (middle) gravity, and (bottom)
radiation null models.

mixing between communities is often unknown for networks
that are constructed from real data. For such networks, we rec-
ommend to try both spatial and non-spatial null models over
a wide parameter range and to study the results carefully in
light of any other known information about the network. In
Section IV, we will present an example of using such a proce-
dure to study the community structure of correlation networks
that are created from time series of dengue fever cases.

IV. Application to Disease Data

In this section, we assess the performance of the NG, grav-
ity, radiation, and correlation2 null models on multilayer cor-
relation networks that we construct from disease incidence
data that describe the spatiotemporal spread of dengue fever
in Peru from 1994 to 2008.

2 We discuss the correlation null model, which was recently introduced in
[18], in Section IV D.
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FIG. 6. NMI between algorithmically detected and planted com-
munity structures in uniform population (ni = 100 for all i) multi-
layer temporally evolving spatial distance benchmarks with N = 50,
l = 10, m = 10, and µ = 100 for (left) ω = 0.1 and different val-
ues of the resolution parameter γ (colored curves) and (right) γ = 1
and different values of the interlayer weights omega (colored curves)
as a function of λd. We detect communities by optimizing modular-
ity using the (top) NG, (middle) gravity, and (bottom) radiation null
models.

Disease dynamics are strongly influenced by space, as the
distance between regions affects the migrations of both hu-
mans and mosquito host [53]. They are also affected by cli-
mate due to the temperature dependence of the mosquito life
cycle [64], and different regions of Peru have different cli-
mates. Therefore it is important to examine and evaluate the
performance of different spatial null models when examining
communities in networks that are constructed from disease
data.

A. The Disease and the Data

Dengue is a human viral infection that is prevalent in most
tropical countries and is carried primarily by the Aedes aegypti
mosquito [65]. The dengue virus has four strains (DENV-1–
DENV-4). Infection with one strain is usually mild or asymp-
tomatic, and it gives immunity to that strain, but subsequent
infection with another strain is usually associated with more
severe disease [65].

Although dengue was considered to be nearing extinction in
the 1970s, increased human mobility and mosquito abundance
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have led to its resurgence in many countries — often as recur-
rent epidemics with an increasing number of cases and sever-
ity of disease. Dengue is a rising threat in tropical and sub-
tropical climates due to the introduction of new virus strains
into many countries and to the rise in mosquito prevalence
from the cancellation of mosquito eradication programs [66].
It is currently the most prevalent vector-borne disease in the
Americas [66, 67].

Peru is located on the Pacific coast of South America. Its
population of about 29 million people is distributed heteroge-
neously throughout the country. The majority live in the west-
ern coastal plain, and there are much smaller population den-
sities in the Andes mountains in the center and the Amazon
jungle in the east. The climate varies from dry along the coast
to tropical in the Amazon and cold in the Andes. Such hetero-
geneities influence dengue transmission [68]. For example,
temperature [69] and rain [70] affect the life cycle of the main
dengue vector Ae. aegypti, and temperature affects its role in
disease transmission [71–73]. The jungle forms a reservoir of
endemic disease; from there, the disease occasionally spreads
across the country in an epidemic [64]. Additionally, as Ae.
aegypti typically travels short distances [74], human mobility
can contribute significantly to the heterogeneous transmission
patterns of dengue at all spatial scales [57].

Our dengue data set consists of 15 years of weekly mea-
surements of the number of disease cases across 79 provinces
of Peru collected by the Peruvian Ministry of Health [75] be-
tween 1994 and 2008. These data have previously been ana-
lyzed by Chowell et al. to study the relationship between the
basic reproductive number, disease attack rate, and climate
and populations of provinces [64].

Until 1995, the DENV-1 strain dominated Peru; it mostly
caused rare and isolated outbreaks [67]. The DENV-2 strain
was first observed in 1995–1996, when it caused an isolated
large epidemic [76]. DENV-3 and 4 entered Peru in 1999
and led to a countrywide epidemic in 2000–2001 [77], and
there was subsequent sustained yearly transmission [67]. The
data contains a total of 86,631 dengue cases; most of them are
in jungle and coastal provinces (47% and 49%, respectively),
and only 4% of the cases occur in the mountains. The disease
is present in 79 of the 195 provinces.

In this paper, we use the definition of “epidemic” from the
US Agency for International Development (USAID): an epi-
demic occurs when the disease count is two standard devia-
tions above the baseline (i.e., mean) [78]. When stating coun-
trywide epidemics, we apply this definition when considering
all nodes. When stating local epidemics, we apply this defi-
nition to individual provinces (though one could also consider
particular sets of provinces).

B. Network Construction

Our data set D consists of N = 79 time series of weekly
disease counts {D1,D2, . . . ,DN} over T = 780 weeks. The
quantity Di(t) denotes the number of disease cases in province
i at time t. (See Fig. 7 for a plot of the number of cases ver-
sus time.) We create networks from this data by calculating

the Pearson correlation coefficient between each pair of time
series. 3

We seek to study the temporal evolution of the correlations
by constructing separate networks for different time windows
— we either construct a set of static networks or a multislice
network. To create these networks, we divide each of the time
series into m time windows by explicitly defining a list of the
starting points τ = {τ1, τ2, . . . , τm} for each time window and
the time window width ∆ = τt+1 − τt. In the present paper, we
use τ1 = 1 unless we state otherwise.

The starting point τt and window width ∆ define a time win-
dow that we use to select on portion of the disease time series.
For example, for the time series of disease cases in province i,
the time-series portion Ei = {Di(τt),Di(τt + 1), . . . ,Di(τt + ∆)}
represents the numbers of disease cases in province i at times
τt, τt +1, . . . , τt +∆. By considering all provinces, one can use
such time series either to construct a set of static networks or
a multislice network.

For a static network, we define a set of N nodes
{1, 2, . . . ,N}, where node i corresponds to province i. The
edge weight

Wi j =
1
2

(ρi j + 1) − δi j , (18)

where the Kronecker delta δi j removes self-edges, represents
the similarity between the time series Ei and E j. The quantity
ρi j is the Pearson correlation coefficient between the disease
time series for provinces i and j. That is,

ρi j =
〈EiE j〉 − 〈Ei〉〈E j〉

σiσ j
, (19)

where 〈·〉 indicates averaging over the time window under con-
sideration, and σi is the standard deviation of Ei. Our con-
struction yields a fully connected (or almost fully connected)
network W with elements Wi j ∈ [0, 1]. When studying static
networks, we use τ = {1, 2, . . . ,T − ∆} to form a set of T − ∆

overlapping static networks.
To construct a multislice network, we use the times τ ={

1, 1 + ∆, 1 + 2∆, . . . , 1 + ∆ ×
(
b T

∆
c − 1

)}
to create nonover-

lapping time windows. The intralayer edge weights are

Wi js =
1
2

(ρi js + 1) − δi j (20)

for each layer s. We connect each node i in the rth time win-
dow to copies of itself in an adjacent time window s using
interlayer edges of uniform weight Cisr = ω ∈ [0,∞]. This
yields a weighted multislice correlation network. The case
ω = 0 in the multislice network corresponds to a sequence
of static networks. See Fig. 7 for a schematic that shows the
construction of a multislice network.

3 Reference [59] compared several methods to calculate similarity networks
from time-series data. Our focus in the present paper is on generalizing
and evaluating null models, so we use Pearson correlations for simplicity.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 24, 2014. ; https://doi.org/10.1101/007435doi: bioRxiv preprint 

https://doi.org/10.1101/007435


12

FIG. 7. Construction of multislice correlation networks from disease
time-series data. The top panel shows the dengue fever time series
for the 79 provinces of Peru. We color the provinces by climate:
coastal provinces are in black, mountainous provinces are in brown,
and jungle provinces are in green. Observe the large epidemics in
1996 (focused in the jungle Utcubamba province) and 2000–2001
(countrywide, but primarily on the northern coast), and the recur-
rent post-2001 epidemics (which affect various jungle and coastal
provinces). The bottom panel shows an example of the multislice
network construction for 9 nodes with τ = {1, 209, 417, 625} and
∆ = 208. (The time points correspond to 1/1/1994, 27/12/1997,
22/12/2001, and 17/12/2005). The nodes represent provinces and
each intralayer edge weight is given by a Pearson correlation between
a pair of single-province time series in a given time window. One set
of correlations gives one temporal layer, and we connect copies of
each node in neighboring layers using interlayer edges of uniform
weight ω ∈ [0,∞] (dashed lines). The case ω = 0 yields a set of
static networks. (All other aspects of our network construction are
the same.)

Similar constructions of (both static and multislice) net-
works from time series have been employed for systems such
as functional brain networks [27, 79], currency exchange-rate
networks [22], and political voting networks [24, 80, 81].

Many features, such as the number of layers and the mean
and variance of the Pearson correlation values, depend on the
parameters that we use in constructing our networks. For ex-
ample, it is important to consider the choice of the time win-
dow size ∆. There is a trade-off between having many layers
to obtain a good temporal resolution of events and ensuring
that we construct each layer using enough time points to be
confident of the statistical significance of the similarity values
in the adjacency-tensor layer [79]. Larger values of ∆ yield
smaller variations in mean correlation across the years and
lessen the effects of small, regional epidemics on the num-
ber of cases and on the correlation between disease profiles in
different provinces.

Therefore, we want to use a sufficiently large value of ∆

so that we can examine long-term, repetitive disease patterns.
However, choosing a value of ∆ that is too large risks over-

smoothing the data and losing important information.4 In
the present study, we investigate long-term patterns of dis-
ease spread. Unless we state otherwise, we use ∆ = 52 for
the (overlapping) static networks in order to observe yearly
disease patterns. However, we use ∆ = 26 for multilayer
networks to ensure that we have enough layers to study the
temporal evolution of disease patterns and that the yearly epi-
demic peak is in only one of the two layers that cover that
year. Because our disease data starts on 1 January and the
yearly disease peaks usually appear in the first 20 weeks of a
given year, all but one of the observed peaks only span one
layer.

C. Community Structure in Disease-Correlation Networks

It is well-known that geographical distance has an impor-
tant influence on disease spread [57, 83, 84]. Additionally,
climate exerts a significant influence on dengue, and it is
also necessary to consider Peru’s particular topography (as its
mountains form a barrier to disease spread) [64, 67]. There-
fore, we expect the community structure in the disease-spread
networks to be strongly geographical. We also expect to ob-
serve large changes in community structure at certain time
points — such as when the introduction of the new disease
strains around 1999 led to large epidemics and the onset of
yearly countrywide epidemics [67]. In this section, we ex-
plore the similarity of algorithmically obtained community
structures to spatial and temporal groupings of nodes across
a range of parameter values.

To compare the algorithmic partitions of the correlation net-
works versus manual partitions, we use the z-score of the Rand
coefficient [61]. The Rand coefficient is

R = (w11 + w00)/M , (21)

where w11 is the number of node pairs that are in the same
community in both partitions, w00 is the number of node pairs
that are in different communities in both partitions, and M is
the total number of node pairs.

We use z-Rand scores instead of NMI because the former
measure is good at detecting similarities in coarse structure
[10, 61] but is less sensitive to minor changes such as one node
changing community assignment. For the disease data, we do
not possess ground-truth partitions as we did for our synthetic
benchmark examples, so we seek to evaluate broad organi-
zational similarities in the algorithmic and manual partitions
rather than attempting to conduct a fine-grained evaluation of
community structure versus a planted partition. We thereby
aim to inform our understanding of the general structural in-
fluences on the spatiotemporal patterns of disease spread. One
can also examine measures of spatial autocorrelation (e.g.,
Moran’s I) [85].

4 See an analogous discussion of time-window choice in Ref. [82] in the
context of financial networks.
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FIG. 8. Visualization of the three different topographical partitions of
Peru’s provinces on a map. (Left) Broad climate partition into coast
(yellow), mountains (brown), and jungle (green); (center) the further
division of coast and mountains into northern coast, central coast,
southern coast, northern mountains, central mountains, and southern
mountains; and (right) the administrative partition of Peru.

To examine the spatial community structures in the static
and multilayer networks, we compare the results of the parti-
tions that we obtain algorithmically to manual partitions using
z-Rand scores. In the “climate partitions”, we group nodes
according to the topography of their associated provinces —
jungle, coastal, and mountainous provinces — and then subse-
quently divide the coastal and mountainous communities into
northern, central, and southern provinces [see Fig. 8(a,b)]. We
use the detailed climate partition for the subsequent study. In
the 19-community “administrative partition”, we assign each
node to its associated administrative region [see Fig. 8(c)].
We compare each of the 728 static networks against these two
manual partitions to study the spatial element of the data. For
the multilayer networks, we compare the algorithmic partition
versus a manual partition by taking the same manual partition
of nodes for all slices.

We use the term “spatial partitions” to describe partitions
that yield high z-Rand scores in comparison to the climate
or administrative manual partitions. For multilayer networks,
we also compare the algorithmic partitions to partitions that
contain a planted temporal change in community structure.
For these comparisons, we group the multilayer nodes into
ones that occur before or after a “critical” time tc, and we use
the term “temporal partitions” to describe partitions that yield
high z-Rand scores in this comparison. We test all the times
τ =

{
1, 1 + ∆, 1 + 2∆, . . . , 1 + ∆ ×

(
b T

∆
c − 1

)}
that we use to

create the multilayer network, and we report the time with the
highest z-Rand score as the critical time tc.

1. Community Structure Using the NG Null Model

Before looking at multilayer networks, we first study the
community structures of the 728 overlapping static networks
formed by taking τ = {1, 2, . . . , 728} and using ∆ = 52. We
select the networks for which the algorithmic partitions score
the highest against manual spatial partitions of the network for
further study.

The community structures that we obtain from maximiz-
ing modularity have a strong spatial element, as suggested by

the high z-Rand scores when compared to topographical parti-
tions. As one can see in Fig. 9(a), which shows a compact box
plot of the z-Rand scores versus climate partitions for resolu-
tion parameter values of γ ∈ 0.1, 0.2, . . . , 3 (each box) across
the 728 networks covering the data set (the horizontal axis),
the spatial element is especially evident after the year 2000.

As one can see from a plot of number of epidemic cases
over time (see Fig. 7), this transition seems to occur around the
time of the largest countrywide epidemic in the data, and the
subsequent period includes recurring yearly epidemics that
have been linked to climatic patterns in prior studies [67].
There are two periods of significantly spatial partitions: one
corresponds to the 2000–2001 epidemic, and the second oc-
curs in 2002–2004, which contains the spatial partition with
the highest z-Rand score against climate [see Fig. 9(b)]. Note
that the topographical z-Rand scores decrease after 2004 de-
spite the continuing yearly dengue epidemics.

By plotting the partitions that have the highest z-scores with
respect to the manual climate and administrative partitions on
a map of Peru in Figs. 9(b,c), we observe that the statistically
significant similarity of the algorithmic partition to these par-
titions is difficult to discern by eye.

This is largely due to the large number of singleton commu-
nities (38 of 47 communities for the highest-scoring climate
partition, and 60 of 64 communities for the administrative par-
tition). One possible cause for the large number of singleton
communities is that epidemics have only occurred every few
years on a province scale (so many provinces thus have some-
what independent disease histories), although there are sus-
tained transmissions and yearly epidemics on a countrywide
scale. This might be due to the independent development of
immunity of the four strains of dengue, which could cause
the populations of the different provinces to be susceptible to
different strains of the disease, which could in turn lead to epi-
demics that are dominated by one serotype each year (as has
occurred with dengue in Thailand) [86]. In this scenario, one
would not expect all epidemics to reach every province (which
could, in turn, lead to singleton communities).

The jungle nodes form the largest communities in these spa-
tial partitions, and these contribute the most to the high spatial
scores. In the time periods covered by the two static networks
corresponding to the highest-scoring administrative and cli-
mate partitions, there was a dengue epidemic in some jungle
provinces at the time corresponding to the static network (see
Fig. 7). Indeed, seven of the twelve jungle nodes in the May
2003 partition (six of which are located in close proximity
to each other) experienced a dengue epidemic for six weeks
in the year corresponding to that network. It is possible that
the proximity is driving the high synchronization in epidemic
spread between these provinces.

Let us now consider community structure in the multilayer
disease network with nonoverlapping layers that we construct
using the time points τ = {1, 27, . . . , 755} and using ∆ = 26.
To find interesting parameter regimes, we compare the al-
gorithmically computed community structure of the dengue
fever multilayer disease-correlation network to manual par-
titions across a range of ω and γ parameter values between 0
and 3 (see Fig. 10). For γ / 1, all nodes are in one community.
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FIG. 9. Properties of algorithmic community structure, which we obtained by maximizing modularity using the NG null model for the dengue
fever static correlation networks with window size ∆ = 52. (a) A box plot of the z-Rand scores versus the detailed climate partition at different
γ values (γ ∈ 0.1, 0.2, . . . , 3), for the 728 static networks covering the whole time period (horizontal axis). The red lines show z-Rand scores of
±1.96 for guidance. (b) Community structure with the highest z-Rand score when compared to the climate partition. The resolution-parameter
value is γ = 0.5, the layer is 492 (which occurs in May 2003), the z-Rand score is 9.65, and we show the largest community in orange. (c)
Community structure with the highest z-Rand score when compared to the administrative partition. The resolution-parameter value is γ = 0.5,
the layer is 1 (which occurs in January 1994), the z-Rand score is 11.53, and we show the largest community in brown. Our visualization in
panels (b,c) uses a map of Peru in which we color provinces according to their community assignment. White provinces are ones in which our
data does not include any reported cases of dengue fever in the indicated time window.

For γ ∈ [1, 1.5] and ω / 1, the community structure scores
the highest versus the temporal partition [see Fig. 10(c)]. The
community structures for γ ∈ [1, 1.5] (where the endpoints of
this interval are approximate) and ω ' 1 exhibit a mixture of
spatial and temporal features. For γ ' 2, the multilayer com-
munity structure has high z-Rand scores (they are larger than
100) in comparison to climate partitions. This results from
the large value of interlayer coupling between corresponding
nodes in consecutive layers.

When studying the qualitative features of the partitions for
γ ∈ [1, 1.5] (where the endpoints of this interval are approx-
imate) and ω / 1, we observe that community detection re-
peatedly finds that January 2002 is the critical time tc (i.e.,
the strongest change point in temporal community structure).
This finding suggests that a strong shift in the patterns of
disease correlations occurred around this time. Indeed, Peru
experienced a large countrywide dengue epidemic in 2000–
2001, and this period also marks the onset of new yearly epi-
demic dynamics [67]. Thus, our method recovers the most
important biological event in this data set in addition to pro-
viding additional information about spatial influences on dis-
ease spread. We also observe several other time when new
communities are born: June 1999 (the first large epidemic af-
ter 1996), January 2004, and January 2007. We do not know
the biological significance of the latter two dates. Notably,
in this parameter regime, our community structure does not
identify the large epidemic in the jungle Utcubamba province
in 1996 (see Fig. 7), which is the other large event in this data
set.

The community structure that we detect depends heavily
on parameter values. In many parameter regimes — espe-
cially when γ ' 1 and ω ' 0.5 — communities appear

to be predominantly spatial, and we find high z-Rand scores
when compared to the climate and administrative partitions
[see Fig. 10(b)]. The high influence of spatial proximity on
the community structure is unsurprising, as spatial distance
is an important influence on disease spread [57, 84]. Previous
studies have also noted that the community structure of spatial
networks obtained by maximizing modularity using the NG
null model tends to be strongly influenced by geographical
factors [20, 87, 88]. If there are other interactions that shape
the dengue fever correlation network, they might be obscured
by the strong influence of spatial proximity. However, such
interactions might be revealed by using a spatial null model
that incorporates the expected effect of space on interactions.
We pursue this idea in Section IV C 2.

2. Community Structure Using Spatial Null Models

We apply spatial null models to the dengue fever corre-
lation networks. We obtained province locations from the
Geonames.org website [89], and we obtained their popula-
tions from the Peruvian Instituto Nacional de Estadı́stica e In-
formática (INEI) [75]. We were only able to obtain the 1994
and 2007 populations; due to the limited range of data and the
several changes in Peruvian administrative structures between
the two times, we only use the 2007 populations.

The maximum inter-province distance is about 1300 km.
We report numerical experiments using a bin size of 100
km after testing the spatial deterrence for several other sizes
(ranging between 50 and 500 km) in the same manner as in
Ref. [20]: that is, we study the shape of the deterrence func-
tion [see Eq. 5 and the nearby discussion] with changing dis-
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FIG. 10. Algorithmic partitions, which we obtain by maximizing modularity using the NG null model, of the dengue fever multilayer disease-
correlation network that we construct using ∆ = 26. (a) An example of a consensus persistent community structure that we obtain for a
resolution-parameter value γ = 1 and interlayer coupling values of ω ∈ [0.1, 3]. Layer start times τ are plotted on the horizontal axis, and
nodes are on the vertical axis. Node community membership is indicated by color. We observe several times when communities die and new
ones are born. (b,c) Results of varying the parameters γ and ω. We show the z-Rand scores for similarity to (b) “spatial” partitions by climate
and (c) temporal partitions before and after a critical time tc. (For this figure and for each set of parameter values, we select the highest scoring
tc; in the majority of cases, tc corresponds to January 2002.)

tance across bin sizes, and we then examine the community
structures that we obtain using different bin sizes. We find
that bin sizes have an effect on the shape of the deterrent func-
tion (with lower sizes giving smoother results), but all of the
bin sizes that we tested produced very similar partitions for
both the gravity and radiation spatial null models.

Recall from Section IV A that only 79 of the 195 provinces
had reported cases of dengue fever in our data, so we use the
location and population data only for those provinces.

We first study the community structure on static disease-
correlation networks using the gravity and radiation null mod-
els. Both null models seem to most remove the spatial element
of the community structures (including any temporal variation
in the spatial correlations), as indicated by a lack of variation
the spatial z-Rand scores (not shown). For both the gravity and
radiation null models, we observe high similarity between lay-
ers for a variety of values of the resolution parameter γ [see
Fig. 11(a)]. These structures contain one dominant commu-
nity with over 70 nodes along with several singleton commu-
nities [see Fig. 11(b)]. By examining the partitions directly
using a map of Peru, we see that the singleton communities
tend to consist of the highest-populated nodes. For example,
we obtain the largest z-Rand score with respect to a climate
partition for the gravity model when the Lima province, which
contains 41% of the country’s population, is a singleton com-
munity [see Fig. 11(c)].

We also examine the spatial null models for multilayer cor-
relation networks. The community structures again exhibit
one large community containing the majority of multilayer
nodes [see Fig. 12(a,b)], and several multilayer nodes corre-
sponding to provinces with highest populations form singleton
communities across time. This situation occurs for all of the
tested parameter values. Additionally, we do not observe any
clear pattern in the z-Rand scores as we change γ and ω.

Our findings suggest that the addition of space into a null
model for modularity optimization might remove the majority
of the variation in the correlation structure of the dengue fever
correlation networks, such that the influence of population

size could be the only major factor that remains. This could re-
late to the concept that a minimum population size is required
for sustained disease transmission; it has been estimated that
this size is between 10,000 and 500,000 for dengue [64, 90].
There are only 5 provinces with populations over 500,000, and
these provinces are often assigned to singleton communities
when we use a spatial null model. This suggests that they
have different disease patterns from the other provinces.

D. Community Detection Using a Correlation Null Model

Recently, MacMahon et al. [18] proposed a new null model
that they designed specifically for modularity maximization
for networks that are constructed based on the pairwise Pear-
son correlations between time series. They used ideas from
random matrix theory (RMT) [91] to generate a null model
that represents the “random” component of a correlation ma-
trix and can take into account the single most strongly influ-
encing factor on the correlation structure. In the context of
financial systems, which was the focal example of Ref. [18],
this factor is often called a “market mode”. Given that we of-
ten found a single large community when we used spatial null
models, it is interesting to see what results we obtain using
such a correlation null model.

To use a correlation null model, we need to construct our
network directly from pairwise correlations without subse-
quently shifting them to [0, 1] and removing self-edges. We
construct networks by selecting time windows and calculating
Pearson correlations in the same manner as in Section IV B,
but the here edge weights are left as raw correlations: Ci j = ρi j
(Eq. 19).

Because of the special structure of correlation matrices,
modularity using the standard NG null model assigns impor-
tance to pairs of nodes i and j whose Pearson correlation is
larger than the product of the correlations of each node with
the time series of the total number of disease cases in the
country over the chosen time window: Etot, where Etot(t) =
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FIG. 11. Properties of the algorithmic community structure, which we detected by maximizing modularity using the gravity null model, of the
dengue fever static correlation networks that we construct using a time window of ∆ = 52. (a) NMI between adjacent layers for γ ∈ {0.9, 1, 1.1}.
(b) Maximum community size (green solid curve) and number of communities (blue dashed curve) for γ = 1. (c) Community structure scoring
the highest z-Rand score versus climate among the dengue fever static correlation networks that we construct using ∆ = 52. (The resolution-
parameter value is γ = 1, the layer is 45, and the z-Rand score is 2.60.) We show these structures on a map of Peru, and we color provinces
according to their community assignment. White provinces are ones in which our data does not include any reported cases of dengue fever
in the indicated time window. Observe the single giant community that contains almost all of the nodes except the Lima province (which is a
singleton with 41% if the population).
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FIG. 12. Consensus community structure, which we obtain by max-
imizing modularity using (a) the gravity null model and (b) the radi-
ation null model, of the dengue fever multilayer disease-correlation
network that we constructed using a time window of ∆ = 26. We
use a resolution-parameter value of γ = 1 and consider ω ∈ [0.1, 3].
Layer start times τ are plotted on the horizontal axis, and nodes are
on the vertical axis. Node community membership is indicated by
color.

∑N
i=1 Ei(t).
By contrast, the correlation null model that we adopt from

Ref. [18] uses ideas from RMT to detect communities of
nodes that are more connected than expected under the null
hypothesis that all time series are independent of each other.

For a given correlation matrix constructed from N time se-
ries that each have length T (with T/N > 1), one posits based
on RMT that any eigenvalues that are smaller than the eigen-
value ξ+ = (1 +

√
N/T )2 are due to noise. Here, ξ+ is the

maximum eigenvalue predicted for a correlation matrix that
is constructed from the same number of entirely random time
series.

Additionally, for many empirical correlation matrices (in-
cluding ours, as we show in Table II), the largest eigenvalue
ξm is much larger than the others, and its corresponding eigen-
vector has all positive signs [18]. In this situation, there is a
common factor, which is called the “market mode” in finan-
cial applications, that influences all of the time series [92].

We can thus decompose our correlation matrix C as fol-
lows: C = C(r) + C(g) + C(m), where C(r) is the “random”
component of the matrix, C(m) is the “market mode”, and
the “group mode” C(g) is embodies the meaningful correla-

TABLE II. Characteristics of disease-correlation networks that we
construct using different time window widths ∆, including the mean
ξm and the mean number of eigenvalues ξ that are larger than ξ+ and
are thus deemed to correspond to non-random elements of the matrix.
The networks below the horizontal line satisfy T/N > 1 and always
have more than one eigenvalue ξ per layer that satisfies ξ > ξ+.

N ∆ No. Layers ξ+ ξm No. ξ > ξ+ per layer
79 26 754 4.36 5.99 1.01
79 52 728 3.99 5.84 1.07
79 80 700 3.975 6.24 1.30
79 104 676 3.50 5.61 2.13
79 130 650 2.47 5.41 2.19
79 150 630 2.28 5.26 2.31

tions between time series. We write C(m) = ξmvm ⊗ vm and
C(r) =

∑
{i|ξi≤ξ+}

ξivi ⊗ vi, where ξi and vi are an eigenvalue
and its corresponding eigenvector, vm⊗vm is the outer product
of the two vectors (a special case of the Kronecker product
for matrices), and ξm is the maximum observed eigenvalue in
the correlation matrix C. We can construct a correlation null
model either by removing both the “random” component of
the matrix and the influence of the “market mode” (i.e., by us-
ing the null model Pcorr = C(r) +C(m)) or by only removing the
random component (i.e., by using the null model Pcorr = C(r)).

As a necessary preliminary calculation, we examine the
maximum eigenvalue ξm and the relationship between the val-
ues of T and N for the dengue fever correlation networks
with time windows of sizes ∆ = 26 and ∆ = 52. To sat-
isfy the T/N > 1 requirement to applying the RMT approach
of Ref. [18], we require ∆ ≥ 80. However, for ∆ = 80 as
well as for ∆ ∈ {26, 52} not all layers contain more than one
eigenvalue ξ that satisfies ξ > ξ+ (see Table II), and most
of the correlation matrix is classified as noise. To avoid this,
we choose to consider larger ∆ ∈ {104, 130, 150}. For subse-
quent calculations, we use ∆ = 104 unless stated otherwise.
In Appendix G, we compare these results to our results for
∆ ∈ {26, 52, 130, 150}.

Although the maximum eigenvalues that we discussed
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above are much larger than the other eigenvalues and every
component of the associated eigenvector is positive, the eigen-
vector does not affect all nodes to the same extent. The above
construction thus yields a non-uniform null model for our data
in practice, so we are unable to identify the analog of a market
mode. We thus do not incorporate such a mode into the null
models that we employ for community detection. We use the
correlation null model

Pcorr = C(r) = γ
∑
{i|ξi≤ξ+}

ξivi ⊗ vi , (22)

where γ is the resolution parameter. For the multilayer setting,
we write

Pcorrs = C(r)
s = γ

∑
{i|ξs

i ≤ξ
s
+}

ξs
i vs

i ⊗ vs
i , (23)

where ξs
i and vs

i are an eigenvalue and its corresponding eigen-
vector for layer s.

We test the performance of this correlation null model on
correlation networks that we construct from dengue fever time
series with ∆ = 104. In most of the static networks, the com-
munity structures appear to be affected by spatial proximity —
especially for post-2000 networks, as illustrated by the high z-
Rand scores versus the climate partition (particularly in 2000–
2001, 2002–2004, 2005–2006). See Fig. 13(a). These high
z-Rand scores result from (1) the classification of the majority
of jungle provinces into one community and (2) the existence
of a community that contains many of the northern coastal
provinces [see Figs. 13(b,c)]. We obtain similar results for
∆ = 130 and ∆ = 150, whereas the jungle provinces are split
into two communities for ∆ = 26 and ∆ = 52. See Appendix
G.

We also perform community detection on multilayer net-
works using the correlation null model Pcorrs for (γ, ω) ∈
[0.1, 3]×[0.1, 3]. We obtain community structures with a mix-
ture of temporal and spatial features. We calculate a consensus
community structure for each given value of γ for the various
values of ω. In Fig. 14(a), we show the best-looking persistent
partition, which we obtain for γ = 1 and ω ∈ [0.1, 3]. This
partition includes 15 communities. Although several commu-
nities coexist in each layer, the primary divisions appear to be
largely temporal. For example, community 2 shrinks around
1998, and community 9 grows after 2005. The value of tc that
yields the highest z-Rand score (against a temporal partition)
is again January 2002 for this choice of (γ, ω), and this is also
the case for the majority of (γ, ω) ∈ [0.1, 3] × [0.1, 3].

In our sweep over the different values of γ and ω, we ob-
tain relatively low climate z-Rand scores compared to what
we obtained using NG null model (see Section IV C 1). We
do not observe any clear patterns in the spatial z-Rand scores
as we vary γ and ω, and we obtain relatively high temporal
z-Rand scores (up to about 80) for ω / 1 [see Fig. 14(b,c)].
For ω ∈ [1, 1.5] (where the endpoints of this interval are ap-
proximate), the larger values of γ values yield more temporal-
like partitions. For ω ' 1.5, by contrast, the temporal z-Rand
scores are well below 20.

1. Province-level Multilayer Communities

We now examine the province-level information that we
can glean from the data. The simplest approach is to construct
a single static network from the entire length-T time series,
but our multilayer approach allows us to aggregate data less
severely. This, in turn, allows us to lose less information.

When we aggregate all time series to construct a single sim-
ilarity network (i.e., we choose τ = 1 and ∆ = 779), we find
that the community structures that we obtain via modularity
maximization with the spatial and correlation null models all
consist of a single large homogenous community with up to
three outlier nodes (see Fig. 26 in Appendix H). Only the NG
null model is able to detect meaningful-looking communities,
especially for γ = 1 and γ = 1.1 [see Fig. 15(a)]. For γ = 1,
the we find two communities; the smaller one of them con-
sists almost exclusively (15 of 18 nodes) of northern coastal
provinces. This partition has z-Rand score versus climate of
7.3. For γ = 1.1, using the NG null model yields 28 commu-
nities, and many of them are small. The largest community
corresponds exactly to the smaller community from γ = 1.

Nodes grouped in the community of northern coastal
provinces are the provinces of Peru that were most strongly
involved in the 2000–2001 dengue epidemic; 15 nodes in
this community experienced this epidemic, whereas only two
other nodes experienced it.

The data aggregation over the whole time series results in
the 2000–2001 epidemic dominating all other events in the
time series. If we use the community structure of the tempo-
rally evolving multilayer network to create the province-level
structure, we might be able to shed some more light on other
interactions between provinces.

We then study the structure of province-level communities
that we obtain from community detection using the uniform
null model on an association matrix Aprovince. As we discussed
in Section II, we create this matrix by counting the number
of multilayer nodes that are classified together in a consensus
community detection on a multislice network. We consider
the parameter values γ = 1 and ω ∈ [0.1, 3]).

Comparing the province-level communities that we obtain
using the NG and correlation null models versus the broad to-
pographical categories of coast, mountain, and jungle reveals
the large-scale climatic influence on disease patterns. This is
especially evident in the division into jungle and non-jungle
provinces [see Fig. 15(c,d)]. We observe with the NG null
model that the majority of mountainous and coastal nodes are
classified together into one large community, in which jungle
nodes are underrepresented (the p-value is 4.69 × 10−6 in a
one-tailed Fisher exact test). As illustrated in Fig. 16(a), the
jungle provinces are assigned to five singleton communities
and six other small communities. With the correlation null
model, we find that the coastal and mountainous provinces
are again in one large community, in which the jungle nodes
are underrepresented (the p-value is 2.48×10−5 in a one-tailed
Fisher exact test), and the majority of jungle provinces are in a
second large community in which jungle nodes are overrepre-
sented (the p-value is 2.31 × 10−6 in a one-tailed Fisher exact
test); see Fig. 16(b).
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FIG. 13. Algorithmic community structure, which we obtain by maximizing modularity using a correlation null model, for the static dengue
fever correlation networks that we construct using ∆ = 104. (a) A box plot of the z-Rand scores versus the detailed climate partition at different
γ values (γ ∈ 0.1, 0.2, . . . , 3), for the static networks covering the whole time period (horizontal axis). The red lines show z-Rand scores of
±1.96 for guidance. In panels (b,c), we show partitions of the network with the highest z-Rand score based on (b) climate (γ = 1; layer 532,
which corresponds to February 2004; and a z-Rand score of 8.9) and (c) administrative divisions (γ = 1; layer 492, which corresponds to May
2003; and a z-Rand score of 10.13). We color provinces according to their community membership on a map of Peru. White provinces are
ones in which our data does not include any reported cases of dengue fever in the indicated time window.
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FIG. 14. Algorithmic community structure, which we obtain by maximizing modularity using a correlation null model, of the dengue fever
multilayer disease-correlation network that we construct using ∆ = 104. (a) Consensus persistent community structure for γ = 1 for ω ∈
[0.1, 3]. (b,c) Results of varying γ and ω. We show the z-Rand scores for similarity to (b) “spatial” partitions by administrative region and (c)
temporal partitions before and after a critical time tc. (For each parameter set, we select the highest scoring tc.)

The spatial null models that we study place almost all nodes
in the same community. The only parameter that seems to
influence community membership is population size, as the
most populous nodes are outliers that form singleton commu-
nities at all examined values of γ and ω [see Fig. 16(c)].

V. Conclusions

In conclusion, we examined time-dependent community
structure, and we compared the use of different null models
— including ones that incorporate spatial information — in
the results of modularity maximization. We conducted our
computational experiments using correlation networks con-
structed from spatiotemporal dengue fever incidence data in
provinces of Peru (a system that is strongly influenced by spa-

tial effects) and using novel synthetic benchmark spatial net-
works. We compared our results for the standard Newman-
Girvan null model versus two null models that incorporate
spatial information: a gravity null model [20] and a novel ra-
diation null model. We also compared the NG null model on
disease-correlation networks with a recently-developed corre-
lation null model (and a multilayer generalization of it) that
is designed specifically for studying correlation networks that
are derived from time series [18].

Our results indicate that it is very important to incorporate
problem-specific information such as spatial information into
the null models for community detection. Our results also il-
lustrate that there are many nuances to consider. That is, it
is not simply a matter of incorporating spatial information in
an arbitrary way but rather developing spatial null models that
are motivated by application-appropriate generative models.
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FIG. 15. Province-level algorithmic community structure, which we obtain by maximizing modularity, for the static and multilayer dengue
fever correlation networks. We color the provinces according to their community assignments. White provinces are ones in which our data
does not include any reported cases of dengue fever in the indicated time window. (a) NG null model that is fully aggregated (i.e., τ = 1
and ∆ = 779) with a resolution-parameter value of γ = 1. (b) NG null model that is fully aggregated with γ = 1.1. (c) NG null model in a
multilayer network with province-level communities that we obtain from the multilayer network with a time window of width ∆ = 26. (d)
Correlation null model in a multilayer network with province-level communities that we obtain with a time window of width for ∆ = 104.
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FIG. 16. Membership of the consensus (across ω ∈ [0, 3]) province-level communities, which we computing by maximizing modularity,
in multilayer dengue fever networks for γ = 1. In panels (a) and (b), we compare the climate composition of the communities using (a)
the NG null model and (b) a correlation null model. We order communities according to their size, and the horizontal axis gives either the
community number or “S” for a composite of the singleton communities. Most jungle nodes are combined into one community when using
the correlation null model. (c) Box plot that indicates the population sizes of the communities that we find using the gravity null model. We
group communities according to the number of provinces that they contain, and we observe that the singleton communities have populations
that are much larger than the provinces that are assigned to the one large community.

For example, the NG null model performs better than the spa-
tial null models (which both use population data) on the ran-
dom population distance benchmark where populations vary
but edge weight does not depend on them. However, when we
remove the variation in population or modify the benchmark
to include population in edge placement probabilities, we find
that the gravity null model performs best (as expected).

Parameter choices can also be extremely important, as
demonstrated by the large influence of bin size (when binning
distances for the spatial null models) on community detection
results, the failure to find meaningful communities with any of
the null models at low edge densities, and the strong influence
of resolution parameter γ on the results.

To summarize, one needs to consider seriously what vari-

ables that influence the connections in a system of interest
that one wants to include in a null model, be careful about
including spurious variables, and test how the results change
for many parameter values.

Finally, not incorporating space at all can be more appropri-
ate than incorporating it in a manner that is overly naive. (See,
for example, our results on the random population bench-
marks.)

In our consideration of dengue fever data, we observed for
static networks that the NG and correlation null models find
structures that are strongly spatial — especially after the onset
of yearly epidemics in 2000. In our study, we observed that
both yield partitions that include a large number of singleton
communities and that spatial partitions are often dominated
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by large communities of neighboring jungle nodes that expe-
rience local epidemics during the time window.

On a multilayer network, maximizing NG modularity can
result in either spatial or temporal partitions (depending on
the parameter regime). Temporal partitions successfully find
the most important time point in the history of the disease —
namely, the introduction of a new disease strain that caused
a large epidemic in 2000–2001 and a subsequent shift in dis-
ease patterns — and several other potentially interesting time
points and periods of high spatial correlation.

When studying province-level connectivity, we illustrated
that consensus province-level communities from an associa-
tion matrix that we constructed from the multilayer network
across time is a far preferable approach to complete data ag-
gregation. For the aggregation into a static network, maximiz-
ing modularity using any of the test null models except the NG
null model failed to detect any meaningful communities; the
NG community structure corresponds to the large 2000–2001
epidemic. Aggregating networks results in loss of information
that is desirable to study for meaningful patterns [3, 5].

When we constructed multilayer networks and computed
consensus communities, the computed “spatial” multilayer
partitions and province-level partitions highlight the impor-
tance of climate to the disease patterns of dengue, as the jun-
gle provinces are placed into distinct communities from the
mountainous and coastal provinces. This is sensible, as the
yearly epidemic patterns tend (on average) to exhibit an earlier
epidemic onset in the jungle [64, 67] and the jungle climate
is rather distinct from the climate in coastal and mountain-
ous provinces. The main climatic difference between jungle
provinces and other provinces is temperature, and the influ-
ence of temperature on dengue transmission [68, 71, 72] and
attack rate and persistence has been documented [64, 73]. The
assignment of jungle provinces to communities is different for
different null models. For the NG null model, they form small
or singleton communities; for the correlation null model, they
are grouped into one large community.

Which of these results is a more suitable grouping is de-
batable, as the jungle provinces tend to experience isolated
epidemics; their disease time series have a lower mean Pear-
son correlation between themselves (0.0491) than the mean
Pearson correlation between the jungle province time series
and the entire data set (0.1116). However, grouping the jungle
nodes into one community is also interesting, as it hints that
the variables that influence jungle epidemics could be different
than those in other climates. Chowell et al. [64] reported that
the coastal and mountainous provinces exhibit more spatial
heterogeneity of disease incidence than the jungle provinces,
and population size appears to play a larger role in disease per-
sistence in the jungle. Additionally, the jungle climate is more
homogenous (especially in the north-south direction) than the
other two climates.

When we attempt to remove the influence of space by
using the gravity and radiation null models, we obtain one
large community that contains all but the highest-population
provinces (which are assigned to singleton communities). In
contrast to the linguistic example in Ref. [20], this suggests for

our disease networks that the incorporation of space into the
null model accounts for the majority of the structure present
in the network. The spatial structure that we removed likely
includes the structure that corresponds to the climate vari-
ation that causes different epidemic patterns in the jungle,
coastal, and mountainous provinces. The only variable that
we were able to identify as influencing community structure
when using spatial null models is province population: the
highly populated (and typically coastal) provinces forming
singleton communities. These highly populated provinces are
likely to be economic centers, with many people traveling
there from the other provinces and thereby transmitting the
disease [57, 74, 93, 94].

These provinces could then be the seeds of epidemics for
the other coastal and mountainous provinces, and two studies
have in fact reported (so-called) “hierarchical” transmission of
dengue from populous regions to those with low populations
in both Peru and Thailand [64, 95]. This situation could lead
to high correlations across atypically long distances compared
with the majority of the data, which could in turn cause pop-
ulous provinces to be assigned to singleton communities. Ad-
ditionally, it is known that population size influences dengue
transmission: the basic reproductive number R0 and disease
persistence (i.e., the fraction of weeks with disease cases) are
positively correlated with population size, and the attack rates
are negatively correlated with it [64, 67].

The incorporation of spatial information into null models
for community detection is both interesting and desirable. As
we have illustrated in the present paper, however, there are
many nuances that it is important to consider. We have also
demonstrated that it is important to develop null models that
incorporate generative mechanisms for human mobility and
flux. We similarly expect that domain-dependent, mechanistic
null models will also be crucial in many other applications.
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[63] A. Kraskov, H. Stägbauer, R. G. Andrzejak, and P. Grassberger,

Europhys. Lett. 70, 278 (2005).
[64] G. Chowell, C. A. Torre, C. Munayco-Escate, L. Suárez-Ognio,
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A. Spatial benchmarks: Variation of Information

Normalized variation of information (NVI) [62] is a viable
alternative similarity measure to NMI for the spatial bench-
mark networks. In contrast to NMI, variation of information
(VI) and NVI are metrics in the mathematical sense. Both
measures are related to mutual information. For a partition
X = {X1, X2, . . . XK} with K communities, VI is defined as

VI(X,Y) = H(X) + X(Y) − 2I(X,Y) , (A1)

where H(X) = −
∑K

k=1 Pk log2 Pk is the entropy of the ran-
dom variable associated to partition X, the quantity I(X,Y) =∑K

k=1
∑L

l=1 P(k, l) log2

[
P(k,l)

P(k)P(l)

]
is the mutual information, P(k)

and P(l) are the respective marginal probabilities of observing
communities k and l in partitions X and Y , and P(k, l) is the
joint probability of observing communities k and l simultane-
ously in partitions X and Y). VI is equal to 0 if partitions X and
Y are identical, and VI(X,Y) < log2 N, where N is the number
of nodes in the whole network. Normalizing VI yields NVI,
which is given by [63]

NVI(X,Y) =
1 − VI(X,Y)

H(X,Y)
∈ [0, 1] . (A2)

See Refs. [62, 63] for additional discussions. As one can see
in Fig. 17, both NMI and NVI perform similarly and neither
gives visibly better precision.

B. Spatial benchmarks: Variation of the number of cities N

We now vary the number N of cities in benchmarks with
a fixed size of l = 10, density parameter of µ = 100, and
a uniform population of 100 people in each city. In Fig. 18,
we plot the NMI of algorithmic partitions versus planted par-
titions for several values of the resolution parameter γ using
the NG null model and both spatial null models. In combina-
tion with Fig. 3 in the main text, which has N = 50 cities, we
observe no qualitative changes in NMI aside from an expected
increase in variability when N is small.

C. Variation of Edge Density Parameter µ

We present the results of varying the edge density param-
eter µ in static benchmarks. The edge density has a strong
effect on the ability of the modularity-maximization methods
to detect communities. For µ / 5, we obtain smaller NMI
scores than the maximum attained for each particular λd for
larger µ values. (See Figs. 19 and 20.) We therefore focus
on using a density parameter of µ = 100 in the main text to
follow the choice that was used for the benchmarks networks
in Ref. [20].
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FIG. 17. (Left) Normalized mutual information (NMI) and (right)
normalized variation of information (NVI) between algorithmically-
detected partitions, which we obtain by maximizing modularity, and
planted partitions in the uniform population distance static spatial
benchmarks with N = 50 cities, a grid size of l = 10, and a density
parameter of µ = 50. We examine the partitions for different val-
ues of the resolution parameter γ as a function of inter-community
connectivity λd using the (top) NG null model, (middle) gravity null
model, and (bottom) radiation null model.

D. “Distance and Population” Benchmark

In this section, we construct a “distance and population”
spatial benchmark. In Fig. 3 in the main text we observed
that the gravity null model performs best on the uniform pop-
ulation distance benchmark, but the NG null model performs
better than spatial null models on the random population dis-
tance benchmark because the edge placement in that bench-
mark does not include population information. Here, we study
the effects of incorporating population into edge probabilities
for the “distance and population” benchmark.

We construct the new type of benchmark network in the
same manner as the distance benchmark in Section III, but
we now incorporate population into the edge-placement prob-
ability by taking pdistpop

i j =
pi p jλ(ci,c j)

Z1di j
. As expected, this brings

back the advantage that the gravity null model has for the uni-
form population distance benchmark (compare Fig. 21 with
Fig. 3 in the main text). The radiation null model has the
second-best performance on this benchmark, with a better per-
formance than on the random population distance benchmark.
However, it does not do as well as it did on the random popu-
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FIG. 18. Uniform population static benchmarks: NMI scores be-
tween algorithmically detected partitions, which we obtain by max-
imizing modularity, and planted partitions in static uniform popu-
lation distance benchmarks with l = 10, a density parameter of
µ = 100, and uniform populations of 100 for different numbers of
cities in an underlying space of the same size. The number of cities
is (left) N = 10, and (right) N = 90. We use the NG (top), gravity
(middle), and (bottom) radiation null models. See Fig. 3 in the main
text for plots with N = 50.

lation flux benchmark (see Fig. 3).

E. Community detection on random population multilayer
spatial benchmarks

We now study the influence of the parameters γ and ω
on the community structure for random-population multilayer
temporally-stable benchmarks. We first compare the results
to our findings from static benchmarks by varying γ and λd
for fixed values of ω. We study the performance of modu-
larity maximization with the NG, gravity, and radiation null
models on random population benchmarks (see Fig. 4) with
parameter values of N = 50, l = 10, and m = 10 layers using
γ ∈ {0.5, 0.75, 1, 1.25, 1.5} and ω ∈ {0.1, 0.25, 0.5, 0.75, 1}.
We only show plots for ω = 0.1, as the values of ω do not
noticeably influence the results.

We obtain results that are similar to our results for the cor-
responding static benchmarks inn Fig. 3.

Once again, we find that the choice of γ has a large influ-
ence on the quality of algorithmic partitions, and (as with our
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FIG. 19. NMI between algorithmically-detected partitions, which we
obtain by maximizing modularity with γ = 1, and planted partitions
for uniform population static spatial benchmarks with N = 50, a size
parameter of l = 10, uniform city populations of 100, and several
values of inter-community connectivity λd. We plot the NMI scores
as a function of the edge density parameter µ for (left) the distance
benchmark and (right) the flux benchmark.

findings for static benchmarks) that γ = 1 seems to yield the
best performance (i.e., the largest NMI scores) for low values
of λd, whereas larger values of γ perform better for larger λd
(see Fig. 22). The effect of varying γ is most pronounced for
the radiation null model on flux benchmarks.

We now examine the NMI of algorithmic versus planted
partitions in temporally-stable multilayer benchmarks for
fixed γ = 1 while varying ω and λd. As we show in Fig. 23,
we find that the value of ω usually has very little effect on our
ability to detect the planted communities via modularity max-
imization — the same as for the uniform population tempo-
rally stable multilayer benchmarks (see Fig. 5). The parameter
ω becomes important for the random-population, temporally-
evolving multilayer benchmarks in the same manner as what
we observed in the main text for uniform population bench-
mark networks (not shown; see Fig. 6 in the main text for the
uniform population results).
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FIG. 20. NMI between algorithmically-detected partitions, which we
obtain by maximizing modularity with γ = 1, and planted partitions
for random population static spatial benchmarks with N = 50, a size
parameter of l = 10, city populations n selected uniformly at random
from [0, 100], and several values of inter-community connectivity λd.
We plot the NMI scores as a function of the edge density parameter
µ for (left) the distance benchmark and (right) the flux benchmark.

F. Province-level Communities for Multilayer Benchmarks

In Fig. 24, we present our results for province-level com-
munity detection on uniform population temporally stable
multilayer benchmarks. As one can see by comparing these
results to those in Fig. 4, we obtain similar NMI scores for
the performance of community detection for province-level
communities as we did for the ordinary community detection
in multilayer networks.

G. Community Detection Using a Correlation Null Model with
Different values of ∆ on dengue fever Data

We now present results of modularity maximization us-
ing the correlation null model on correlation networks that
we construct from the dengue fever times series with vari-
ous values of the time-window width ∆ ∈ {26, 52, 130, 150}
(see Fig. 25). We select the structures that score the highest
in comparison to the detailed climate partitions, as in the main
text. We observe for small time windows (∆ = 26 and ∆ = 52)
that the jungle provinces split into two communities. For large
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FIG. 21. NMI between algorithmically-detected community struc-
ture, which we obtain by maximizing modularity, and planted com-
munity structure in “distance and population” static spatial bench-
marks with (left) uniform populations and (right) random popula-
tions. We use N = 50, l = 10, m = 10, µ = 100, and γ = 1 for
various values of ω (colored curves) as a function of λd. We detected
communities by optimizing modularity using the (top) NG, (middle)
gravity, and (bottom) radiation null models

time windows (∆ = 130 and ∆ = 150}), we obtain very sim-
ilar results to those that we showed for ∆ = 104 in Fig. 13 in
the main text. The community structure is dominated by one
large community of jungle provinces.

H. Community Detection on Aggregated dengue fever Data

In Fig. 26, we show additional results of community de-
tection on fully aggregated networks (i.e., we use τ = 1
and ∆ = 779) from the dengue fever times series. In Sec-
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FIG. 22. NMI between algorithmically-detected community struc-
ture, which we obtain by maximizing modularity, and planted com-
munity structure in random-population, temporally-stable multilayer
spatial benchmarks. We choose the population of each of the N = 50
cities uniformly at random from the set {1, . . . , 100}. We consider
various values of the resolution parameter γ, and the other parameter
values are l = 10, m = 10, µ = 100, and ω = 0.1. We plot NMI
as a function of λd for (left) the distance benchmark and (right) the
flux benchmark using the (top) NG, (middle) gravity, and (bottom)
radiation null models.

tion IV D 1 of the main text, in Fig. 15(a) we showed the re-
sults of modularity maximization using the NG null model.
We now also show similar results for the gravity, radiation,
and correlation null models. The gravity, radiation, and corre-
lation null models find one large community and a few small
communities. Because of the aggregation, we have lost the
rich set of information that we were able to study using mul-
tilayer community detection.
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FIG. 23. NMI between algorithmically-detected community struc-
ture, which we obtain by maximizing modularity, and planted com-
munity structure in random-population, temporally-stable multilayer
spatial benchmarks. We choose the population of each of the N = 50
cities uniformly at random from the set {1, . . . , 100}. We consider
various values of the parameter ω, and the other parameter values
are l = 10, m = 10, µ = 100, and γ = 1. We plot NMI as a function
of λd for (left) the distance benchmark and (right) the flux bench-
mark using the (top) NG, (middle) gravity, and (bottom) radiation
null models.
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FIG. 24. NMI between algorithmically-detected province-level com-
munity structures, which we obtain by maximizing modularity, for
uniform population (ni = 100 for all i) temporally stable multilayer
spatial benchmarks with m = 10 layers. Each layer has a single-layer
planted partition with N = 50 cities, a size parameter of l = 10, and a
density parameter of µ = 100. We use ω = 0.1 and consider various
values of the resolution parameter γ, and we plot NMI as a function
of the inter-community connectivity λd for (left) the distance bench-
mark and (right) the flux benchmark.
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FIG. 25. Algorithmically-detected community structures, which we
obtain using modularity maximization, for a correlation null model
and γ = 1 on the sets of static dengue fever correlation networks that
we construct using different time-window widths ∆. We show results
for (a) ∆ = 26, γ = 0.1, and layer 532; (b) ∆ = 52, γ = 0.6, and layer
72; (c) ∆ = 130, γ = 2.5, and layer 460; and (d) ∆ = 150, γ = 1,
and layer 492. These structures were the highest scoring against the
detailed climate partition. We show partitions on a map of Peru and
color provinces according to their community. White provinces are
ones in which our data does not include any reported cases of dengue
fever in the indicated time window.
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FIG. 26. Algorithmically-detected community structures, which we obtain using modularity maximization, for static dengue fever correlation
networks that we construct using the entire set of time series (i.e., we use τ = 1 and ∆ = 779) using (a) the gravity null model, (b) the radiation
null model, and (c) the correlation null model for a resolution-parameter value of γ = 1. We color provinces on a map of Peru according to
their community assignments. White provinces are ones in which our data does not include any reported cases of dengue fever in the indicated
time window.
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